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AN ℓ1-NORM-MASS INEQUALITY FOR COMPLETE
MANIFOLDS

by Caterina CAMPAGNOLO & Shi WANG (*)

Abstract. — We generalize an inequality of Besson–Courtois–Gallot about vol-
ume and simplicial volume of closed manifolds to the ℓ1-norm of all the homology
classes of complete manifolds. The inequality involves the critical exponent of the
fundamental group of the manifold and the mass of the homology classes.

Résumé. — Nous généralisons une inégalité de Besson–Courtois–Gallot entre
le volume et le volume simplicial des variétés fermées à la norme ℓ1 de toutes
les classes d’homologie des variétés complètes. L’inégalité s’exprime en termes de
l’exposant critique du groupe fondamental de la variété et de la masse des classes
d’homologie.

1. Introduction

Given a topological space M and any singular homology class α ∈
Hk(M,R), its Gromov norm or ℓ1-norm is defined as

∥α∥1 := inf
{

ℓ∑
i=1

|ai|

∣∣∣∣∣
ℓ∑
i=1

aiσi is a singular cycle representing α
}
,

which measures a certain topological complexity of the homology class. In
particular, if M is a closed, connected, oriented manifold, then the Gromov
norm of its fundamental class is called the simplicial volume of M , denoted
by ∥M∥.
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Gromov first introduced this notion in his proof of Mostow rigidity [21],
and observed its close relation to the Riemannian volume in his seminal
paper [11]. He proved that:

Theorem 1.1 ([11]). — If a closed connected oriented Riemannian n-
manifold M has Ricci curvature bounded below by −(n− 1), then

∥M∥ ⩽ (n− 1)nn! vol(M).

As a consequence, he gives the first non-trivial topological lower bound
for the minimal volume of a smooth manifold M . Since then, it has been
a recurrent theme in the field to obtain constraints and relations between
volume and simplicial volume of a manifold. In 1991, Besson, Courtois, and
Gallot [2] improved the upper bound of Gromov and proved:

Theorem 1.2 ([2]). — Any closed connected oriented Riemannian n-
manifold M satisfies

∥M∥ ⩽
(n− 1)nn!
nn/2 minvol(M),

where

minvol(M) = inf{volg(M) | g complete Riemannian metric on M whose
sectional curvature satisfies |K| ⩽ 1}.

It is natural to extend the above inequalities to lower degree homology
classes, after replacing the volume by a proper geometric notion of “volume
of a homology class”. It is shown by Gromov that:

Theorem 1.3 ([11, Section 2.5]). — Let M be a complete Riemannian
n-manifold with Ricci curvature bounded below by −(n − 1), and let α ∈
Hk(M,R) be any homology class. Then

∥α∥1 ⩽ (n− 1)kk! · mass(α).

Remark 1.4. — The definition of mass(α) is given in Section 3 (Defini-
tion 3.7). However, it is worth mentioning here that it is a finer notion than
the “minimal volume” of α. More precisely, if

∑ℓ
i=1 aiσi is any piecewise

smooth cycle representing α, then we have

mass(α) ⩽
ℓ∑
i=1

|ai| volk(σi).

Here volk(σi) denotes the natural k-dimensional volume of the image of σi
in M . A more precise definition can be given by the following: let σ : ∆k →
M be a C1 k-simplex (the situation of piecewise smooth simplex can be
easily generalized) where ∆k is the standard Euclidean k-simplex with any
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chosen Riemannian metric. We denote the corresponding volume form by
dV∆. Then

volk(σ) :=
∫

∆k

Jack σ dV∆,

where the definition of the k-Jacobian function is given by

Jack(σ)(x) = sup ∥dσ(e1) ∧ dσ(e2) ∧ · · · ∧ dσ(ek)∥, ∀x ∈ ∆,

where the supremum is taken over all orthonormal k-frames {e1, . . . , ek}
on Tx∆, and the norm is induced by the Riemannian inner product at
Tσ(x)M . It is clear that the definition of volk is independent of the choice
of the Riemannian metric on ∆k.

The main purpose of this paper is to follow the general approach of
Besson–Courtois–Gallot [2], and sharpen the above mass inequality of Gro-
mov, where the linear constant will now depend on the critical exponent
of M .

Given a complete connected Riemannian manifold M , write Γ = π1(M)
for its fundamental group and M̃ for its Riemannian universal cover. Let
ρ be the distance function on M̃ and O ∈ M̃ be a basepoint. The critical
exponent of M (or of Γ associated to its action on M̃) is defined to be

δ = δ
M̃

(Γ) = inf

s ∈ R

∣∣∣∣∣∣
∑
γ∈Γ

e−sρ(O,γO) < ∞

 .

It is clear that the definition is independent on the choice of the basepoint.
Our main result states:

Theorem 1.5. — If M is a complete connected Riemannian n-manifold
and δ is its critical exponent, then for all 1 ⩽ k ⩽ n and for all α ∈
Hk(M,R), we have

∥α∥1 ⩽
δkk!
kk/2 · mass(α).

Remark 1.6. — Besson, Courtois and Gallot prove essentially this state-
ment for the fundamental class of closed manifolds [2, Theorems D and 3.16].
Note that under the condition |K| ⩽ 1 (or more generally Ric ⩾ −(n− 1)),
we have δ ⩽ (n − 1) according to the Bishop–Gromov inequality [22,
Lemma 7.1.3]. Thus, our theorem recovers Besson, Courtois and Gallot’s
result in top degree (Theorem 1.2), and tightens Gromov’s mass inequality
(Theorem 1.3) in all degrees.

Our proof follows the strategy of Besson–Courtois–Gallot: it is based on
Gromov’s idea [11, Section 2.4] of using a smoothing operator ψ : M̃ →
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M1, an equivariant map from the universal cover of the manifold under
consideration to its space of probability measures, to gain estimates on the
ℓ1- and ℓ∞-norms. We choose a particular family of smoothing operators
ψs = J ◦ Φs : M̃ → M1, study its properties and obtain the corresponding
estimates. The particular choice of ψs makes the critical exponent of M
appear.

The paper is structured as follows. Section 2 contains corollaries and
applications of our main result. In Section 3 we recall useful definitions
and prove the necessary lemmas towards the main theorem (Theorem 1.5
in this introduction and Theorem 4.1 later). Section 4 is devoted to its
proof.

Acknowledgements

We would like to thank Christoforos Neofytidis for an early occasion to
discuss this work and for suggesting Corollary 2.3. We also thank Florent
Balacheff, Bob Bell, Ulrich Bunke, Chris Connell, Jean-François Lafont,
Clara Löh, George Raptis and Roman Sauer for helpful comments and
discussions. We are grateful to the referee for their careful reading and
useful suggestions.

2. Applications

2.1. Norm vanishing results

Corollary 2.1. — Let M be a complete connected Riemannian man-
ifold whose critical exponent δ

M̃
(Γ) is zero. Then ∥α∥1 = 0 for all α ∈

Hk(M,R), for all k ⩾ 1.

In the case where Γ = π1(M) is finitely generated, the critical exponent
relates to the growth rate of the group. It is clear that for any choice of
finite generating set S of Γ, there exists a constant K > 0 such that

δCay(Γ,S)(Γ) ⩽ K · δ
M̃

(Γ),

where δCay(Γ,S) is the exponential growth rate of Γ with respect to the gen-
erating set S. Thus, δ

M̃
(Γ) = 0 implies that Γ has subexponential growth.

It follows that Γ is amenable. It is well known since the work of Trauber
that the bounded cohomology of an amenable group vanishes in all degrees

ANNALES DE L’INSTITUT FOURIER
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at least 1 [14]. Hence by the duality principle and Gromov’s mapping the-
orem [11], the ℓ1-norm vanishes identically in all degrees at least 1 on the
homology groups of a manifold with amenable fundamental group. Thus
the corollary follows.

On the other hand, if M is a closed Riemannian manifold whose funda-
mental group Γ has subexponential growth, then δ

M̃
(Γ) vanishes since the

universal cover M̃ of M is quasi-isometric to the Cayley graph Cay(Γ, S) of
Γ with respect to any finite generating set S. Thus, in this case our theorem
partially recovers Trauber’s result. This includes all closed nilmanifolds.
Note that it is an open problem whether there exists a finitely presented
group with intermediate growth.

2.2. Bounds on submanifolds

Corollary 2.2. — Let M be a complete connected Riemannian man-
ifold and let δ be its critical exponent. Let X be a path-connected topo-
logical space and f : X → M a continuous map that induces a surjection
with amenable kernel on the level of fundamental groups. Then for every
class α ∈ Hk(X,R), k ⩾ 1, we have

∥α∥1 ⩽
δkk!
kk/2 · mass(f∗(α)).

Proof. — By Gromov’s mapping theorem [11] we obtain that ∥α∥1 =
∥f∗(α)∥1. Hence, the ℓ1-norm of α is bounded by the same bound as
∥f∗(α)∥1 is. We conclude by Theorem 1.5. □

Now, up to a factor, Thom’s realization theorem ensures that rational ho-
mology classes can be represented by manifolds. This leads to the following
estimate for the representing manifolds:

Corollary 2.3. — Let M be a complete connected Riemannian man-
ifold with finitely presented fundamental group and let α ∈ Hk(M,Q) be
a rational homology class, k ⩾ 1. Let N be any oriented closed connected
k-manifold N representing the class α, that is there exists a continuous
map f : N → M and r ∈ Q \ {0} such that f∗([N ]) = rα, and suppose
additionally that π1(f) : N → M is surjective with amenable kernel. Then
we have

∥N∥ ⩽ |r| · δ
kk!
kk/2 · mass(α).

Remark 2.4. — The existence of such an N representing such an α is
ensured by Thom’s realization theorem. Moreover, if k ⩽ 6 or k = n − 1

TOME 0 (0), FASCICULE 0
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and α is an integral class, we can take r = 1. For k ⩾ 4, surgery (see
for example [8, Theorem 3.1]) allows to chose N with an isomorphism
π1(N) ∼= π1(M) induced by f .

Proof. — This is a particular case of Corollary 2.2. By Gromov’s map-
ping theorem [11] we obtain that ∥N∥ = |r|∥α∥1. Hence, the simplicial
volume of N is bounded by the same bound as |r|∥α∥1 is. We conclude as
above. □

2.3. Double sided inequality

As we see, our main theorem provides a linear upper bound on the Gro-
mov norm in terms of the mass, where the linear constant depends on
the critical exponent. On the other hand, if the complete manifold M has
pinched negative sectional curvature, then the Gromov norm is also lin-
early bounded from below by the mass. More generally, this is true for
any k-homology class whenever the manifold admits a straightening and
the straightened k-simplices have uniformly bounded k-volume. Given a
complete manifold M and its fundamental group Γ, we recall the following
definition:

Definition 2.5. — Let Sk : ∆k(M̃) → ∆k(M̃) be a family of maps for
k ∈ {0, 1, . . . , n}, where ∆k(M̃) denotes the set of all singular simplices on
M̃ . We say that the family {Sk} is a straightening on M if

(1) Sk is Γ-equivariant for any k∈ {0, 1, . . . , n}, that is, for any σ : ∆k →
M̃ and any γ ∈ Γ, we have γSk(σ) = Sk(γσ). Thus, Sk descends to
a self map on ∆k(M).

(2) The maps Sk, k ∈ {0, 1, . . . , n}, induce a chain map C∗(M̃,R) →
C∗(M̃,R) which is Γ-equivariantly chain homotopic to the identity.
Thus, the Sk, k ∈ {0, 1, . . . , n}, descend to a chain map on C∗(M,R)
which is homotopic to the identity.

The following proposition is a well-known strategy to bound a Gromov
norm from below.

Proposition 2.6. — Suppose M admits a straightening, all straight-
ened k-simplices are C1-smooth and their volumes are uniformly bounded
by a constant Ck > 0 (possibly depending on M). Then, for any α ∈
Hk(M,R), we have the inequality

∥α∥1 ⩾
1
Ck

mass(α).

ANNALES DE L’INSTITUT FOURIER
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Proof. — For every α = [
∑
i aiσi] ∈ Hk(M,R), we have

mass(α) = sup
β, comass(β)⩽1

∫
α

β

= sup
β, comass(β)⩽1

∫
[
∑

i
aiσi]

β

= sup
β, comass(β)⩽1

∫
[
∑

i
aiSk(σi)]

β

⩽ sup
β, comass(β)⩽1

∑
i

|ai| comass(β) volk(Sk(σi))

⩽ Ck ·
∑
i

|ai|,

where the third equality uses (2) of Definition 2.5. Finally, after taking the
infimum over all representatives of α, we obtain

mass(α) ⩽ Ck · ∥α∥1,

hence the proposition follows. □

When M has non-positive curvature, there are known results where the
conditions of Proposition 2.6 are satisfied. We summarize them below:
Proposition 2.6 holds if

• [11, 24] M is real hyperbolic and k ⩾ 2, where Ck is the maximal
volume of an ideal k-simplex in Hn. The constant Ck is explicitly
estimated in [12].

• [13] M has sectional curvature bounded away from zero and k ⩾ 2,
where Ck is explicitly estimated in terms of the curvature bound.

• [17, 25] M is a locally symmetric space of non-compact type (with-
out certain small factors) and k ⩾ srk(M̃) + 2, where srk(M̃) is
explicitly computed in [25, Table 1], and Ck depends on M̃ .

• [7] M satisfies Ricℓ+1 < 0 and k ⩾ 4ℓ, and Ck depends on M̃ .
Note that the first two results use the geodesic straightening, and the last
two results use the barycentric straightening introduced in [16].

Corollary 2.7. — If the conditions of Proposition 2.6 are satisfied,
then for every α ∈ Hk(M,R), k ⩾ 1, we have double sided inequalities

1
Ck

mass(α) ⩽ ∥α∥1 ⩽
δkk!
kk/2 mass(α).

In particular, if

δ <

(
kk/2

Ckk!

)1/k

,

TOME 0 (0), FASCICULE 0



8 Caterina CAMPAGNOLO & Shi WANG

then any α ∈ Hk(M,R) satisfies

∥α∥1 = mass(α) = 0.

Remark 2.8. — When M is hyperbolic, we can show that(
kk/2

Ckk!

)1/k

< k − 1.

Now by the vanishing homology theorem of Kapovich [15], if δ < k − 1
the only possible non-trivial homology classes come from the cusps of
M , whose Gromov norm is automatically zero. The second part of the
above Corollary thus follows immediately. On the other hand, by a theo-
rem of Mineyev [19], if π1(M) is Gromov hyperbolic, then any non-trivial
k-homology class (where k ⩾ 2) has positive Gromov norm. So together
with the above corollary, it is plausible to obtain similar homology vanish-
ing results for certain groups (e.g. if the comparison map is known to be
surjective in certain degrees). We suspect there are interesting applications
when M has non-positive curvature.

3. Background

We collect here the notation, the definitions and the preparatory results
for the proof of Theorem 1.5. The proof itself will be given in Section 4
(Theorem 4.1).

Let M be a complete connected Riemannian manifold with a Riemannian
metric g. Let Γ be its fundamental group, M̃ its universal cover. We write
ρ : M̃ × M̃ → R⩾0 for the distance on M̃ induced by a lift of g, and ρx for
the function ρ(x,−), x ∈ M̃ . Recall the following definition of the critical
exponent.

Definition 3.1. — Let M be a connected Riemannian manifold. With
the above notation, the critical exponent of M (or of Γ associated to its
action on M̃) is defined as

δ = δ
M̃

(Γ) := inf

s ∈ R

∣∣∣∣∣∣
∑
γ∈Γ

e−sρ(O,γO) < ∞

 ,

where O ∈ M̃ is any chosen basepoint in M̃ . By the triangle inequality, it
is clear that δ is independent of the choice of O.

ANNALES DE L’INSTITUT FOURIER
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Let o ∈ M be a chosen basepoint in M . Let µ be a finite positive measure
on M chosen to decay fast enough so that

(3.1)
∫
M

e(δ+1)d(o,x) dµ(x) < ∞,

where d is the distance function on M associated with g. By the triangle
inequality again, it is clear that the condition on µ does not depend on
the basepoint o. We can further choose µ to be absolutely continuous with
respect to the volume measure on M . We denote by µ̃ the lift of µ to M̃ : it
is a positive measure on M̃ , absolutely continuous with respect to the lift
of the volume measure induced by g, and Γ-invariant.

Lemma 3.2. — Following the notations above, if M is a complete con-
nected Riemannian manifold whose critical exponent equals δ, then for
every x ∈ M̃ , the function φsx(y) = e−sρx(y) belongs to L2(M̃, µ̃) whenever
δ/2 < s ⩽ (δ + 1)/2.

Proof. — By triangle inequality, it suffices to show that the function φsO
is in L2(M̃, µ̃). We choose a fundamental domain F ⊂ M̃ . Then the square
of the L2-norm of φsO is given by

∥φsO∥2
L2 =

∫
M̃

e−2sρO(x) dµ̃(x)

=
∑
γ∈Γ

∫
γF

e−2sρO(x) dµ̃(x)

=
∑
γ∈Γ

∫
F

e−2sργ−1O(x′) dµ̃(x′) substituting x = γx′

=
∫
F

∑
γ∈Γ

e−2sργ−1O(x′) dµ̃(x′),

where the last equality uses the dominated convergence theorem, provided
the integral of the function∫

F

∑
γ∈Γ

e−2sργ−1O(x′) dµ̃(x′)

is finite, which we are going to show in the next few steps. Let

F s(x) =
∑
γ∈Γ

e−2sργ−1O(x) .

By the definition of the critical exponent together with the triangle inequal-
ity, we know F s(x) < ∞ whenever s > δ/2. Also, it is clear that F s(x) is
Γ-invariant, hence it descends to a function Gs on M . Moreover, for each

TOME 0 (0), FASCICULE 0



10 Caterina CAMPAGNOLO & Shi WANG

x, x′ ∈ M̃ , when estimating F s(x)/F s(x′), by possibly replacing x, x′ by el-
ements in the same Γ-orbit, we may assume ρ(x, x′) = d(π(x), π(x′)) where
π : M̃ → M denotes the universal covering map. Thus,

F s(x)
F s(x′) =

∑
γ∈Γ e−2sργ−1O(x)∑
γ∈Γ e−2sργ−1O(x′)

⩽
e2sρ(x,x′)∑

γ∈Γ e−2sργ−1O(x′)∑
γ∈Γ e−2sργ−1O(x′)

= e2sρ(x,x′) .

By setting x′ = O, we obtain that

F s(x) ⩽ e2sρ(x,O) F s(O),

and so

Gs(π(x)) ⩽ e2sd(π(x),π(O)) Gs(π(O)).

Therefore, we can further estimate

∥φsO∥2
L2 =

∫
F

F s(x) dµ̃(x)

=
∫
M

Gs(z) dµ(z)

⩽
∫
M

e2sd(z,π(O)) Gs(π(O)) dµ(z)

< ∞,

where the last inequality uses (3.1) provided s ⩽ (δ + 1)/2. □

Definition 3.3. — We define the following maps Φs : M̃ → S∞ ⊂
L2(M̃, µ̃):

x 7−→
{
y 7−→ φsx(y)

∥φsx∥L2

}
,

where S∞ denotes the unit sphere of L2(M̃, µ̃), s satisfies δ+1
2 ⩾ s > δ

2 and
δ is the critical exponent of Γ for its action on M̃ . Under this assumption,
the Φs(x) are L2-functions by Lemma 3.2. They are of norm 1 by definition
and it is straightforward to check that they are Γ-equivariant.

We show an estimate on the k-Jacobian of Φs, which will be useful in
the proof of the main theorem:

ANNALES DE L’INSTITUT FOURIER
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Lemma 3.4. — Given a complete connected Riemannian n-manifold M
whose critical exponent is δ, let Φs be the map defined above. For any
integer 2 ⩽ k ⩽ n, we have

|JackΦs| ⩽
(
s2

k

)k/2

.

Proof. — Fix any x ∈ M̃ and any X ∈ TxM̃ . Recall that φsx = e−sρx(·)

and Φs(x) = φsx/∥φsx∥L2 belong to L2(M̃, µ̃) by Lemma 3.2. We will write
∥ · ∥L2 = ∥ · ∥ for short. We compute

dΦsx(X) = d
(

φsx
∥φsx∥

)
(X) = dφsx(X) · ∥φsx∥ − φsx · d∥φsx∥(X)

∥φsx∥2 .

Note that L2(M̃, µ̃) is an affine space, so its tangent spaces can be naturally
identified with itself. Under this identification, it is clear that d∥φsx∥(X) ∈
L2(M̃, µ̃) is a constant function, so φsx · d∥φsx∥(X) is parallel to φsx. Since
φsx/∥φsx∥ ∈ S∞ ⊂ L2(M̃, µ̃), we know d( φs

x

∥φs
x∥ )(X) is orthogonal to φsx.

Thus by the pythagorean theorem, we have

∥dΦsx(X)∥2 ⩽
∥dφsx(X)∥2

∥φsx∥2 .

Suppose that, under a proper choice of orthonormal bases at TxM̃ and at its
image space in TΦs(x)(L2(M̃, µ̃)), dΦsx is diagonalized to have eigenvalues
0 ⩽ |λn| ⩽ · · · ⩽ |λ1|. Then we know that |JackΦs| =

∏k
i=1 |λi|. Thus by the

geometric-arithmetic mean inequality and the Cauchy–Schwarz inequality,
provided k ⩾ 2 we obtain that

k∏
i=1

|λi| ⩽

(∑k
i=1 |λi|
k

)k

⩽

(
(
∑k
i=1 |λi|2)1/2 ·

√
k

k

)k

⩽

(
tr((dΦsx)∗ ◦ dΦsx)

k

)k/2
.

TOME 0 (0), FASCICULE 0



12 Caterina CAMPAGNOLO & Shi WANG

Finally we can estimate tr((dΦsx)∗ ◦dΦsx) by choosing an orthonormal basis
{e1, . . . , en} on TxM̃ :

tr((dΦsx)∗ ◦ dΦsx) =
n∑
i=1

∥dΦsx(ei)∥2

⩽

∑n
i=1 ∥dφsx(ei)∥2

∥φsx∥2

=
∑n
i=1 s

2 ∫
M̃

e−2sρx(z) dρ2
x,z(ei) dµ̃(z)

∥φsx∥2

= s2.

Therefore, combining the above inequalities, we have

|JackΦs| ⩽
(
s2

k

)k/2

. □

Definition 3.5.
(1) Denote by M the vector space of bounded measures on M̃ . It is

endowed with the total variation norm: by the Jordan decompo-
sition theorem, every measure µ can be uniquely decomposed into
two positive measures, its positive and its negative part µ+ and µ−,
so that µ = µ+ − µ−. The total variation of µ is then

|µ| =
∫
M̃

µ+ +
∫
M̃

µ− ⩾ 0.

(2) Denote by M1 ⊂ M the subspace of probability measures on M̃ .

We now define a map

J : S∞ ⊂ L2(M̃, µ̃) −→ M1

f 7−→ f2µ̃.

Lemma 3.6. — The map J is 2-Lipschitz, where the distance on M1 is
inherited from M.

Proof. — We compute

dM(J(f), J(g)) = dM(f2µ̃, g2µ̃)⩽
∫
M̃

|f2 − g2|dµ̃

⩽

(∫
M̃

|f − g|2 dµ̃
)1/2(∫

M̃

|f + g|2 dµ̃
)1/2

= dL2(f, g) ·
(∫

M̃

|f + g|2 dµ̃
)1/2

.

ANNALES DE L’INSTITUT FOURIER
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We can also estimate∫
M̃

|f + g|2 dµ̃ =
∫
M̃

f2 dµ̃+
∫
M̃

g2 dµ̃+ 2
∫
M̃

fg dµ̃

⩽ 2 + 2
(∫

M̃

f2 dµ̃
)1/2(∫

M̃

g2 dµ̃
)1/2

= 4.

Thus by combining the two inequalities, we obtain that J is 2-Lipschitz. □

Definition 3.7. — We recall a few useful definitions below.
(1) Let ω be a k-differential form on the manifold M . Its comass is

defined as

comass(ω) = sup
p∈M

{sup {ωp(x1, . . . , xk) | x1, . . . , xk ∈ TpM unit vectors}} .

(2) Let β ∈ Hk(M,R) be a cohomology class. By de Rham’s theorem,
it corresponds to a de Rham class of closed differential k-forms
ω ∈ Ωk(M). The comass of β is by definition

comass(β) = inf
[ω]=β

comass(ω).

Note that for k = 0, comass(β) = ∥β∥∞.
(3) Let α ∈ Hk(M,R) be a homology class. Its mass is defined as

mass(α) = sup
{∫

α

ω

∣∣∣∣ω closed differential k-form on M , comass(ω)⩽ 1
}
.

Note that for k = 0, mass(α) = ∥α∥1.
(4) Let a be an alternating (k + 1)-form on a vector space V . Its sup

norm is defined as

∥a∥∞ = sup
v0,v1,...,vk∈V

a(v0, v1, . . . , vk).

Recall that:

Lemma 3.8. — The Euclidean volume of the k-simplex with vertices 0
and the canonical basis vectors e1, . . . , ek in Rk is 1

k! .

No proof of the next lemma is given in [2, 11], so we give one here for
the reader’s convenience.

Lemma 3.9 ([2, p. 439] and [11, p. 33]). — Let a be an alternating
(k + 1)-form on M and let ã be the differential k-form on M1 defined by
ãµ(µ1, . . . , µk) = k! · a(µ, µ1, . . . , µk), where µ ∈ M1 and µ1, . . . , µk ∈ M
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14 Caterina CAMPAGNOLO & Shi WANG

are elements of the tangent space to M1 at µ, that is µi(M̃) = 0 for all
1 ⩽ i ⩽ k. Then ∫

∆(µ0,...,µk)
ã = a(µ0, . . . , µk).(3.2)

Moreover, if a denotes the restriction of a to M1, then

comass(ã) = k! · ∥a∥∞.(3.3)

Proof. — We parametrize the k-simplex ∆(µ0, . . . , µk) ⊂ M1 with ver-
tices µ0, . . . , µk by the domain

T =
{

(x1, . . . , xk) ∈ Rk
∣∣∣∣∣
k∑
i=1

xi ⩽ 1, xi ⩾ 0 ∀ 1 ⩽ i ⩽ k

}
⊂ Rk

via the map

ϕ : T −→ ∆(µ0, . . . , µk)

(x1, . . . , xk) 7−→

(
1 −

k∑
i=1

xi

)
µ0 + x1µ1 + · · · + xkµk.

Notice that this expression has indeed norm 1 in the total variation norm.
We chose the coordinates {µ0, µ1, . . . , µk} for the subspace of M containing
∆(µ0, . . . , µk). In these coordinates, the map ϕ becomes

ϕ : T −→ ∆(µ0, . . . , µk) ⊂ Rk+1

(x1, . . . , xk) 7−→

(
1 −

k∑
i=1

xi, x1, . . . , xk

)
,

so that its differential at (x1, . . . , xk) is

dϕ(x1,...,xk) =



−1 −1 −1 . . . −1
1 0 0 . . . 0
0 1 0 . . . 0
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

0 0 . . . 0 1


.

We notice that the form ã is constant on ∆(µ0, . . . , µk): indeed, let µ =∑k
i=0 xiµi, µ

′ =
∑k
i=0 x

′
iµi ∈ ∆(µ0, . . . , µk) and v1, . . . , vk be tangent vec-

tors to ∆(µ0, . . . , µk), that is they are of the form vj =
∑k
i=0 z

j
i µi with
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∑k
i=0 z

j
i = 0. Then

ãµ(v1, . . . , vk) − ãµ′(v1, . . . , vk)
= k! · a(µ, v1, . . . , vk) − k! · a(µ′, v1, . . . , vk)
= k! · a(µ− µ′, v1, . . . , vk)

= k! · a

(
k∑
i=0

(xi − x′
i)µi,

k∑
i=0

z1
i µi, . . . ,

k∑
i=0

zki µi

)
.

Now all k + 1 argument vectors in the above equation belong to the k-
dimensional subspace of ⟨{µ0, µ1, . . . , µk}⟩ with coordinates summing to
zero. Thus they are linearly dependent. Therefore the multilinear form a

vanishes on them. Consequently

ãµ(v1, . . . , vk) = ãµ′(v1, . . . , vk).

The form ϕ∗ã is a k-differential form on a k-dimensional space. The previous
argument implies that it is a constant multiple of the standard volume form
dx1 ∧· · ·∧dxk. To determine the multiple, we evaluate ϕ∗ã on a well-chosen
point. Let us write x0 = 1 −

∑k
i=1 xi and µ =

∑k
i=0 xiµi.

ϕ∗ã(x1,...,xk)

(
∂

∂x1
, . . . ,

∂

∂xk

)
= ãϕ(x1,...,xk)dϕ

(
∂

∂x1
, . . . ,

∂

∂xk

)
= ãµ(µ1 − µ0, µ2 − µ0, . . . , µk − µ0)
= k! · a(µ, µ1 − µ0, . . . , µk − µ0)
= k!·[x0a(µ0, µ1, . . . ,µk)−x1a(µ1, µ0, . . . ,µk)−· · ·−xka(µk, µ1, . . . ,µ0)]

= k! ·
k∑
i=0

xia(µ0, . . . , µk) = k! · a(µ0, . . . , µk).

Therefore ϕ∗ã = k! · a(µ0, . . . , µk)dx1 ∧ · · · ∧ dxk. We now can compute the
integral:∫

∆(µ0,...,µk)
ã =

∫
T

ϕ∗ã

=
∫
T

k! · a(µ0, . . . , µk)dx1 ∧ · · · ∧ dxk

= k! · a(µ0, . . . , µk)
∫
T

dx1 ∧ · · · ∧ dxk = k! · a(µ0, . . . , µk) 1
k! ,

where the last equality follows from Lemma 3.8. This shows Claim (3.2).
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The norm equality (3.3) is obtained as follows:

∥a∥∞ = sup
µ0,µ1,...,µk∈M1

a(µ0, . . . , µk)

= 1
k! sup

µ0,µ1,...,µk∈M1

ãµ0(µ1, . . . , µk)

= 1
k! · comass(ã). □

4. Proof of the main theorem

Theorem 4.1 (Cf. [2, Theorems D and 3.16] and [11, Section 2.5]). —
Let M be a complete connected Riemannian n-manifold and δ be its critical
exponent.

(1) For all 1 ⩽ k ⩽ dim(M), for all β ∈ Hk(M,R), we have

comass(β) ⩽ δkk!
kk/2 · ∥β∥∞.

The right hand side is +∞ if ∥β∥∞ = ∞ and δ = 0.
(2) For all 1 ⩽ k ⩽ dim(M), for all α ∈ Hk(M,R), we have

∥α∥1 ⩽
δkk!
kk/2 · mass(α).

Remarks 4.2.
(1) Besson, Courtois and Gallot prove essentially the statement (2) for

the fundamental class of closed manifolds [2, Theorems D and 3.16].
However we notice that being closed is not necessary: completeness
is enough to prove the statement for all homology classes of M .

(2) Statements (1) and (2) are exactly the improvement in our more
general setting of inequalities (+) and (++) of Gromov [11, p. 36],
corresponding to the improvement of Besson–Courtois–Gallot [2,
Theorem D] of the top-degree inequality (++) in the case of closed
manifolds.

(3) Note that statement (1) for k = 1 is uninteresting, as the sup norm
of any degree 1 cohomology class is infinite. Similarly, statement (2)
for k = 1 is trivially true because the ℓ1-norm always vanishes in
degree 1.

Proof. — We follow Gromov and Besson–Courtois–Gallot [11, 2]. We
denote by Ckb (M̃,Γ) the cochain complex consisting of the maps

c : M̃k+1 −→ R

ANNALES DE L’INSTITUT FOURIER
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that are Γ-invariant, antisymmetric, continuous, and bounded. This forms
a subcomplex of the singular cochain complex of M , by associating to each
c as above the cochain

c : Ck(M,R) −→ R
σ 7−→ c(σ0, . . . , σk),

where σ0, . . . , σk denote a choice of lifts to M̃ of the vertices of σ. The
cohomology of this complex is the bounded cohomology H∗

b (M,R) of M
([11, p. 48] and also [10, Theorem 1.4.2 and Corollary 4.4.4]).

Recall [9, Lemma 6.1] (see also [1, Proposition F.2.2]) that, for every
α ∈ Hk(M,R),

∥α∥1 = sup
{

⟨β, α⟩ | β ∈ Hk
b (M,R), ∥β∥∞ ⩽ 1

}
.(4.1)

Consider another cochain complex Ckb (M1,Γ) consisting of the maps

c : Mk+1
1 −→ R

that are Γ-invariant, antisymmetric, continuous, bounded, and multilinear
with respect to barycentric combinations: for every t ∈ [0, 1], for every
i ∈ {0, . . . , k},

c(µ0, . . . , tµi + (1 − t)µ′
i, . . . , µk)

= tc(µ0, . . . , µi, . . . , µk) + (1 − t)c(µ0, . . . , µ
′
i, . . . , µk).

The coboundary operator, as usually, is given by

δ : Ckb (M1,Γ) −→ Ck+1
b (M1,Γ)

c 7−→

{
(µ0, . . . , µk+1) 7−→

k+1∑
i=0

(−1)ic(µ0, . . . , µ̂i, . . . , µk+1)
}
.

We denote the cohomology of this complex by H∗
L(M1,Γ). It is endowed

with a seminorm denoted by ∥·∥∞, induced onH∗
L(M1,Γ) by the supremum

norm on Ckb (M1,Γ).
It turns out that the canonical chain maps

θk : Ckb (M̃,Γ) −→ Ckb (M1,Γ)

c 7−→
{

(µ0, . . . , µk) 7−→
∫
M̃k+1

c(y0, . . . , yk)µ0 ⊗ · · · ⊗ µk

}
induce an isometric isomorphism in cohomology H∗

b (M,R) ∼= H∗
L(M1,Γ),

that we will also denote by θ∗:
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Lemma 4.3 ([2, Lemma 3.21]). — Every continuous Γ-equivariant map
ψ : M̃ → M1 induces an isometric isomorphism

ψ∗ : H∗
L(M1,Γ) −→ H∗

b (M,R)

with inverse map θ∗.

Remark 4.4. — The exact same proof as in [2] works for complete man-
ifolds as well.

Notice that to every Γ-equivariant map Φs : M̃ → S∞ from Defini-
tion 3.3, one can associate the composition ψs = J ◦ Φs : M̃ → M1. It
is Γ-equivariant as well: indeed, let A be a Borel set of M̃ , let γ ∈ Γ and
x ∈ M̃ . Then

J ◦ Φs(γx)(A) = J(γΦs(x))(A) =
∫
A

(γΦs(x))2(y)µ̃(y)

=
∫
A

Φs(x)2(γ−1y)µ̃(y) =
∫
γ−1A

Φs(x)2(z)µ̃(z)

= J(Φs(x))(γ−1A) = γ∗(J ◦ Φs(x))(A).

Now we can prove statement (1): let β ∈ Hk(M,R). If ∥β∥∞ is infinite,
there is nothing to show, except if δ = 0. But δ is the limit of s, δ/2 < s ⩽
(δ + 1)/2, and so s · ∥β∥∞ = ∞ for all δ/2 < s ⩽ (δ + 1)/2. Thus we can
make sense of the expression δ · ∥β∥∞ and the inequality holds.

If ∥β∥∞ is finite, β has a bounded representative, and it defines a class
in Hk

b (M,R) that we still denote by β. Via θk it is associated to a class
θk(β) = [a] ∈ H∗

L(M1,Γ) that has the same sup norm. Note that every
representative a ∈ Ckb (M1,Γ) can be extended by linearity to an alternat-
ing (k + 1)-form a on M. We associate to it the differential form ã as in
Lemma 3.9. It is closed as a is a cocycle. According to Lemma 4.3, the
above Γ-equivariant map ψs = J ◦ Φs induces an isometric inverse for θ,
hence (J ◦ Φs)∗ã is a closed differential k-form on M̃ representing the class
β. We compute:

comass(β) ⩽ comass((J ◦ Φs)∗ã)
⩽ |Jack(J ◦ Φs)| comass(ã)

⩽ 2k
(
s2

k

)k/2

k! · ∥a∥∞.

This is true for all representatives a of θk(β), so we have

comass(β) ⩽ 2k
(
s2

k

)k/2

k! · ∥θk(β)∥∞ = 2k
(
s2

k

)k/2

k! · ∥β∥∞
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by isometry of θ. Letting s tend to δ/2, we obtain the required result.
To prove statement (2), we proceed as follows. For every map ψs as above

and for every α ∈ Hk(M,R), we define

mass(ψs(α)) = sup
{∫

ψs
k

(α)
β

∣∣∣∣∣β closed differential k-form on M,

comass(β) ⩽ 1

}
.

By ψsk(α) in the above definition we mean the following: let a be a smooth
singular cycle representing α. Lift it to a singular chain in Ck(M̃,R). Take
its image in Ck(M,R) under the induced map ψsk and integrate over the
resulting chain. By Stokes’ theorem, as β is closed, the result does not
depend on the particular choice of a, nor on its lift to M̃ .

We want to show

(4.2) ∥α∥1 ⩽ k! · mass(ψs(α)).

Statement (2) will then follow from the following computation. By taking
the supremum over the appropriate k-forms β, we obtain:

mass(J ◦ Φs(α)) = sup
β, comass(β)⩽1

∫
(J◦Φs)k(α)

β

= sup
β, comass(β)⩽1

∫
α

(J ◦ Φs)∗β

⩽ sup
β, comass(β)⩽1

comass((J ◦ Φs)∗β) · mass(α)

⩽ sup
β, comass(β)⩽1

|Jack(J ◦ Φs)| · comass(β) · mass(α)

⩽ |Jack(J)| · |Jack(Φs)| · mass(α)

⩽ 2k
(
s2

k

)k/2

mass(α),

where the last inequality uses Lemmas 3.4 and 3.6. Combining with the
inequality (4.2) and letting s tend to δ/2 yields the claim.

So we need to prove (4.2). We proceed as follows. For every ψ = ψs as
above we have, by Lemma 4.3 and (4.1),

∥α∥1 = sup
{

⟨β, α⟩ | β ∈ Hk
b (M,R), ∥β∥∞ ⩽ 1

}
= sup

{
⟨ψkθk(β), α⟩ | β ∈ Hk

b (M,R), ∥β∥∞ ⩽ 1
}

= sup
{

⟨θk(β), ψk(α)⟩ | β ∈ Hk
b (M,R), ∥β∥∞ ⩽ 1

}
.

We want to estimate this quantity efficiently. Recall that if c ∈ Ckb (M̃,Γ)
is a representative of the class β, then θk(c) is the restriction to M1 of the
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alternating form

(µ0, . . . , µk) 7−→
∫
M̃k+1

c(y0, . . . , yk)µ0 ⊗ · · · ⊗ µk

defined on M, linear in each variable.
To the alternating (k + 1)-form a = θk(c) on M we associate the differ-

ential k-form ã on M1 as in Lemma 3.9. By this lemma, we have that

comass(ã) = k! · ∥a∥∞,

where a denotes the restriction of a to M1. We thus can continue the
computation:

∥α∥1 = sup
{

⟨θk(β), ψk(α)⟩ | β ∈ Hk
b (M,R), ∥β∥∞ ⩽ 1

}
= sup

{
⟨a, ψk(α)⟩ | [a] = θk(β) ∈ Hk

L(M1,Γ), ∥a∥∞ ⩽ 1
}

= sup
{∫

ψk(α)
ã

∣∣∣∣∣ [a] = θk(β) ∈ Hk
L(M1,Γ), ∥a∥∞ ⩽ 1

}

⩽ sup
{∫

ψk(α)
ω

∣∣∣∣∣ω closed differential k-form on M,

comass(ω) ⩽ k!

}

= k! · sup
{∫

ψk(α)
ω

∣∣∣∣∣ω closed differential k-form on M,

comass(ω) ⩽ 1

}
= k! · mass(ψ(α)),

where the third equality is obtained thanks to Lemma 3.9. This shows (4.2)
and hence finishes the proof of the theorem. □

Remark 4.5. — The inequality of statement (1) can prove interesting in
cases of classes where the sup norm is known: it will then give an upper
bound on the comass of the associated differential forms. The sup norm
of a bounded cohomology class has been computed in several cases: for
the volume class of hyperbolic manifolds, of course [24, 11], but also for
the Euler class of surface bundles over surfaces [20], for the Euler class of
flat bundles [4], for the volume class of manifolds covered by H2 × H2 [5],
for Hilbert modular surfaces [18], for the Kähler class of a Lie group of
Hermitian type [6]. There are upper and lower bounds for the volume class
of the complex hyperbolic plane [23], and an upper bound for the volume
class of surface bundles over surfaces [3].
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