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WEIGHTED NORM INEQUALITIES FOR
DERIVATIVES ON BERGMAN SPACES

by José Ángel PELÁEZ & Jouni RÄTTYÄ (*)

Abstract. — An equivalent norm in the weighted Bergman space Ap
ω , induced

by an ω in a certain large class of non-radial weights, is established in terms of
higher order derivatives. Other Littlewood–Paley inequalities are also considered.
On the way to the proofs, we characterize the q-Carleson measures for the weighted
Bergman space Ap

ω and the boundedness of a Hörmander-type maximal function.
Results obtained are further applied to describe the resolvent set of the integral
operators Tg(f)(z) =

∫ z

0 g′(ζ)f(ζ) dζ acting on Ap
ω .

Résumé. — Nous construisons une norme équivalente, définie à l’aide des dé-
rivées supérieures, dans un espace de Bergman pondéré Ap

ω où ω appartient à
une large classe des poids non radiaux. Nous analysons aussi autres inégalités de
Littlewood–Paley. Avant de démontrer les résultats principaux nous caractérisons
les q-mesures de Carleson sur les espaces Ap

ω et montrons que la fonction maxi-
male de Hörmander est bornée. En utilisant nos résultats nous pouvons décrire
l’ensemble résolvant de l’opérateur intégral Tg(f)(z) =

∫ z

0 g′(ζ)f(ζ) dζ agissant
sur Ap

ω .

1. Introduction and main results

Let H(D) denote the algebra of all analytic functions in the unit disc D =
{z : |z| < 1} of the complex plane C. A function ω : D → [0, ∞), integrable
over D, is called a weight. It is radial if ω(z) = ω(|z|) for all z ∈ D and∫ 1

0 ω(s) ds < ∞. For 0 < p < ∞ and a weight ω, the weighted Bergman
space Ap

ω consists of those f ∈ H(D) for which

∥f∥p
Ap

ω
=
∫
D

|f(z)|pω(z) dA(z) < ∞,

Keywords: Bergman space, Carleson measure, integral operator, Littlewood–Paley in-
equality, Hörmander-type maximal function, resolvent set.
2020 Mathematics Subject Classification: 30H20, 47G10.
(*) This research was supported in part by Ministerio de Ciencia Innovación y universi-
dades, Spain, projects PGC2018-096166-B-100 and MTM2017-90584-REDT; La Junta
de Andalucía, project FQM210; Academy of Finland 286877.



2 José Ángel PELÁEZ & Jouni RÄTTYÄ

where dA(z) = dx dy
π is the normalized Lebesgue area measure on D.

In this paper we are interested in obtaining, for a large class of non-
radial weights ω, equivalent norms of f in Ap

ω in terms of its higher order
derivatives. This is a question that have been extensively studied for dif-
ferent classes of radial weights but it is not well-understood for general
weights. See [1, 3, 5] for recent developments on the topic. These norms are
extremely valuable within the theory of concrete operators acting on these
spaces. To name a few instances, they are used; in the study of Volterra-
type operators, because they allow to get rid of the integral and they arise
in a natural way in the description of its spectrum [1, 3, 4, 20], in order
to get crucial estimates in the description of Schatten classes of Toeplitz
operators [16, p. 356], in the boundedness of the Hilbert matrix [19, Proof
of Theorem 2] or in obtaining norm estimates for the Bergman reproducing
kernels in Ap

ω induced by radial weights [22, Proof of Theorem 1].
A well-known formula ensures that, for each k ∈ N and 0 < p < ∞, we

have

(1.1) ∥f∥p
Ap

ω
≍
∫
D

|f (k)(z)|p(1 − |z|)kpω(z) dA(z)

+
k−1∑
j=0

|f (j)(0)|p, f ∈ H(D),

if ω is a standard radial weight, that is, ω(z) = (α + 1)(1 − |z|2)α for some
−1 < α < ∞. Generalizations of this result for different classes of radial
weights have been obtained in [4, 17, 24, 27]. In particular, it was recently
proved [24, Theorem 5] that (1.1) holds for a radial weight ω if and only if
ω ∈ D = D̂ ∩ qD. Recall that a radial weight ν belongs to D̂ if there exists
a constant C = C(ν) > 1 such that the tail integral ν̂(z) =

∫ 1
|z| ν(s) ds

satisfies the doubling condition ν̂(r) ⩽ Cν̂( 1+r
2 ) for all 0 ⩽ r < 1. Further,

a radial weight ν belongs to qD if there exist constants K = K(ν) > 1 and
C = C(ν) > 1 such that ν̂(r) ⩾ Cν̂(1 − 1−r

K ) for all 0 ⩽ r < 1.
For a given a ∈ D \ {0}, consider the interval

Ia =
{

eiθ : |arg(a e−iθ)| ⩽ (1 − |a|)
2

}
,

and let S(a) = {z ∈ D : |z| ⩾ |a|, eit ∈ Ia} denote the Carleson square
induced by a. We assume throughout the paper that ω(S(a)) > 0 for all
a ∈ D \ {0}. If this is not the case and ω is radial, then Ap

ω = H(D). For
a weight ν, ω is a ν-weight if ων is integrable. If 1 < p < ∞, a ν-weight
ω belongs to the class Bp(ν) if there exists a constant C = C(p, ν, ω) such

ANNALES DE L’INSTITUT FOURIER
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that

(1.2) sup
S

(∫
S

ω(z)ν(z) dA(z)
) 1

p

(∫
S

ω− p′
p (z)ν(z) dA(z)

) 1
p′

∫
S

ν(z) dA(z)
< ∞,

where the supremum is taken over all Carleson squares S. We denote
B∞(ν) =

⋃
1<p<∞ Bp(ν). It has recently been proved that the class Bp(ν)

describes the weights ω such that Bergman projection Pν , induced by a
radial weight ν, is bounded on Lp

ων , 1 < p < ∞, whenever ν ∈ D and the
Bergman reproducing kernel of A2

ν has a particular integral representation
[26, Theorem 2]. This result is a natural extension of a classical result due to
Bekollé and Bonami [6, 7] for standard weights. If ν(z) = (1 + η)(1 − |z|2)η

we simply write Bp(η) instead of Bp((1 − |z|)η), B∞(η) = B∞((1 − |z|)η)
and B∞ = B∞(0). Nonnegative functions in the class Bp(η) or B∞(η)
are usually called the Bekollé–Bonami weights. En route to describing the
spectrum of the integral operator

Tg(f)(z) =
∫ z

0
f(ζ) g′(ζ) dζ, z ∈ D, g ∈ H(D),

on standard Bergman spaces it was shown that (1.1) is satisfied if there
exists η > −1 such that ω

(1−|z|)η ∈ B∞(η) [1, Theorem 3.1]. The first result
of this study says that the hypothesis ω

(1−|z|)η ∈ B∞(η) can be replaced
by the weaker condition ω

ν ∈ B∞(ν) with ν ∈ D. To simplify the notation,
we write B∞(ν) =

⋃
1<p<∞

{
ω : ω

ν ∈ Bp(ν)
}

, B∞(D̂) =
⋃

ν∈D̂ B∞(ν) and
B∞(D) =

⋃
ν∈D B∞(ν). It is worth mentioning that B∞(D) is in a sense a

much larger class than⋃
η>−1

{
ω is a weight : ω

(1 − |z|)η
∈ B∞(η)

}
because it contains weights with a strong oscillatory behaviour which may
vanish on a hyperbolically bounded set of D.

Theorem 1.1. — Let 0 < p < ∞, k ∈ N and ω ∈ B∞(D). Then (1.1)
holds.

Observe that the set of radial weights in B∞(D) coincides with D, and
hence [24, Theorem 5] implies that ω ∈ B∞(D) is also a necessary condition
for (1.1) to hold if ω is radial. The class D also appears innately in the study
of classical questions related to the boundedness of the Bergman projection
Pν induced by a radial weight ν [24, Theorem 3 and Theorem 12], which is a
frequently used tool in order to get Littlewood–Paley formulas in weighted
Bergman spaces [1, 29].

TOME 0 (0), FASCICULE 0
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It is also worth mentioning that (1.1) holds if and only if ω ∈ B∞, when ω

is essentially (or almost) constant in each hyperbolically bounded region [3,
Corollary 4.4]. This last condition ensures that the inequality

(1.3)
∫
D

|f (k)(z)|p(1−|z|)kpω(z)dA(z)+
k−1∑
j=0

|f (j)(0)|p ≲ ∥f∥p
Ap

ω
, f ∈ H(D),

holds [1, Theorem 3.1], see also [5, Theorem A]. We prove the following
result concerning this last inequality.

Theorem 1.2. — Let 0 < p < ∞, k ∈ N and ω ∈ B∞(D̂). Then (1.3)
holds.

Obviously there are weights in B∞(D̂) which are not essentially constant
in each hyperbolically bounded region. Moreover, since the restriction of
B∞(D̂) to radial weights coincides with D̂, the hypothesis ω ∈ B∞(D̂)
in Theorem 1.2 cannot be relaxed in the case of radial weights by [24,
Theorem 6]. Observe that weights in D̂, an consequently in B∞(D̂), may
have a wild oscillatory behavior and they may even vanish on sets that
are not hyperbolically uniformly bounded. Moreover, D̂ is not closed by
the multiplication of a standard weight induced by a positive parameter α.
Illuminating examples of weights in the deceivingly simply looking class D̂
are given in [23, Proposition 10] and [25, Proposition 12].

The proofs of Theorems 1.1 and 1.2 have three key ingredients. The first
of them provides a geometric description of the q-Carleson measures for Ap

ω,
provided q ⩾ p and ω ∈ B∞(D̂). To state the result, for a given measure µ

on D, we write µ(E) =
∫

E
dµ for each µ-measurable set E ⊂ D. Further,

for each φ ∈ L1
ω, the Hörmander-type maximal function [11] is defined by

Mω(φ)(z) = sup
z∈S

1
ω (S)

∫
S

|φ(ζ)|ω(ζ) dA(ζ), z ∈ D.

Our characterization of q-Carleson measures for Ap
ω reads as follows.

Theorem 1.3. — Let 0 < p ⩽ q < ∞, ω ∈ B∞(D̂) and let µ be a
positive Borel measure on D. Then the following statements are equivalent:

(i) µ is a q-Carleson measure for Ap
ω;

(ii)
[
Mω

(
| · | 1

α

)]α

: Lp
ω → Lq

µ is bounded for each α > 1
p ;

(iii) µ satisfies

(1.4) sup
S

µ (S)
(ω (S))

q
p

< ∞,

where the supremum runs over all the Carleson squares S in D.

ANNALES DE L’INSTITUT FOURIER
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Moreover,

(1.5) ∥Id∥q
Ap

ω→Lq
µ

≍
∥∥∥[Mω

(
| · | 1

α

)]α∥∥∥q

Lp
ω→Lq

µ

≍ sup
S

µ (S)
(ω (S))

q
p

.

Theorem 1.3 is a natural extension of [18, Theorem 3.3] and [20, Theo-
rem 2.1] to non-radial weights.

A good understanding of the class of weights involved in Theorems 1.1
and 1.2 is needed. In particular, en route to the proofs, we show that

ω ∈ B∞(D) ⇒ ω[β](z) = (1 − |z|)βω(z) ∈ B∞(D), for any β > 0,

a fact which might be deceptively simple-looking. Indeed, the class B∞(D̂)
does not have this property. See [23, Proposition 10] for the construction
of a radial weight ω ∈ B∞(D̂) such that ω[β] /∈ B∞(D̂) for any β > 0.

The third key ingredient in the proofs of Theorems 1.1 and 1.2 concerns
certain more smooth weights. Namely, each weight ω induces the nonneg-
ative average function

ω̃(z) =

∫
S(z) ω(ζ) dA(ζ)

(1 − |z|)2 , z ∈ D \ {0}.

Which regard to this function we prove the following result.

Theorem 1.4. — Let 0 < p < ∞, k ∈ N and ω ∈ B∞(D). Then

∥f∥p
Ap

ω
≍ ∥f∥p

Ap

ω̃

≍
∫
D

|f (k)(z)|p(1 − |z|)kpω̃(z) dA(z) +
k−1∑
j=0

|f (j)(0)|p,

f ∈ H(D).

We emphasize that, under the hypothesis ω ∈ B∞(D), the weights ω and
ω̃ are not pointwise equivalent, but ∥f∥p

Ap
ω

≍ ∥f∥p
Ap

ω̃
and ω̃ is essentially (or

almost) constant in each hyperbolically bounded region. This together with
the second equivalence in Theorem 1.4 and [3, Corollary 4.4-Theorem 1.7]
implies that ω̃ ∈ B∞. Therefore the study of certain type of questions
on linear operators T : H(D) → H(D) on weighted Bergman spaces Ap

ω,
with ω ∈ B∞(D), can be reduced to the particular case ω ∈ B∞. We will
make this statement precise in the case of some questions related to the
integral operator Tg induced by g ∈ H(D). Indeed, Theorem 5.1 below
describes the analytic symbols g such that Tg : Ap

ω → Aq
ω is bounded or

compact. In particular, it shows that Tg : Ap
ω → Ap

ω is bounded if and only
if g belongs to the classical space B of Bloch functions. Further, by using
ideas from studies [1, 2, 3], which link the resolvent set ρ (Tg|Ap

ω) to the

TOME 0 (0), FASCICULE 0
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theory of weighted norms in terms of derivatives, we obtain the following
characterization of ρ (Tg|Ap

ω).

Theorem 1.5. — Let ω ∈ B∞(D), g ∈ B, 0 < p < ∞ and λ ∈ C \ {0}.
Then the following statements are equivalent:

(i) λ ∈ ρ (Tg|Ap
ω);

(ii) ∥f∥p
Ap

ωλ,g,p

≍ |f(0)|p +
∫
D

|f ′(z)|p(1−|z|)pωλ,g,p(z) dA(z) for all f ∈

H(D), where ωλ,g,p = ω exp
(
p Re g

λ

)
;

(iii) ω̃ exp
(
p Re g

λ

)
∈ B∞.

The remaining part of the paper is organized as follows. In Section 2 we
state and prove some preliminary results on weights. Theorem 1.3 is proved
in Section 3 while Section 4 is devoted to the proofs of Theorems 1.1, 1.2
and 1.4. In Section 5 we discuss some basic properties of the integral oper-
ator Tg acting on Ap

ω and then prove Theorem 1.5.
Before proceeding further, a word about notation used. The letter C =

C(·) will denote an absolute constant whose value depends on the param-
eters indicated in the parenthesis, and may change from one occurrence
to another. We will use the notation a ≲ b if there exists a constant
C = C(·) > 0 such that a ⩽ Cb, and a ≳ b is understood in an analo-
gous manner. In particular, if a ≲ b and a ≳ b, then we write a ≍ b and say
that a and b are comparable. This notation has already been used above
in the introduction.

2. Basic properties and lemmas on weights

The pseudohyperbolic distance between two points z1 and z2 in D is
ρ(z1, z2) =

∣∣∣ z1−z2
1−z1z2

∣∣∣. We say that a weight ω is essentially constant on
each hyperbolically bounded region if there exist constants r ∈ (0, 1) and
C = C(ω, r) such that

C−1ω(z2) ⩽ ω(z1) ⩽ Cω(z2), ρ(z1, z2) < r.

This class of weights coincides with the weights satisfying [3, (1.6)] and has
been also considered in [5].

In the classical setting, there are many equivalent conditions which de-
scribe the Muckenhoupt class A∞ =

⋃
1⩽q<∞ Aq, see [10], [28, Chapter 5]

or [9, p. 149]. However, this is no longer true for the class B∞, that is, the
corresponding conditions (defined on Carleson squares) do not coincide.
This stems from the fact that B∞-weights do not have the reverse Hölder

ANNALES DE L’INSTITUT FOURIER
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property [3, 8]. It is worth mentioning that our definition of the class B∞
differs from the one provided in [3, (1.4)]. However, this does not cause any
trouble because B∞-weights, which are essentially constant in each hyper-
bolically bounded region, can be described in terms of a good number of
conditions [3, Theorem 1.7], and in particular the definitions coincide under
this extra hypotheses on the weight.

The main results of this paper are established under the hypothesis ω ∈
B(D). Therefore we are interested in looking for neat conditions describing
the class B∞(ν) induced by ν ∈ D. In order to do this, for each weight
ν, we say that a weight ω has the Kerman–Torchinsky KT (ν)-property if
there exist constants δ ∈ (0, 1) and C > 0 such that

(2.1) ν(E)
ν(S) ⩽ C

(
ω(E)
ω(S)

)δ

for all Carleson squares S ⊂ D and measurable sets E ⊂ S. Here and from
now on we write ω(E) =

∫
E

ω(z) dA(z). If we replace ν by the Lebesgue
measure in Rn and Carleson squares by cubes Q in (2.1), we obtain a condi-
tion which describes the class A∞ of the classical Muckenhoupt weights [10,
Theorem 3.1]. This condition was introduced by Kerman and Torchin-
sky [13, Proposition 1] in order to describe the Hardy–Littlewood maximal
operators that are of restricted weak-type. The next result follows from [10,
Theorem 3.1(c)] (which holds for general bases).

Proposition A. — Let ν be a weight. Then a weight ω belongs to
B∞(ν) if and only if it has the KT (ν)-property.

The K-top of a Carleson box S(a) is the polar rectangle TK(a) = {r eit :
eit ∈ Ia, |a| ⩽ r < 1 − 1−|a|

K }. In some of the auxiliary results obtained en
route to the main theorems the conditions B(D) and B(D̂) can be relaxed in
the sense that (2.1) is only needed for K-tops or their complements S \TK .
To be precise, we write ω ∈ D̂(D) if there exists C = C(ω) > 0 such that
ω(S(a)) ⩽ Cω(S( 1+|a|

2 ei arg a)) for all a ∈ D \ {0}. It is easy to see that
each ω ∈ D̂(D) satisfies ω(S(a′)) ⩽ C(C + 1)ω(S(a)) for all a, a′ ∈ D \ {0}
with |a′| = |a| and arg a′ = arg a ± (1 − |a|). Therefore ω(S(a)) ≲ ω(S(b))
whenever |b| = 1+|a|

2 and S(b) ⊂ S(a). It is also obvious that radial weights
in D̂(D) form the class D̂, which plays a crucial role in the operator theory
of Bergman spaces induced by radial weights [24]. Further, a weight ω on
D belongs to qD(D) if there exist K = K(ω) > 1 and C = C(ω) > 1 such
that

(2.2) ω(S(a)) ⩽ Cω(TK(a)), a ∈ D \ {0}.

TOME 0 (0), FASCICULE 0
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It is clear that radial weights in qD(D) form the class qD. Finally, we write
D(D) = D̂(D) ∩ qD(D) for short.

In view of the above we have B∞(D̂) ⊂ D̂(D), B∞( qD) ⊂ qD(D) and
B∞(D) ⊂ D(D). These embeddings, which will be used repeatedly through-
out the paper, can also be proved by straightforward calculations which
show that ω ∈ D̂(D) (resp. ω ∈ qD(D)) if ν ∈ D̂(D) (resp. ν ∈ qD(D)) and
ω ∈ B∞(ν). Therefore D̂ and D coincide with the radial weights in B∞(D̂)
and B∞(D), respectively. However, B∞(D̂) ⊊ D̂. Namely, let

Γ(ζ) =
{

z ∈ D : |arg ζ − arg z| <
1
2 (1 − |z|)

}
, ζ ∈ ∂D,

and consider the weight ω = χD\Γ(1). Then ω /∈ B∞(D̂) as is seen by
considering the Carleson squares S(a) induced by a ∈ (0, 1). But obviously
there exists a constant C > 0 such that ω(Sa) ⩾ C|Sa| for all a ∈ D \ {0},
and thus ω ∈ D̂(D).

The proof of the following result concerning the class D̂(D) can be found
in [14, Lemma 14].

Lemma B. — Let ω be a weight on D. Then the following statements
are equivalent:

(i) ω ∈ D̂(D);
(ii) there exist β = β(ω) > 0 and C = C(ω) ⩾ 1 such that

ω(S(a))
(1 − |a|)β

⩽ C
ω(S(a′))

(1 − |a′|)β
, 0 < |a| ⩽ |a′| < 1, arg a = arg a′;

(iii) for some (equivalently for each) K > 0 there exists C = C(ω, K) >

0 such that

ω(S(a)) ⩽ Cω

(
S

(
K + |a|
K + 1 ei arg a

))
, a ∈ D \ {0};

(iv) there exist η = η(ω) > 0 and C = C(η, ω) > 0 such that∫
D

ω(z)
|1 − az|η

dA(z) ⩽ C
ω(S(a))

(1 − |a|)η
, a ∈ D \ {0}.

Observe that if the inequality in the case (ii) is satisfied for some β > 0,
then it is certainly satisfied for every number larger than that because the
quotient (1 − |a′|)/(1 − |a|) is at most one. A similar comment applies to
the constant η appearing in the case (iv).

The following lemma gives an analogue of Lemma B(ii) for weights
in qD(D).

ANNALES DE L’INSTITUT FOURIER
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Lemma 2.1. — Let ω be a weight on D. Then ω ∈ qD(D) if and only if
there exist K = K(ω) > 1 and β0 = β0(ω) > 0 such that

(2.3) ω(S(a)) ⩾
(

1 − |a|
1 − |b|

)β

ω (S(a) \ D(0, |b|)) , 1 − 1 − |a|
K

⩽ |b| < 1,

for all 0 < β ⩽ β0 and a ∈ D \ {0}.

Proof. — First observe that ω ∈ qD(D) if and only if there exist C =
C(ω) > 1 and K = K(ω) > 1 such that

(2.4) ω(S(a)) ⩾ Cω (S(a) \ TK(a)) , a ∈ D \ {0}.

This is the characterization that we will use to prove the lemma.
The choice b = 1 − 1−|a|

K in (2.3) implies (2.4) with C = Kβ , and
therefore ω ∈ qD(D). To prove the converse implication, assume without
loss of generality that K ∈ N. Now divide S(a) \ TK(a) into K Carleson
squares of equal size and apply (2.4) to each square to obtain ω(S(a)) ⩾
C2ω (S(a) \ TK2(a)) for all a ∈ D \ {0}. Then divide S(a) \ TK2(a) into K2

squares and proceed. After 1 + K + K2 + · · · + Kn−1 applications of (2.4)
we obtain

(2.5) ω(S(a)) ⩾ Cnω (S(a) \ TKn(a)) , a ∈ D \ {0}.

Now, for given 1 − 1−|a|
K ⩽ |b| < 1, pick up n = n(a, b) ∈ N such that

1 − 1 − |a|
Kn

⩽ |b| < 1 − 1 − |a|
Kn+1 ⇐⇒ Kn ⩽

1 − |a|
1 − |b|

< Kn+1.

Then (2.5) yields

ω(S(a)) ⩾ Kn logK Cω (S(a) \ TKn(a))

>

(
1 − |a|
1 − |b|

) n
n+1 logK C

ω

(
S(a) \ T 1−|a|

1−|b|
(a)
)

⩾

(
1 − |a|
1 − |b|

) 1
2 logK C

ω (S(a) \ D(0, |b|)) ,

which gives (2.3) for β0 = 1
2 logK C. □

For each ϵ ∈ (0, 1), a simple computation shows that the weight

W (r eiθ) =


1

(1−r)1− ϵ
2 |θ|1− ϵ

2
, θ ̸= 0

1, θ = 0,

is a Bekollé–Bonami type weight such that W (S(a)) ≍ (1 − a)ϵ for all
a ∈ (0, 1). This implies that Hp Ć Ap

W for all 0 < p < ∞ by the classical

TOME 0 (0), FASCICULE 0
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Carleson embedding theorem. Let us compare this example with Theo-
rem 1.4, which says, in particular, that ω̃ is a weight whenever ω ∈ B∞(D).
Therefore, despite of the fact that ω̃ is a weight for all ω ∈ B∞(D), for each
given ε > 0 there exist ω ∈ B∞(D) and a set A ⊂ D, with |A| = 0 and
A ∩ ∂D ̸= ∅, such that ω(S(a)) ≍ (1 − |a|)ϵ, as a ∈ A and |a| → 1−.

3. Carleson measures

Let X be a quasi-Banach space of analytic functions on D. A positive
Borel measure µ on D is called a q-Carleson measure for X if the identity
operator Id : X → Lq

µ is bounded. Moreover, if Id : X → Lq
µ is compact,

then µ is a q-vanishing Carleson measure for X.
We begin with the boundedness of the Hörmander-type maximal function

on Lp
ω when ω ∈ D̂(D).

Proposition 3.1. — Let 0 < p ⩽ q < ∞ and 0 < α < ∞ such that
pα > 1. Let ω ∈ D̂(D) and let µ be a positive Borel measure on D. Then[
Mω

(
| · | 1

α

)]α

: Lp
ω → Lq

µ is bounded if and only if µ satisfies (1.4). More-
over, ∥∥∥[Mω

(
| · | 1

α

)]α∥∥∥q

Lp
ω→Lq

µ

≍ sup
S

µ (S)
(ω (S))

q
p

.

Proposition 3.1 can be established by following the lines of the proof of
[21, Theorem 3]. We omit the details of the argument. A similar result was
obtained in [12, Theorem 1.1] under stronger hypotheses on ω.

Proof of Theorem 1.3. — We will show first that (i) implies (iii) under
the weaker hypothesis 0 < p, q < ∞ and ω ∈ D̂(D). To see this, for a ∈ D
and 0 < p, γ < ∞, consider the test functions

(3.1) Fa,p,γ(z) =
(

1 − |a|2

1 − az

) γ
p

, z ∈ D.

Pick up γ = γ(p, ω) > 0 sufficiently large such that γ
p > η, where η =

η(ω) > 0 is that of Lemma B(iv). Then

µ(S(a)) ≲
∫

S(a)
|Fa,p(z)|q dµ(z) ⩽

∫
D

|Fa,p(z)|q dµ(z)

≲ ∥Fa,p∥q
Ap

ω
≲ ω (S(a))

q
p , a ∈ D,

and thus µ satisfies (iii).
The statements (ii) and (iii) are equivalent by Proposition 3.1. Hence, to

complete the proof, it suffices to show that (iii) implies µ is a q-Carleson
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measure for Ap
ω. Since ω

ν ∈ Bp0(ν) for some p0 > 1 and ν ∈ D̂ by the
hypothesis ω ∈ B∞(D̂), for any Carleson square S and any non-negative
φ ∈ Lp0(ω), Hölder’s inequality yields

1
ν(S)

∫
S

φν dA ⩽
1

ν(S)

(∫
S

φp0ω dA

) 1
p0

(∫
S

(
ν

ω
1

p0

)p′
0

dA

) 1
p′

0

≲

(
1

ω(S)

∫
S

φp0ω dA

) 1
p0

.

It follows that (Mν(φ))p0 ≲ Mω(φp0) on D. This together with
[18, Lemma 3.2] shows that for each s > 0 there exists a constant C =
C(s, ω) > 0 such that

(3.2) |f(z)|s ⩽ CMω(fs)(z), z ∈ D, f ∈ H(D).

By choosing s = 1
α < p, and using the equivalence between (ii) and (iii) we

deduce

∥f∥q
Lq

µ
≲
∫
D

(
Mω(f 1

α )(z)
)qα

dµ(z) ⩽ ∥[Mω((·) 1
α )]α∥q

Lp
ω→Lq

µ
∥f∥q

Ap
ω

.

To finish the proof of the theorem we observe that (1.5) follows from the
arguments above. □

For the sake of completeness we describe the q-vanishing Carleson mea-
sures for Ap

ω.

Theorem 3.2. — Let 0 < p ⩽ q < ∞ and ω ∈ B∞(D̂), and let µ be a
positive Borel measure on D. Then Id : Ap

ω → Lq
µ is compact if and only if

(3.3) lim
|S|→0

µ (S)
(ω (S))

q
p

= 0.

Proof. — Let 0 < p ⩽ q < ∞ and ω ∈ B∞(D̂), and first that assume
that Id : Ap

ω → Lq
µ is compact. For each a ∈ D, consider the function

(3.4) fa,p,γ(z) = Fa,p,γ(z)ω (S(a))− 1
p , z ∈ D,

where Fa,p,γ is the function defined in (3.1). Then by repeating the argu-
ment of [20, Theorem 2.1(ii)] and using Lemma B, we deduce

lim
|a|→1−

µ (S(a))
(ω (S(a)))

q
p

= 0,

and thus (3.3) is satisfied.
Conversely, assume that µ satisfies (3.3), and set

dµr(z) = χ{r⩽|z|<1}(z) dµ(z), z ∈ D.
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Then Theorem 1.3 implies

∥h∥Lq
µr

≲ Kµr
∥h∥Ap

ω
, h ∈ Ap

ω,

where Kµr
= supa∈D\{0}

µr(S(a))

(ω(S(a)))
q
p

. We will prove next that

(3.5) lim
r→1−

Kµr = 0,

and then the rest of the proof follows as that of [20, Theorem 2.1(ii)]. By
the assumption, for a given ε > 0 , there exists r0 ∈ (0, 1) such that

(3.6) sup
a∈D: |a|⩾r0

µ (S(a))
(ω (S(a)))

q
p

< ε.

Therefore for each r ∈ (0, 1), we have

(3.7) sup
a∈D: |a|⩾r0

µr (S(a))
(ω (S(a)))

q
p

⩽ sup
a∈D: |a|⩾r0

µ (S(a))
(ω (S(a)))

q
p

< ε.

Next, if |a| < r0, we choose n ∈ N \ {1} such that (n − 1)(1 − r0) < |Ia| ⩽
n(1 − r0). Let Ik be arcs on the boundary such that |Ik| = 1 − r0 for all
k = 1, . . . n, and Ia ⊂

⋃n
k=1 Ik ⊂ 2Ia, where

2Ia =
{

eiθ : | arg(a e−iθ)| ⩽ (1 − |a|)
}

,

where Ij and Im, j ̸= m, j, m ∈ {1, 2, . . . , n} are disjoint or share an
endpoint. Let r ⩾ r0. Then, since ω ∈ D̂(D) by the hypothesis, (3.6) yields

µr (S(a)) ⩽ µr0 (S(a)) ⩽
n∑

k=1
µ (S(Ik)) ⩽ ε

n∑
k=1

(ω (S(Ik)))
q
p

⩽ ε

(
n∑

k=1
ω (S(Ik))

) q
p

⩽ εω (S(2Ia))
q
p ≲ εω (S(a))

q
p .

This together with (3.7) gives (3.5), and finishes the proof. □

4. Littlewood–Paley inequalities

We begin with Theorem 1.4, splitting its proof in two parts. We first
establish an equivalent norm to ∥ · ∥Ap

ω
and a Littlewood–Paley inequality

in terms of the average weight

ωh,r(z) =

∫
∆(z,r) ω(ζ) dA(ζ)

(1 − |z|)2 , z ∈ D,

where r ∈ (0, 1), and ∆(z, r) = {u ∈ D : ρ(u, z) < r}.
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Proposition 4.1. — Let ω ∈ B∞(D̂), 0 < r < 1 and 0 < p < ∞. Then
the following statements hold:

(i) ∥f∥Ap
ω

≍ ∥f∥Ap
ωh,r

for all f ∈ H(D);

(ii)
∫
D

|f (k)(z)|p(1 − |z|)kpωh,r(z) dA(z) +
k−1∑
j=0

|f (j)(0)|p ≲ ∥f∥p
Ap

ω
for all

f ∈ H(D).

Proof.

(i). — Let 0 < r < 1 be fixed. Then Fubini’s theorem yields∫
S(a)

ω(∆(ζ, r))
(1 − |ζ|)2 dA(ζ)

=
∫

{z∈D:S(a)∩∆(z,r) ̸=∅}

(∫
S(a)∩∆(z,r)

dA(ζ)
(1 − |ζ|)2

)
ω(z) dA(z)

⩽
∫

S(b)

(∫
∆(z,r)

dA(ζ)
(1 − |ζ|)2

)
ω(z) dA(z) ≍ ω(S(b)), |a| > r,

where b = b(a, r) ∈ D satisfies arg b = arg a and 1 − |b| ≍ 1 − |a| for all
a ∈ D \ D(0, r). Since B∞(D̂) ⊂ D̂(D), ω(S(b)) ≲ ω(S(a)) by Lemma B(ii),
and therefore Theorem 1.3 yields

(4.1) ∥f∥p
Ap

ωh,r

≲ ∥f∥p
Ap

ω
, f ∈ H(D).

To see the converse inequality, use the subharmonicity of |f |p and Fubini’s
theorem to deduce

∥f∥p
Ap

ω
≲
∫
D

ω(ζ)
(∫

∆(ζ,r)

|f(z)|p

(1 − |z|)2 dA(z)
)

dA(ζ) = ∥f∥p
Ap

ωh,r

, f ∈ H(D).

Thus (i) is proved.

(ii). — Let 0 < r < 1 be fixed. It is well known that, for each 0 < p < ∞,
k ∈ N and 0 < s < 1, we have

(4.2) |f (k)(z)|p ≲
1

(1 − |z|)2+kp

∫
∆(z,s)

|f(ζ)|p dA(ζ), z ∈ D, f ∈ H(D),

see, for example, [15, Lemma 2.1] for details. Fix now s = s(r) ∈ (0, 1) and
R = R(r) ∈ (r, 1) such that ∆(z, r) ⊂ ∆(ζ, R) for all z ∈ ∆(ζ, s). Then an
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application of (4.2), Fubini’s theorem and Part (i) give∫
D

|f (k)(z)|p(1 − |z|)kpωh,r(z) dA(z)

≲
∫
D

(∫
∆(z,s)

|f(ζ)|p

(1 − |ζ|)2 dA(ζ)
)

ωh,r(z) dA(z)

=
∫
D

|f(ζ)|p

(1 − |ζ|)2

(∫
∆(ζ,s)

ωh,r(z) dA(z)
)

dA(ζ)

≲ ∥f∥p
Ap

ωh,R

≍ ∥f∥p
Ap

ω
, f ∈ H(D).

Moreover, for each j ∈ N, |f (j)(0)|p ≲
∫

D(0, 1
2 ) |f |p dA by the subharmonic-

ity of |f |p, and therefore Theorem 1.3 implies |f (j)(0)|p ≲ ∥f∥p
Ap

ω
once we

show that
∫

S∩D(0, 1
2 ) dA ≲ ω(S) for all Carleson squares S. This last in-

equality is obviously valid if S = S(a) with |a| ⩾ 1
2 because in this case the

left hand side equals zero. For |a| ⩽ 1
2 we have∫

S(a)∩D(0, 1
2 )

dA ⩽
1
8 ⩽

1
8

ω(S(a))
inf

a∈D(0, 1
2 ) ω(S(a)) ≲ ω(S(a)).

This finishes the proof. □

Given a weight ω and β ∈ R, we denote ω[β](z) = (1 − |z|)βω(z) for
all z ∈ D. We will use this definition to shorten the notation in several
instances in the proofs from here after.

Proposition 4.2. — Let k ∈ N. Then the following statements hold:
(i) If 0 < p ⩽ 1 and ω ∈ B∞(D̂), then

∥f∥p
Ap

ω
≲
∫
D

|f (k)(z)|p(1 − |z|)kpω̃(z) dA(z) +
k−1∑
j=0

|f (j)(0)|p, f ∈ H(D).

(ii) If 1 < p < ∞ and ω ∈ B∞(D), then

∥f∥p
Ap

ω
≲
∫
D

|f (k)(z)|p(1 − |z|)kpω̃(z) dA(z) +
k−1∑
j=0

|f (j)(0)|p, f ∈ H(D).

Proof.
(i). — Let 0 < p ⩽ 1. First observe that ω ∈ B∞(D̂) ⊂ D̂(D), and

hence, by Lemma B(ii) and Theorem 1.3, there exists β0 = β0(ω, p) > 0
such that Ap

ω is continuously embedded into A1
β−1 for all β ⩾ β0. A well-

known reproducing formula for functions in A1
β−1 [29, Proposition 4.27]
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now guarantees the estimate

(4.3)

∣∣∣∣∣∣f(z) −
k−1∑
j=0

f (j)(0)

∣∣∣∣∣∣≲
∫
D

∣∣∣∣ f (k)(ζ)
(1−zζ)1+β

∣∣∣∣ (1−|ζ|)β+k−1 dA(ζ), z ∈D.

Fix β ⩾ β0 sufficiently large such that p(1 + β) ⩾ η, where η = η(ω) > 0 is
that of Lemma B(iv), and α = p(β + k + 1) − 2 > −1. Then Ap

α ⊂ A1
β+k−1

by a well-known embedding that can be also deduced from Theorem 1.3,
and hence∣∣∣∣∣∣f(z) −

k−1∑
j=0

f (j)(0)

∣∣∣∣∣∣
p

≲
∫
D

∣∣∣f (k)(ζ)
∣∣∣p (1 − |ζ|)α

|1 − zζ|p(1+β) dA(ζ), z ∈ D.

Therefore Fubini’s theorem and Lemma B(iv) yield

(4.4)

∥∥∥∥∥∥f −
k−1∑
j=0

f (j)(0)

∥∥∥∥∥∥
p

Ap
ω

≲
∫
D

∣∣∣f (k)(ζ)
∣∣∣p (1 − |ζ|)α

(∫
D

ω(z)
|1 − zζ|p(1+β) dA(z)

)
dA(ζ)

≲
∫
D

∣∣∣f (k)(ζ)
∣∣∣p (1 − |ζ|)kp ω(S(ζ))

(1 − |ζ|)2 dA(ζ), f ∈ H(D).

Thus (i) is proved.

(ii). — Let now 1 < p < ∞. Observe that ω ∈ B(D) ⊂ D(D). We
begin with showing that for each ω ∈ D(D) there exists ε0 > 0 such that
ω[−ε] ∈ D(D) for all 0 < ε < ε0. To see this first note that by Lemma 2.1
there exists β = β(ω) > 0 such that ω(D \ D(0, r)) ≲ (1 − r)β for all
0 ⩽ r < 1. This and Fubini’s theorem yield∫

D\D(0, 1
2 )

ω(z)
(1 − |z|)ε

dA(z)

≍
∫
D\D(0, 1

2 )
ω(z)

(∫
D(0,|z|)

dA(ζ)
(1 − |ζ|)1+ε

)
dA(z)

=
∫
D

1
(1 − |ζ|)1+ε

(∫
D\D(0,max{ 1

2 ,|ζ|})
ω(z) dA(z)

)
dA(ζ)

≲
∫
D

dA(ζ)
(1 − |ζ|)1+ε−β

< ∞
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for each ε < β. Thus ω[−ε] is a weight for all 0 < ε < β. Further, for such
an ε, the inequality (2.3) and the hypothesis ω ∈ qD(D) yield

∫
S(a)

ω(z)
(1 − |z|)ε

dA(z)

=
∫

S(a)
ω(z)

(
ε

∫ |a|

0

dt

(1 − t)ε+1 + ε

∫ |z|

|a|

dt

(1 − t)ε+1 + 1
)

dA(z)

= ω(S(a))
(1 − |a|)ε

+ ε

∫ 1

|a|

(∫
S(a)\D(0,t)

ω(z) dA(z)
)

dt

(1 − t)ε+1

≲
ω(S(a))

(1 − |a|)ε
+ ω(S(a))

(1 − |a|)β
ε

∫ 1

|a|

dt

(1 − t)ε+1−β

= ω(S(a))
(1 − |a|)ε

+ ω(S(a))
(1 − |a|)ε

ε

β − ε

≲
ω(TK(a))
(1 − |a|)ε

⩽
∫

TK (a)

ω(z)
(1 − |z|)ε

dA(z), a ∈ D \ {0},

and thus ω[−ε] ∈ qD(D), provided ω ∈ qD(D) and 0 < ε < β. Further,
since ω ∈ qD(D), there exists K = K(ω, ε) > 1 such that ω[−ε](S(a)) ≲
ω[−ε] (TK(a)) and ω(S(a)) ≲ ω (TK(a)) for all a ∈ D \ {0}. Write a′ =
1+|a|

2 ei arg a for short. Then the inequalities just obtained and the hypoth-
esis ω ∈ D̂(D) yield

ω[−ε](S(a)) ≲ ω[−ε] (TK(a)) ⩽ Kεω (TK(a))
(1 − |a|)ε

⩽
Kεω (S(a))
(1 − |a|)ε

≲
ω (S (a′))
(1 − |a′|)ε

≲
ω (TK (a′))
(1 − |a′|)ε

⩽ ω[−ε] (TK (a′))

⩽ ω[−ε] (S (a′)) , a ∈ D \ {0},

(4.5)

and hence ω[−ε] ∈ D̂(D), for all 0 < ε < β. Therefore we have shown that
ω[−ε] ∈ D(D) for all 0 < ε < ε0 = β.

To prove the statement (ii) of the proposition, fix α2 ∈
(

2
p′ , 2

p′ + ε0
p

)
,

where ε0 = ε0(ω) > 0 is the constant we just found. Then ε = p
p′ (p′α2−2) ∈

(0, ε0), and thus ω[−ε] ∈ D̂(D). Let now β > max{β0, (η +2(p−1)+ε0)/p−
1}, where η = η(ω[−ε]) > 0 is that of Lemma B(iv) and β0 = β0(ω, 1) is
that of Part (i). Finally, write 1 + β = α1 + α2. Then the estimate (4.3)
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and Hölder’s inequality imply∣∣∣∣∣∣f(z) −
k−1∑
j=0

f (j)(0)

∣∣∣∣∣∣
p

≲
∫
D

|f (k)(ζ)|p (1 − |ζ|)p(β+k−1)

|1 − zζ|pα1
dA(ζ)

(∫
D

dA(ζ)
|1 − zζ|p′α2

) p

p′

≲
∫
D

|f (k)(ζ)|p (1 − |ζ|)p(β+k−1)

|1 − zζ|pα1
dA(ζ)(1 − |z|)(2−p′α2) p

p′ ,

because p′α2 > 2. By using this and Fubini’s theorem we deduce∥∥∥∥∥∥f −
k−1∑
j=0

f (j)(0)

∥∥∥∥∥∥
p

Ap
ω

≲
∫
D

|f (k)(ζ)|p(1 − |ζ|)p(β+k−1)

·

(∫
D

ω(z)(1 − |z|)(2−p′α2) p

p′

|1 − zζ|pα1
dA(z)

)
dA(ζ)

for all f ∈ H(D). Since ε = p
p′ (p′α2−2) ∈ (0, ε0) and pα1 > η by our choices,

we may apply Lemma B(iv) to the inner integral above. This together with
(4.5) imply∥∥∥∥∥∥f −

k−1∑
j=0

f (j)(0)

∥∥∥∥∥∥
p

Ap
ω

≲
∫
D

|f (k)(ζ)|p(1 − |ζ|)p(β+k−1)

·

(∫
D

ω(z)(1 − |z|)(2−p′α2) p

p′

|1 − zζ|pα1
dA(z)

)
dA(ζ)

≲
∫
D

|f (k)(ζ)|p(1 − |ζ|)p(β+k−1) ω[−ε](S(ζ))
(1 − |ζ|)pα1

dA(ζ)

≍
∫
D

|f (k)(ζ)|p(1 − |ζ|)kp ω(S(ζ))
(1 − |ζ|)2 dA(ζ), f ∈ H(D),

and finishes the proof of (ii). □

With these preparations we can deduce Theorem 1.4. Namely, it is easy
to see that for each ω ∈ D(D), and in particular for each ω ∈ B∞(D), there
exists r0 = r0(ω) ∈ (0, 1) such that ωh,r ≍ ω̃ in D for each r ⩾ r0. Therefore
Theorem 1.4 follows from Propositions 4.1 and 4.2.

We proceed to prove Theorems 1.2 and 1.1 in the said order.
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Proof of Theorem 1.2. — Let 0 < r < 1 be fixed. The inequality (4.2),
Fubini’s theorem and Proposition 4.1(i) yield∫

D
|f (k)(z)|p(1 − |z|)kpω(z) dA(z)

≲
∫
D

(∫
∆(z,r)

|f(ζ)|p dA(ζ)
)

ω(z)
(1 − |z|)2 dA(z)

≍
∫
D

|f(ζ)|p ω(∆(ζ, r))
(1 − |ζ|)2 dA(ζ)

= ∥f∥p
Ap

ωh,r

≍ ∥f∥p
Ap

ω
, f ∈ H(D).

Moreover, arguing as in the proof of Proposition 4.1(ii) we deduce
k−1∑
j=0

|f (j)(0)|p ≲ ∥f∥p
Ap

ω
, f ∈ H(D).

By combining the above estimates we get the assertion. □

Proof of Theorem 1.1. — By Theorem 1.2 it suffices to prove∫
D

|f (k)(z)|p(1 − |z|)kpω(z) dA(z) +
k−1∑
j=0

|f (j)(0)|p ≳ ∥f∥p
Ap

ω
, f ∈ H(D).

To see this, we will need to know more about the weights involved. In
particular, we want to show that ω[kp] ∈ B∞(D) for each k ∈ N and
0 < p < ∞. We will deduce this in several steps. First observe that if
ω ∈ qD(D) and β > 0, then ω[β] ∈ qD(D). Namely, if ω ∈ qD(D) there exists
K = K(ω) > 1 such that for each β > 0 we have

ω[β](TK(a)) ⩾ (1 − |a|)β

Kβ
ω(TK(a)) ≳ (1 − |a|)βω(S(a))

⩾ ω[β](S(a)), a ∈ D \ {0},

and hence ω[β] ∈ qD(D). If in addition ω ∈ D(D), then ω[β] ∈ D̂(D). To
see this, let a ∈ D \ {0} and write a′ = 1+|a|

2 ei arg a for short. Since ω ∈
qD(D), there exists K = K(ω) > 1 such that ω(TK(a)) ≍ ω(S(a)) for all
a ∈ D \ {0}. By using this and the hypothesis ω ∈ D̂(D) we deduce

ω[β](S(a)) ⩽ (1 − |a|)βω(S(a)) ≍ (1 − |a|)β
ω(S(a′))

≍
(

1 −
(

1 − 1 − |a′|
K

))β

ω(TK(a′))

⩽ ω[β](S(a′)), a ∈ D \ {0}.
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and thus ω[β] ∈ D̂(D). Therefore we have shown that ω[β] ∈ D(D), provided
ω ∈ D(D) and β > 0.

The other property we need to know is that if ω ∈ B∞(D), then ω[β] ∈
B∞(D) for all β > 0. We will use the fact we just proved to see this and the
fact that ω

ν ∈ Bp(ν) if and only if there exists a constant C = C(ω, ν) > 0
such that

(4.6)
(∫

S
|f(z)|ν(z) dA(z)

ν(S)

)p

⩽ C

∫
S

|f(z)|pω(z) dA(z)
ω(S)

for all Carleson squares S and all measurable functions f on D. Next observe
that if ν ∈ D(D), 1 < p < ∞ and ω

ν ∈ Bp(ν), then ω[β]
ν[β]

∈ Bp(ν[β]) for all
0 < β < ∞. Namely, if ω

ν ∈ Bp(ν), then (4.6) yields(∫
S(a) |f(z)|ν[β](z) dA(z)

ν[β](S(a))

)p

⩽ C
ν(S(a))p

ν[β](S(a))p

∫
S(a) |f(z)|p(1 − |z|)pβω(z) dA(z)

ω(S(a))

⩽ C
ν(S(a))p

ν[β](S(a))p
(1 − |a|)(p−1)β

∫
S(a) |f(z)|pω[β](z) dA(z)

ω(TK(a))

⩽ C
(1 − |a|)pβν(S(a))p

ν[β](S(a))p

∫
S(a) |f(z)|pω[β](z) dA(z)

ω[β](TK(a))

for all a ∈ D \ {0} and all measurable functions f on D. Since ν ∈ D(D)
by the hypothesis, then ω ∈ D(D), and hence ω[β] ∈ D(D). Therefore
ω[β](TK(a)) ≍ ω[β](S(a)) for all a ∈ D \ {0}, provided K = K(ω, β) > 1 is
sufficiently large. Moreover, for M = M(ν) > 1 sufficiently large, we have

ν[β](S(a)) ⩽ (1 − |a|)βν(S(a)) ≍ (1 − |a|)βν(TM (a))

⩽ Mβν[β](TM (a)) ⩽ Mβν[β](S(a)), a ∈ D \ {0}.

It follows that(∫
S(a) |f(z)|ν[β](z) dA(z)

ν[β](S(a))

)p

≲

∫
S(a) |f(z)|pω[β](z) dA(z)

ω[β](S(a)) , a ∈ D \ {0},

for all measurable functions f on D. This shows that ω[β]
ν[β]

∈ Bp(ν[β]).
Finally, by the hypothesis ω ∈ B∞(D), and hence there exist 1 < p < ∞

and ν ∈ D such that ω
ν ∈ Bp(ν). Therefore ω[β]

ν[β]
∈ Bp(ν[β]) for all 0 < β <

∞. Moreover, ν[β] ∈ D, and hence ω[β] ∈ B∞(D).
Now we can proceed to prove the statement of the theorem. Recall that

we just showed that ω[kp] ∈ B∞(D) for each k ∈ N and 0 < p < ∞ by
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the hypothesis ω ∈ B∞(D). In particular ω[kp] ∈ D(D), and hence the
inequality we are after now follows from Proposition 4.2 and Theorem 1.3
if we show that

(4.7)
∫

S

(1 − |ζ|)kp ω(S(ζ))
(1 − |ζ|)2 dA(ζ) ≲

∫
S

(1 − |ζ|)kpω(ζ) dA(ζ), S ⊂ D.

Since ω ∈ qD(D), there exists r = r(ω) ∈ (0, 1) sufficiently large such that
ω(S(ζ)) ≲ ω(∆(ζ, r)) for all ζ ∈ D. Therefore

∫
S(a)

(1 − |ζ|)kp ω(S(ζ))
(1 − |ζ|)2 dA(ζ)

≲
∫

S(a)
(1 − |ζ|)kp ω(∆(ζ, r))

(1 − |ζ|)2 dA(ζ)

=
∫

{z:S(a)∩∆(z,r)̸=∅}
ω(z)

(∫
S(a)∩∆(z,r)

(1 − |ζ|)kp−2 dA(ζ)
)

dA(z)

≲
∫

{z:S(a)∩∆(z,r) ̸=∅}
(1 − |z|)kpω(z) dA(z)

⩽
∫

S(a′)
(1 − |z|)kpω(z) dA(z), a ∈ D \ {0},

where arg a′ = arg a and 1 − |a′| ≍ 1 − |a| for all a ∈ D \ {0}. Moreover,
since ω[kp] ∈ D̂(D), we have ω[kp](S(a′)) ≲ ω[kp](S(a)) for all a ∈ D \ {0}.
This gives (4.7) and finishes the proof. □

5. Spectra of integration operator

Let B denote the classical space of Bloch functions, B0 the little Bloch
space and Da =

{
z ∈ D : |z − a| < 1−|a

2
}

for all a ∈ D. Recall that ω̃ is
essentially constant in each hyperbolically bounded region if ω ∈ B∞(D).
This together with Theorem 1.4 and [3, Corollary 4.4-Theorem 1.7] implies
that ω̃ ∈ B∞. Therefore the next result follows from [1, Theorem 4.1],
Theorem 1.4 and the fact that

ω̃(Da) ≍ ω(S(a)), a ∈ D \ {0},

provided ω ∈ B∞(D).
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Theorem 5.1. — Let ω ∈ B∞(D) and 0 < p, q < ∞. Then the following
statements hold:

(i) If 0 < p ⩽ q < ∞, then Tg : Ap
ω → Aq

ω is bounded if and only if

sup
a∈D

(1 − |a|)|g′(a)| (ω(S(a))
1
q − 1

p < ∞.

(ii) If 0 < p ⩽ q < ∞, then Tg : Ap
ω → Aq

ω is compact if and only if

lim
|a|→1−

(1 − |a|)|g′(a)| (ω(S(a))
1
q − 1

p = 0.

(iii) If 0 < q < p < ∞, then Tg : Ap
ω → Aq

ω is bounded (equivalently
compact) if and only if g ∈ As

ω, where 1
s = 1

p − 1
q .

Theorem 5.1 shows, in particular, that Tg : Ap
ω → Ap

ω is bounded (resp.
compact) if and only if g ∈ B (resp. g ∈ B0), provided ω ∈ B∞(D).

We will next study the spectrum of Tg acting on Ap
ω, when ω ∈ B∞(D).

We begin with noticing that Tg has no eigenvalues [1, Proposition 5.1], and
hence its spectrum is nothing else but {0} if g ∈ B0. The proof of Theo-
rem 1.5 follows ideas from the papers [1, 2, 3], where the approach used
reveals a natural connection to weighted norm inequalities for derivatives.
This general idea applies to our context as well. Indeed, a simple compu-
tation shows that for a given analytic function h in D and λ ∈ C \ {0}, the
equation

λf − Tgf = h

has the unique solution f = 1
λ Rλ,gh, where

(5.1) Rλ,gh(z) = h(0) e
g(z)

λ + e
g(z)

λ

∫ z

0
e− g(ξ)

λ h′(ξ) dξ, z ∈ D.

Thus λ belongs the resolvent set ρ (Tg|Ap
ω) if and only if Rλ,g is a bounded

invertible operator on Ap
ω.

proof of Theorem 1.5. — The equivalence between (i) and (ii) follows
by arguing as in the proof of [1, Theorem 5.1] and applying Theorems 1.1
and 5.1.

To see that (ii) and (iii) are equivalent, observe that since ω̃ is essentially
constant in each hyperbolically bounded region, the proof of [3, Proposi-
tion 2.1(b)] shows that there exists a differentiable weight W such that
ω̃ ≍ W on D, and

(5.2) |∇W (z)| ≲ (1 − |z|)W (z), z ∈ D.
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Therefore, by arguing as in the first part of the proof, but applying Theo-
rem 1.4 instead of Theorem 1.1, we deduce that

λ ∈ ρ (Tg | Ap
ω) = ρ

(
Tg

∣∣∣Ap

ω̃

)
= ρ (Tg | Ap

W )

if and only if

∥f∥p
Ap

Wλ,g,p

≍ |f(0)|p +
∫
D

|f ′(z)|p(1 − |z|)pWλ,g,p(z) dA(z), f ∈ H(D),

where Wλ,g,p = W exp
(
p Re g

λ

)
. Since g ∈ B, also the weight Wλ,g,p satisfies

(5.2). Indeed,∣∣∣∇W exp
(

p Re g

λ

)
(z)
∣∣∣ ≲ (|∇W (z)| + p|g′(z)|W (z)

|λ|

)
exp

(
p Re g

λ

)
(z)

≲
W exp

(
p Re g

λ

)
(z)

1 − |z|
, z ∈ D.

Hence Wλ,g,p is essentially constant in each hyperbolically bounded re-
gion by [3, Proposition 2.1(i)]. Therefore λ ∈ ρ(Tg | Ap

ω) = ρ(Tg | Ap
ω̃) =

ρ (Tg | Ap
W ) if and only if Wλ,g,p ∈ B∞ by [3, Corollary 4.4]. This is equiv-

alent to ω̃ exp
(
p Re g

λ

)
∈ B∞. □
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