[Fonctionnelles de Littlewood–Paley–Stein : une approche par la -bornétude]
Soit un opérateur de Schrödinger avec un potentiel positif sur une variété Riemannianne complète . Nous montrons que les fonctionnelles verticales de Littlewood–Paley–Stein associées à sont bornées sur si et seulement si l’ensemble est -borné sur . Nous introduisons et étudions d’autres fonctionnelles plus générales. Pour une suite de fonctions données, on définit
Nous montrons que est bornée sur au sens
avec une constante indépendante de . Une estimation inférieure est aussi démontrée sur l’espace dual . Nous discuterons le lien entre ces fonctionnelles et la transformée de Riesz. Plusieurs exemples et contre-exemples sont donnés dans le papier.
Let be a Schrödinger operator with a non-negative potential on a complete Riemannian manifold . We prove that the vertical Littlewood-Paley-Stein functional associated with is bounded on if and only if the set is -bounded on . We also introduce and study more general functionals. For a sequence of functions , we define
We prove boundedness of on in the sense
for some constant independent of . A lower estimate is also proved on the dual space . We introduce and study boundedness of other Littlewood-Paley-Stein type functionals and discuss their relationships to the Riesz transform. Several examples are given in the paper.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Littlewood–Paley–Stein functionals, Riesz transforms, Kahane–Khintchine inequality, spectral multipliers, Schrödinger operators, elliptic operators.
Mot clés : Fonctionnelles de Littlewood–Paley–Stein, transformée de Riesz, inégalités de Kahane–Khintchine, multiplicateurs spectraux, opérateurs de Schrödinger, opérateurs elliptiques.
Cometx, Thomas 1 ; Ouhabaz, El Maati 2
@article{AIF_2024__74_3_1251_0, author = {Cometx, Thomas and Ouhabaz, El Maati}, title = {Littlewood{\textendash}Paley{\textendash}Stein functionals: an ${\mathcal{R}}$-boundedness approach}, journal = {Annales de l'Institut Fourier}, pages = {1251--1296}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {3}, year = {2024}, doi = {10.5802/aif.3634}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3634/} }
TY - JOUR AU - Cometx, Thomas AU - Ouhabaz, El Maati TI - Littlewood–Paley–Stein functionals: an ${\mathcal{R}}$-boundedness approach JO - Annales de l'Institut Fourier PY - 2024 SP - 1251 EP - 1296 VL - 74 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3634/ DO - 10.5802/aif.3634 LA - en ID - AIF_2024__74_3_1251_0 ER -
%0 Journal Article %A Cometx, Thomas %A Ouhabaz, El Maati %T Littlewood–Paley–Stein functionals: an ${\mathcal{R}}$-boundedness approach %J Annales de l'Institut Fourier %D 2024 %P 1251-1296 %V 74 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3634/ %R 10.5802/aif.3634 %G en %F AIF_2024__74_3_1251_0
Cometx, Thomas; Ouhabaz, El Maati. Littlewood–Paley–Stein functionals: an ${\mathcal{R}}$-boundedness approach. Annales de l'Institut Fourier, Tome 74 (2024) no. 3, pp. 1251-1296. doi : 10.5802/aif.3634. https://aif.centre-mersenne.org/articles/10.5802/aif.3634/
[1] Riesz transforms of Schrödinger operators on manifolds, J. Geom. Anal., Volume 22 (2012) no. 4, pp. 1108-1136 | DOI | MR | Zbl
[2] Maximal inequalities and Riesz transform estimates on spaces for Schrödinger operators with nonnegative potentials, Ann. Inst. Fourier, Volume 57 (2007) no. 6, pp. 1975-2013 | DOI | Numdam | MR | Zbl
[3] Riesz transform on manifolds and heat kernel regularity, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 6, pp. 911-957 | DOI | Numdam | MR | Zbl
[4] Vertical versus conical square functions, Trans. Am. Math. Soc., Volume 364 (2012) no. 10, pp. 5469-5489 | DOI | MR | Zbl
[5] Square root problem for divergence operators and related topics, Astérisque, Société Mathématique de France, 1998 no. 249, viii+172 pages | Numdam | MR | Zbl
[6] étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Séminaire de Probabilités, XXI (Lecture Notes in Mathematics), Volume 1247, Springer, 1987, pp. 137-172 | DOI | Numdam | MR | Zbl
[7] Riesz transforms through reverse Hölder and Poincaré inequalities, Math. Z., Volume 284 (2016) no. 3-4, pp. 791-826 | DOI | MR | Zbl
[8] Functional calculus for generators of symmetric contraction semigroups, Duke Math. J., Volume 166 (2017) no. 5, pp. 937-974 | DOI | MR | Zbl
[9] Riesz transform and -cohomology for manifolds with Euclidean ends, Duke Math. J., Volume 133 (2006) no. 1, pp. 59-93 | DOI | MR | Zbl
[10] Heat kernels on positively curved manifolds and applications., Ph. D. Thesis, Hangzhu Univ. (1987)
[11] Quasi transformées de Riesz, espaces de Hardy et estimations sous-gaussiennes du noyau de la chaleur, Thèse de doctorat Mathématiques, Université Paris 11 (2014) (http://www.theses.fr/2014PA112068)
[12] The Hodge–de Rham Laplacian and -boundedness of Riesz transforms on non-compact manifolds, Nonlinear Anal., Theory Methods Appl., Volume 125 (2015), pp. 78-98 | DOI | MR | Zbl
[13] Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner-Riesz means, J. Anal. Math., Volume 129 (2016), pp. 219-283 | DOI | MR | Zbl
[14] Schauder decomposition and multiplier theorems, Stud. Math., Volume 138 (2000) no. 2, pp. 135-163 | MR | Zbl
[15] Riesz transforms for , Trans. Am. Math. Soc., Volume 351 (1999) no. 3, pp. 1151-1169 | DOI | MR | Zbl
[16] Riesz transform and related inequalities on noncompact Riemannian manifolds, Commun. Pure Appl. Math., Volume 56 (2003) no. 12, pp. 1728-1751 | DOI | MR | Zbl
[17] Littlewood-Paley-Stein functions on complete Riemannian manifolds for , Stud. Math., Volume 154 (2003) no. 1, pp. 37-57 | DOI | MR | Zbl
[18] Gradient estimates for heat kernels and harmonic functions, J. Funct. Anal., Volume 278 (2020) no. 8, 108398, 67 pages | DOI | MR | Zbl
[19] Banach space operators with a bounded functional calculus, J. Aust. Math. Soc., Ser. A, Volume 60 (1996) no. 1, pp. 51-89 | DOI | MR | Zbl
[20] Maximal Hörmander functional calculus on spaces and UMD lattices, Int. Math. Res. Not. (2023) no. 6, pp. 4643-4694 | DOI | MR | Zbl
[21] Heat kernel and Riesz transform of Schrödinger operators, Ann. Inst. Fourier, Volume 69 (2019) no. 2, pp. 457-513 | DOI | Numdam | MR | Zbl
[22] Heat equation derivative formulas for vector bundles, J. Funct. Anal., Volume 183 (2001) no. 1, pp. 42-108 | DOI | MR | Zbl
[23] Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal., Volume 196 (2002) no. 2, pp. 443-485 | DOI | MR | Zbl
[24] Endpoint estimates for Riesz transforms of magnetic Schrödinger operators, Ark. Mat., Volume 44 (2006) no. 2, pp. 261-275 | DOI | MR | Zbl
[25] Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II, Ann. Inst. Fourier, Volume 59 (2009) no. 4, pp. 1553-1610 | DOI | Numdam | MR | Zbl
[26] Analysis in Banach spaces. Vol. II. Probabilistic methods and operator theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 67, Springer, 2017, xxi+616 pages | DOI | MR | Zbl
[27] Square function and heat flow estimates on domains, Commun. Partial Differ. Equations, Volume 42 (2017) no. 9, pp. 1447-1466 | DOI | MR | Zbl
[28] The -calculus and sums of closed operators, Math. Ann., Volume 321 (2001) no. 2, pp. 319-345 | DOI | MR | Zbl
[29] Fractional powers of operators, Pac. J. Math., Volume 19 (1966), pp. 285-346 | DOI | MR | Zbl
[30] On square functions associated to sectorial operators, Bull. Soc. Math. Fr., Volume 132 (2004) no. 1, pp. 137-156 | DOI | Numdam | MR | Zbl
[31] Estimation des fonctions de Littlewood-Paley-Stein sur les variétés riemanniennes à courbure non positive, Ann. Sci. Éc. Norm. Supér., Volume 20 (1987) no. 4, pp. 505-544 | DOI | Numdam | MR | Zbl
[32] Analysis of heat equations on domains, London Mathematical Society Monographs, 31, Princeton University Press, 2005, xiv+284 pages | MR | Zbl
[33] Littlewood–Paley–Stein functions for Schrödinger operators, Front. Sci. Eng., Volume 6 (2016) no. 1, pp. 99-109 (See also https://arxiv.org/abs/1705.06794)
[34] estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier, Volume 45 (1995) no. 2, pp. 513-546 | DOI | Numdam | MR | Zbl
[35] Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, 1970, xiv+290 pages | MR | Zbl
[36] Topics in harmonic analysis related to the Littlewood–Paley theory, Annals of Mathematics Studies, 63, Princeton University Press; University of Tokyo Press, 1970, viii+146 pages | DOI | MR | Zbl
[37] A new approach to maximal -regularity, Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998) (Lecture Notes in Pure and Applied Mathematics), Volume 215, Marcel Dekker, 2001, pp. 195-214 | MR | Zbl
Cité par Sources :