Coleman calculated the absolute Frobenius on Fermat curves explicitly. In this paper we show that a kind of -adic continuity implies a large part of his formula. To do this, we study a relation between functional equations of the gamma function, monomial relations on CM-periods, and their -adic analogues.
Coleman a calculé explicitement le Frobenius absolu sur les courbes de Fermat. Dans cet article, nous montrons qu’une sorte de continuité -adique implique une grande partie de sa formule. Pour ce faire, nous étudions une relation entre les équations fonctionnelles de la fonction gamma, les relations monomiales sur CM-périodes, et leurs analogues -adiques.
Revised:
Accepted:
Online First:
Published online:
Keywords: Absolute Frobenius, Fermat curves, Gross–Koblitz formula, $p$-adic gamma function, CM-periods, $p$-adic periods.
Mot clés : Frobenius absolu, courbes de Fermat, formule de Gross–Koblitz, fonction gamma $p$-adique, CM-périodes, périodes $p$-adiques.
@article{AIF_2024__74_3_1229_0, author = {Kashio, Tomokazu}, title = {Note on {Coleman{\textquoteright}s} formula for the absolute {Frobenius} on {Fermat} curves}, journal = {Annales de l'Institut Fourier}, pages = {1229--1250}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {3}, year = {2024}, doi = {10.5802/aif.3615}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3615/} }
TY - JOUR AU - Kashio, Tomokazu TI - Note on Coleman’s formula for the absolute Frobenius on Fermat curves JO - Annales de l'Institut Fourier PY - 2024 SP - 1229 EP - 1250 VL - 74 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3615/ DO - 10.5802/aif.3615 LA - en ID - AIF_2024__74_3_1229_0 ER -
%0 Journal Article %A Kashio, Tomokazu %T Note on Coleman’s formula for the absolute Frobenius on Fermat curves %J Annales de l'Institut Fourier %D 2024 %P 1229-1250 %V 74 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3615/ %R 10.5802/aif.3615 %G en %F AIF_2024__74_3_1229_0
Kashio, Tomokazu. Note on Coleman’s formula for the absolute Frobenius on Fermat curves. Annales de l'Institut Fourier, Volume 74 (2024) no. 3, pp. 1229-1250. doi : 10.5802/aif.3615. https://aif.centre-mersenne.org/articles/10.5802/aif.3615/
[1] The gamma function, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York-Toronto-London, 1964, vii+39 pages (translated by Michael Butler) | MR | Zbl
[2] Examples of CM curves of genus two defined over the reflex field, LMS J. Comput. Math., Volume 18 (2015) no. 1, pp. 507-538 | DOI | MR | Zbl
[3] The Gross-(Koblitz formula, Galois representations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986) (Advanced Studies in Pure Mathematics), Volume 12, North-Holland, 1987, pp. 21-52 | DOI | MR | Zbl
[4] On the Frobenius matrices of Fermat curves, -adic analysis (Trento, 1989) (Lecture Notes in Mathematics), Volume 1454, Springer, 1990, pp. 173-193 | DOI | MR | Zbl
[5] On the periods of abelian integrals and a formula of Chowla and Selberg, Invent. Math., Volume 45 (1978) no. 2, pp. 193-211 (with an appendix by David E. Rohrlich) | DOI | MR | Zbl
[6] Gauss sums and the -adic -function, Ann. Math., Volume 109 (1979) no. 3, pp. 569-581 | DOI | MR | Zbl
[7] Fermat curves and a refinement of the reciprocity law on cyclotomic units, J. Reine Angew. Math., Volume 741 (2018), pp. 255-273 | DOI | MR | Zbl
[8] On a common refinement of Stark units and Gross-Stark units (2018) (https://arxiv.org/abs/1706.03198)
[9] On -adic absolute CM-periods. I, Am. J. Math., Volume 130 (2008) no. 6, pp. 1629-1685 | DOI | MR | Zbl
[10] On -adic absolute CM-periods. II, Publ. Res. Inst. Math. Sci., Volume 45 (2009) no. 1, pp. 187-225 | DOI | MR | Zbl
[11] -adic numbers, -adic analysis, and zeta-functions, Graduate Texts in Mathematics, 58, Springer, 1984, xii+150 pages | DOI | MR
[12] On the regulator of Fermat motives and generalized hypergeometric functions, J. Reine Angew. Math., Volume 660 (2011), pp. 27-82 | DOI | MR | Zbl
[13] Abelian varieties with complex multiplication and modular functions, Princeton Mathematical Series, 46, Princeton University Press, 1998, xvi+218 pages | DOI | MR | Zbl
[14] Absolute CM-periods, Mathematical Surveys and Monographs, 106, American Mathematical Society, 2003, x+282 pages | DOI | MR | Zbl
Cited by Sources: