[Inégalités de normes pondérées pour les dérivées dans les espaces de Bergman]
Nous construisons une norme équivalente, définie à l’aide des dérivées supérieures, dans un espace de Bergman pondéré où appartient à une large classe des poids non radiaux. Nous analysons aussi autres inégalités de Littlewood–Paley. Avant de démontrer les résultats principaux nous caractérisons les -mesures de Carleson sur les espaces et montrons que la fonction maximale de Hörmander est bornée. En utilisant nos résultats nous pouvons décrire l’ensemble résolvant de l’opérateur intégral agissant sur .
An equivalent norm in the weighted Bergman space , induced by an in a certain large class of non-radial weights, is established in terms of higher order derivatives. Other Littlewood–Paley inequalities are also considered. On the way to the proofs, we characterize the -Carleson measures for the weighted Bergman space and the boundedness of a Hörmander-type maximal function. Results obtained are further applied to describe the resolvent set of the integral operators acting on .
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Bergman space, Carleson measure, integral operator, Littlewood–Paley inequality, Hörmander-type maximal function, resolvent set.
Mot clés : Espace de Bergman, mesure de Carleson, opérateur intégral, inégalité de Littlewood–Paley, fonction maximale de Hörmander, ensemble résolvant.
Peláez, José Ángel 1 ; Rättyä, Jouni 2
@article{AIF_2024__74_4_1721_0, author = {Pel\'aez, Jos\'e \'Angel and R\"atty\"a, Jouni}, title = {Weighted norm inequalities for derivatives on {Bergman} spaces}, journal = {Annales de l'Institut Fourier}, pages = {1721--1744}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {4}, year = {2024}, doi = {10.5802/aif.3632}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3632/} }
TY - JOUR AU - Peláez, José Ángel AU - Rättyä, Jouni TI - Weighted norm inequalities for derivatives on Bergman spaces JO - Annales de l'Institut Fourier PY - 2024 SP - 1721 EP - 1744 VL - 74 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3632/ DO - 10.5802/aif.3632 LA - en ID - AIF_2024__74_4_1721_0 ER -
%0 Journal Article %A Peláez, José Ángel %A Rättyä, Jouni %T Weighted norm inequalities for derivatives on Bergman spaces %J Annales de l'Institut Fourier %D 2024 %P 1721-1744 %V 74 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3632/ %R 10.5802/aif.3632 %G en %F AIF_2024__74_4_1721_0
Peláez, José Ángel; Rättyä, Jouni. Weighted norm inequalities for derivatives on Bergman spaces. Annales de l'Institut Fourier, Tome 74 (2024) no. 4, pp. 1721-1744. doi : 10.5802/aif.3632. https://aif.centre-mersenne.org/articles/10.5802/aif.3632/
[1] Spectra of integration operators on weighted Bergman spaces, J. Anal. Math., Volume 109 (2009), pp. 199-231 | DOI | MR | Zbl
[2] Spectra of integration operators and weighted square functions, Indiana Univ. Math. J., Volume 61 (2012) no. 2, pp. 775-793 | DOI | MR | Zbl
[3] Characterizations of a limiting class of Békollé–Bonami weights, Rev. Mat. Iberoam., Volume 35 (2019) no. 6, pp. 1677-1692 | DOI | MR | Zbl
[4] Integration operators on Bergman spaces, Indiana Univ. Math. J., Volume 46 (1997) no. 2, pp. 337-356 | DOI | MR | Zbl
[5] A Hardy–Littlewood theorem for Bergman spaces, Ann. Acad. Sci. Fenn., Math., Volume 43 (2018) no. 2, pp. 807-821 | DOI | MR | Zbl
[6] Inégalité à poids pour le projecteur de Bergman dans la boule unité de , Stud. Math., Volume 71 (1982) no. 3, pp. 305-323 | DOI | MR | Zbl
[7] Inégalités à poids pour le noyau de Bergman, C. R. Math. Acad. Sci. Paris, Volume 286 (1978) no. 18, p. A775-A778 | MR | Zbl
[8] On the Bekollé–Bonami condition, Math. Ann., Volume 328 (2004) no. 3, pp. 389-398 | DOI | MR | Zbl
[9] Fourier analysis, Graduate Studies in Mathematics, 29, American Mathematical Society, 2001, xviii+222 pages | DOI | MR | Zbl
[10] On the conditions for general bases, Math. Z., Volume 282 (2016) no. 3-4, pp. 955-972 | DOI | MR | Zbl
[11] estimates for (pluri-) subharmonic functions, Math. Scand., Volume 20 (1967), pp. 65-78 | DOI | MR | Zbl
[12] Maximal function and Carleson measures in the theory of Békollé–Bonami weights, Colloq. Math., Volume 142 (2016) no. 2, pp. 211-226 | DOI | MR | Zbl
[13] Integral inequalities with weights for the Hardy maximal function, Stud. Math., Volume 71 (1981/82) no. 3, pp. 277-284 | DOI | MR | Zbl
[14] Zero sequences, factorization and sampling measures for weighted Bergman spaces, Math. Z., Volume 291 (2019) no. 3-4, pp. 1145-1173 | DOI | MR | Zbl
[15] Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Am. J. Math., Volume 107 (1985) no. 1, pp. 85-111 | DOI | MR | Zbl
[16] Trace ideal criteria for Toeplitz operators, J. Funct. Anal., Volume 73 (1987) no. 2, pp. 345-368 | DOI | MR | Zbl
[17] An equivalence for weighted integrals of an analytic function and its derivative, Math. Nachr., Volume 281 (2008) no. 11, pp. 1612-1623 | DOI | MR | Zbl
[18] Small weighted Bergman spaces, Proceedings of the Summer School in Complex and Harmonic Analysis, and Related Topics (Publ. Univ. East. Finl. Rep. Stud. For. Nat. Sci.), Volume 22, Univ. East. Finl., Fac. Sci. For., Joensuu, 2016, pp. 29-98 | MR
[19] Generalized Hilbert operators on weighted Bergman spaces, Adv. Math., Volume 240 (2013), pp. 227-267 | DOI | MR | Zbl
[20] Weighted Bergman spaces induced by rapidly increasing weights, Memoirs of the American Mathematical Society, 227, American Mathematical Society, 2014 no. 1066, vi+124 pages | DOI | MR | Zbl
[21] Embedding theorems for Bergman spaces via harmonic analysis, Math. Ann., Volume 362 (2015) no. 1-2, pp. 205-239 | DOI | MR | Zbl
[22] Two weight inequality for Bergman projection, J. Math. Pures Appl., Volume 105 (2016) no. 1, pp. 102-130 | DOI | MR | Zbl
[23] Harmonic conjugates on Bergman spaces induced by doubling weights, Anal. Math. Phys., Volume 10 (2020) no. 2, 18, 22 pages | DOI | MR | Zbl
[24] Bergman projection induced by radial weight, Adv. Math., Volume 391 (2021), 107950, 70 pages | DOI | MR | Zbl
[25] Bergman projection and BMO in hyperbolic metric: improvement of classical result, Math. Z., Volume 305 (2023) no. 2, 19, 9 pages | DOI | MR | Zbl
[26] Bergman projection induced by kernel with integral representation, J. Anal. Math., Volume 138 (2019) no. 1, pp. 325-360 | DOI | MR | Zbl
[27] Weighted integrals of analytic functions, Acta Sci. Math., Volume 66 (2000) no. 3-4, pp. 651-664 | MR | Zbl
[28] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993, xiv+695 pages | MR | Zbl
[29] Operator theory in function spaces, Mathematical Surveys and Monographs, 138, American Mathematical Society, 2007, xvi+348 pages | DOI | MR | Zbl
Cité par Sources :