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THE HODGE FILTRATION OF A MONODROMIC
MIXED HODGE MODULE AND THE IRREGULAR
HODGE FILTRATION

by Takahiro SAITO (*)

ABSTRACT. — For an algebraic vector bundle E over a smooth algebraic variety
X, a monodromic D-module on E is decomposed into a direct sum of some O-
modules on X. We show that the Hodge filtration of a monodromic mixed Hodge
module is decomposed with respect to the decomposition of the underlying D-
module. By using this result, we endow the Fourier-Laplace transform M” of the
underlying D-module M of a monodromic mixed Hodge module with a mixed
Hodge module structure. Moreover, we describe the irregular Hodge filtration on
M” concretely and show that it coincides with the Hodge filtration at all integer
indices.

RESUME. — Pour un fibré vectoriel algébrique E sur une variété algébrique lisse
X, un D-module monodromique sur E est décomposé en une somme directe de
certains O-modules sur X. Nous montrons que la filtration de Hodge d’un module
de Hodge mixte monodromique est décomposée par rapport & la décomposition
du D-module sous-jacent. En utilisant ce résultat, nous munissons la transformée
de Fourier-Laplace M” du D-module sous-jacent M & un module de Hodge mixte
monodromique d’une structure de module de Hodge mixte. De plus, nous décrivons
explicitement la filtration de Hodge irréguliére sur M” et montrons qu’elle coincide
avec la filtration de Hodge aux indices entiers.

1. Introduction

The present paper is a continuation of our previous paper [24].

In this paper, we only deal with algebraic objects. Let E be an algebraic
vector bundle over a smooth algebraic variety X of finite type over C and
m: E — X be the projection. Since 7 is affine morphism, we will identify
an algebraic D-module M on E with an algebraic 7, D-module 7, M (see

Keywords: D-module, Perverse sheaf, Mixed Hodge module, Mixed twistor D-module,
Irregular Hodge filtration.
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2 Takahiro SAITO

Lemma 2.1). We denote by Eg the Euler vector field on E. For a trivial-
ization 77 1(U) ~ U x C" (U C X) and coordinates (21, ...,z,) of C", Eg
is Y7 | 2;0.,. Then, if an algebraic D-module M on E is monodromic (see
Definition 2.3), we have a decomposition

(1.1) M= MP,

BER

where M? = Uiso Ker((€r — B)t: meM — 7. M) (see Proposition 2.6). A
monodromic mixed Hodge module is a mixed Hodge module on E whose
underlying D-module is monodromic. Then, our first main result is the
following.

THEOREM 1.1 (Theorem 3.1). — Let M be a monodromic mixed Hodge
module on E and M the underlying D-module. Then, the Hodge filtration
{F,M},cz of M is decomposed with respect to the decomposition (1.1):

(1.2) F,M = F,M7,
BER

where F,M? := F,M N M".

Remark 1.2. — Theorem 1.1 was shown in a different way in a recent
preprint [4] by Chen—Dirks.

When the rank of E is one, this result was already shown in [24]. We will
prove it by using the fact that the pull-back of a monodromic D-module
on C" by the blowing up morphism C" — C" is a monodromic D-module
on a line bundle (Lemma 2.11) and some results for monodromic mixed
Hodge modules on line bundles in [24].

We consider the Fourier-Laplace transform M” of a D-module M on
E, which is a D-module on the dual vector bundle 7V: EV — X. When
E is trivial: E ~ X x C" (then, EV is also trivial: E ~ X x C") and X
is affine, we can identify D-modules on E (resp. EY) with the I'(E; D)-
modules (resp. I'(EY; D)) of their global sections. In this case, M" is M as
a set and its ['(EY; D)-module structure is defined so that for P € I'(X; D)
and 1 <7 < n we have

P-m" = (Pm)",
¢ -mh =(9,m)", and

e, -mi = —(zm)",

i
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MONODROMIC MIXED HODGE MODULE 3

where (z1,...,2,) (vesp. ((1,...,Cn)) is the coordinate system of C™ (resp.
the dual C") and m” is a global section in M” corresponding to a global
section m € M (see Lemma 4.6). Furthermore, in this case, for a I'(X; O)-
submodule F' C M, we define a I'(X; O)-submodule F* C M" as

FN={m" € M" | m € F}.

Even in a general case (not necessary F is trivial), we can define an Ox-
submodule F* of 7/ M” for an Ox-module F of m,M (Definition 4.7).
Recall that the underlying D-module of a mixed Hodge module is reg-
ular holonomic. In general, even if M is regular, M” may not be regu-
lar. Therefore, even if M is the underlying D-module of a mixed Hodge
module, M” may not be so. Nevertheless, it is known that when a D-
module M is monodromic and regular, so is M” (see Lemma 4.9). There-
fore, for the underlying D-module M of a monodromic mixed Hodge mod-
ule, M may be equipped with a mixed Hodge module structure. Re-
ichelt [12] gave definitions of mixed Hodge module structures on the homo-
geneous A-hypergeometric D-modules, which are expressed as the Fourier—
Laplace transform of certain monodromic D-modules. Moreover, Reichelt—
Walther [13] defined a mixed Hodge module whose underlying D-module
is the Fourier-Laplace transform of the underlying D-module of a mon-
odromic mixed Hodge module. By a different method from theirs, using
Theorem 1.1 (for a line bundle), we show the following.

PROPOSITION 1.3 (Definition 4.20). — For a monodromic mixed Hodge
module M on E, we can naturally define a mixed Hodge module M” on
EY whose underlying D-module is M".

When FE is a line bundle, this result was already proved in [24]. To show
it in the general case, we will describe M” in terms of the Fourier-Laplace
transform on a line bundle (Lemma 4.18) and use the results in [24]. We
can describe the Hodge filtration of M” concretely below (Corollary 1.6).

Next, we consider the irregular Hodge filtrations. For a holomorphic func-
tion f on E, the exponential D-module &7 ( i.e. the structure sheaf Op
with the connection g — dg + df - g) is not regular in general. Since the
underlying D-module of a mixed Hodge module is regular, we can not ap-
ply the theory of mixed Hodge module to endow it with a natural Hodge
filtration. Nevertheless, for the underlying D-module M of a mixed Hodge
module M on E, Esnault-Sabbah—Yu [6] and Sabbah—Yu [21] defined a
natural filtration FI'* (M @ &7) of the exponentially twisted D-module
M ® &F for a € [0,1), called the irregular Hodge filtration. Note that

TOME 0 (0), FASCICULE 0



4 Takahiro SAITO

combining F™ (M ® &7) for all a € [0,1), we can consider the filtra-
tion {F"(M ® &7}, er indexed by R, not only Z. These constructions
were generalized as the “irregular Hodge theory” in [19] and the category
of irregular Hodge modules was established, which contains mixed Hodge
modules and “exponentially twisted mixed Hodge modules”, as a full sub-
category of the category of integrable mixed twistor D-modules introduced
by Mochizuki [8]. By using the pushforward and pullback functors between
the category of irregular Hodge modules (see Proposition 5.6), we obtain
the “Fourier—Laplace transform of a mixed Hodge module” in the category
of irregular Hodge modules (5.16), and we thus obtain natural filtrations
(also called the irregular Hodge filtrations) on the Fourier—Laplace trans-
forms and their stalks: the twisted de Rham cohomologies, so that they are
generalizations of the ones defined in Deligne [5], Yu [27] and Sabbah [18].
However, these filtrations are not the Hodge filtration of a mixed Hodge
module in general. In general, it is difficult to compute the irregular Hodge
filtrations concretely. However, in our situation, due to Theorem 1.1 we
can describe the irregular Hodge filtration (for o € [0,1)) {Fi" M"},ez

a+p
of M” in terms of the original Hodge filtration FyM as follows.

THEOREM 1.4 (Theorem 5.24). — For « € [0,1) and p € Z, we have

FEE M = @ (Fy s MP)
BER

where |« — 3] is the largest integer less than or equal to o — 3.

We will prove it by describing the rescaled module (Subsection 5.1) and
its Kashiwara—Malgrange filtration explicitly (Lemma 5.23).

Eventually, on M”, we have two Hodge filtrations: the first one is the
Hodge filtration {F,M"},cz defined in Proposition 1.3 and the second one
is the irregular Hodge filtration {F}},M"},cz (for a € [0,1)). In fact,
these filtrations are equal at all integer indices.

THEOREM 1.5 (Theorem 5.40). — For p € Z, we have
FE"M" = F,M".

In particular, we can say that “the irregular Hodge filtration indexed
by Z of the Fourier—Laplace transform of the monodromic mixed Hodge
module is in fact the Hodge filtration”. Remark that the irregular Hodge
filtration {F;”M "} er jumps at also non-integer indices in general and
thus the filtration indexed by R has more information. For example, it
plays an important role when considering the tensor products (see [19,
Proposition 3.18])

ANNALES DE L’INSTITUT FOURIER



MONODROMIC MIXED HODGE MODULE 5

Combining this result with Theorem 1.4, the Hodge filtration (defined
by Proposition 1.3) can be described as follows.

COROLLARY 1.6 (Corollary 5.41). — For p € Z, we have

F,M" = @(FP+L—5J MB)A-
BER

Finally, we consider the irregular Hodge filtration “at infinity”. Let E
(resp. EV) be the projective compactification of E (resp. EV). We denote
by j: E — E and jV: EY < EV the inclusions and Da (resp. DY)
the divisor E \ E (resp. EV \ EY). For a D-module M on E let N be
the pushforward j.M of M by j, which is a D-module on E (recall that
our D-modules are algebraic). Then, we can consider the Fourier—Laplace
transform N” of N, which is a D-module on EV. We will see that this is
equal to jY M” (Lemma 4.5). For a mixed Hodge module M on E and its
extension N to E whose underlying D-module is N, we can also consider
the irregular Hodge filtration on N”(= jYM"). Then, we can compute
explicitly the irregular Hodge filtration on N”* (Theorem 5.31) and get the
following result.

COROLLARY 1.7 (Corollary 5.33). — The irregular Hodge filtration
{FoaipN"}pez for o € [0,1) has the strict specializability property along
DY..

For the definition of the strict specializability, see Definition 2.12. Remark
that this result is shown in a more general setting in a recent preprint by
Mochizuki [9].

By the definition of N, we have N' = N[*Dy] (see Lemma 5.14). For
the definition of “[*Ds]”, see Proposition 3.3. In particular, the Hodge
filtration of A is described in terms of F,Vp N, where V3 N is the
Kashiwara—Malgrange filtration of N along D... For the D-module with
a filtration (N”, FyN"), we denote by (N, FN™)[*DY] the D-module
NAxDY] == NM*DY)(= N”) with the filtration Fy(N”"[*DY.]) defined
by the same formula as usual “[«*DY_]” for the localization of a mixed Hodge
module. Then, we have the following.

COROLLARY 1.8 (Corollary 5.36). — We have
(N, FIN™) = (N, FI"N™)[*DY].

By Corollaries 1.7 and 1.8, we can say that “the irregular Hodge filtration
of the Fourier-Laplace transform of a monodromic mixed Hodge module
has the same properties as the usual Hodge filtrations”. To be more precise,

TOME 0 (0), FASCICULE 0



6 Takahiro SAITO

we can conclude as follows. Let M” be the extension of the mixed Hodge
module M" on EY to EV such that MA = ./W[*D;/O], whose underlying
D-module is denoted by MA (in fact, there exists such an extension by the
definition of “algebraic” mixed Hodge module in [23]). Note that we have
M» = N», Then, by Theorem 1.5 and Corollary 1.8 we have the following.

COROLLARY 1.9 (Corollary 5.51). — The irregular Hodge filtration
Firr NAY <7 indexed by integers is the Hodge filtration of the mixed Hodge
P p

module M”".
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2. Monodromic mixed Hodge modules
2.1. Monodromic mixed Hodge modules on vector bundles

In this subsection, we recall the notion of monodromic D-module on a
vector bundle and some basic facts. We refer to [2] and [24]. Let X be a
smooth algebraic variety of finite type over C, Ox the structure sheaf on
X and Dy the sheaf of differential operators on X. Basically, we consider
only algebraic left D-modules in this paper. Moreover, all the D-modules
and O-modules are quasi-coherent.

Let m: E — X be an algebraic vector bundle and M a (quasi-coherent)
D-module (resp. O-module) on E. Then, .M is a m, D-module (resp. 7, O-
module). Conversely, for a m.D-module N (resp. 7,O-modules) on X, we

ANNALES DE L’INSTITUT FOURIER



MONODROMIC MIXED HODGE MODULE 7

define a Dg-module (resp. Og-modules) 7*N as

N = Dg Qr-1r.Dx 7 IN.
(resp. TN == OF ®r-17,0x 77 IN)

Because 7 is an affine morphism (i.e. the inverse image of an affine open
subset of X is affine), we have the following equivalence.

LEMMA 2.1 (see Brylinski [2, Proposition 7.10]). — The functors .
and 7" define an equivalence of categories between the category of quasi-
coherent
Dg-modules (resp. Og-modules) and that of quasi-coherent 7, D p-modules
(resp. m.Opg-modules). The same assertion holds for the categories of co-
herent D or O-modules.

In the following, we identify D g-modules (resp. O g-modules) with m, D g-
modules (resp. m,Dg-modules).

Remark 2.2. — When X is the one point set, E is just a vector space
C™. We sometimes consider a D-module on an affine subset of C™, such
as (C*)™, where C* := C\ {0}. In this case, we have the equivalence similar
to Lemma 2.1. For example, we identify D«n-modules with
ClzE, ..., 21(8.,, . . . 8., )-modules, where C[2E, ..., 2E1)(d,,,...0.,) is

a ring of differential operators on (C*)™.

Let V be a vector space of rank n and eq,...,e, a basis of V. The
coordinates of V associated to the basis e, ..., e, is the isomorphism C™ ~
V which sends (z1,...,2,) € C™ to z1e1 + -+ + zpe, € V. It is easy to see
that the vector field """, 2;0,, on V does not depend on the choice of the
basis e1,...,e,. It is called the Euler vector field on V. More generally, for
any local trivialization 7=1(U) ~ U x C* (U C X) of the vector bundle
m: E — X and bundle coordinates (z1,...,Tm,21,---,2,) € U X C™, the

vector field Y7 | z,0,, on 71 (U) does not depend on the choice of the
local trivialization and we thus obtain a vector field on E. It is called the
Euler vector field on E and we denote it by £g. We can regard &g as a
section of ., Dg.

DEFINITION 2.3. — Let M be a D-module on E. We say that M is
monodromic if for any (local algebraic) section m € w,M there is a poly-
nomial b(u) € Clu] such that b(Eg)m = 0. Moreover, if all the roots of the
minimal polynomial of such b(u) is in Q (resp. R) for any m, we say that
M is Q-monodromic (resp. R-monodromic).

TOME 0 (0), FASCICULE 0



8 Takahiro SAITO

Since we only consider Q-monodromic D-module in this paper, we will
say “monodromic” as “Q-monodromic”.

Remark 2.4. — For a subset V of C" (e.g. (C*)™) and a D-module M on
X xV, we also define “M is monodromic” in the same way as Definition 2.3.

Remark 2.5. — Remark that E is equipped with a natural C*-action.
Assume that M is regular holonomic. Let K be the perverse sheaf cor-
responding to M via the Riemann—Hilbert correspondence. Then, M is
monodromic if and only if K is cohomologically locally constant on each
C*-orbit in E, i.e. each cohomology H?(K) is locally constant on each
C*-orbit (Brylisnki [2, Proposition 7.12]).

Note that we can also endow 7, M with a Ox-modules structure by the
adjunction Ox — m.7w 'Ox — 7,Op. For a Dg-module M and 8 € Q, we
define a O x-submodule M? of 7, M by

(2.1) M? = | JKer((€g — B)': mM — . M).
120
PROPOSITION 2.6. — A Dpg-module M is monodromic if and only if

M (recall that we identify it with .M ) is a direct sum of the family of
Ox-modules {M"}ger as

(2.2) M= M

BER

Proof. — The proof is similar to the proof of Proposition 1.7 of [24]. O

Remark 2.7. — If E is trivial and we fix a trivialization £ ~ X x C",
we can endow M? with a natural D y-module structure. Because a lift of a
section of Dx to FE is not unique, we can not define a natural D x-module
structure on M? in general.

Remark 2.8. — Submodules, quotient modules and extensions (in the
category of Dpg-modules) of monodromic Dg-modules are monodromic
again.

Let us consider a mixed Hodge module M = (M, FoM, K, W,K) on E,
where M is the underlying D-module, FeM is the Hodge filtration, K is
the underlying Q-perverse sheaf and WK is the weight filtration.

DEFINITION 2.9. — We say that M is monodromic if M is monodromic.

ANNALES DE L’INSTITUT FOURIER



MONODROMIC MIXED HODGE MODULE 9

2.2. The case where F is a trivial bundle of rank one

Let us recall some results for a monodromic mixed Hodge module M =
(M, FeM, K,W,K) in the case where E is a trivial bundle of rank one i.e.
E ~ X xC,. We fix this trivialization in this subsection. See [24] for details.

Note that in this case M*?(= Uiso Ker((20; — B)t: M — M)) is not only
an Ox-module, it is a Dx-module (see Remark 2.7). Moreover, we have a
decomposition

(2.3) M= MP,

where the Dx[z](0,)-module structure is defined by using the morphisms
z: MP — MP+! and 9,: MP — MP~! (in fact, MP = 0 for 3 ¢ Q).

We say that M is K(= Q or R)-specializable if there exists the Kashiwara—
Malgrange filtration along 2 of M indexed by K. We denote by {V/M}ser
the Kashiwara—Malgrange filtration of M along z, where the index is de-
fined to be gr?,zM = VPM/V>PM is killed by (20, — )¢ for some | > 0.
Sometimes gr@zM is abbreviated to greM . The decomposition (2.3) leads
to the following.

PROPOSITION 2.10 ([24, Proposition 1.15]). — Let M be a monodromic
coherent D-module on X xC,. Then, M is specializable, i.e. the Kashiwara—
Malgrange filtration of M along z = 0 exists and we have

VM =P M.
B=y
Therefore, we have
griyM = M".

In particular, the a-nearby cycle and the vanishing cycle of M along z are
described as follows:

(2.4) Vo aM(=gryM) = M*, and
(2.5) GoaM(=gry,' M) =M.

Moreover, the morphism can: ¢, oM — ¢,1M (resp. the morphism
var: ¢, 1M — ap, oM) is —0,: M® — M~ (resp. z: M~! — MP?).

In this situation, the Hodge filtration is decomposed with respect to the
decomposition (2.3).

TOME 0 (0), FASCICULE 0



10 Takahiro SAITO

ProPOSITION 2.11 ([24, Theorem 2.2]). — For p € Z, the Hodge filtra-
tion F, M C M is decomposed as

F,M =P F,M7,
BER

where F,M? = F,M N M? and the Ox|[z]-module structure of the right
hand side is defined by the morphisms z: F,M? — F,MP+!.

Let us recall the strict specializability for a filtered D-module. See [23]
and [20] for details. Let (M, FeM) be a holonomic D-module M with a
good filtration on X x C,. We set Fpgr‘@M = FpMﬂVfM/FpMﬂVfﬁM.

DEFINITION 2.12. — We say that (M, FoM) is strictly K(= Q or R)-
specializable along z if M is K-specializable and for any p € Z
(i) for any 8 > —1, z: Fpgrf,M — FpgreM is surjective, and
(ii) for any 5 <0, 9,: Fpgr{ﬂ/M — Fp+1gr€_lM is surjective.

This property is one of the important constraints on mixed Hodge mod-
ules. Proposition 2.11 and the strict specializability lead the following.

LEMMA 2.13 ([24, Lemma 2.4]). — For the underlying filterd D-module
(M, FoM) of a monodromic mixed Hodge module on X x C,, | € Z>( and
p € Z we have

E,MT =2 F,M*  (a € (—1,0]), and
FE,M* =0 F, ;M (a€[-1,0)).

In particular, we have

26) FM=|P @ oF M |eFr,M ol P FFM"

I1>1 a€[—1,0) 120 ae(—1,0]

We can describe the category MHM? | (X x C,) of monodromic graded
polarizable mixed Hodge modules on X x C, as follows. We consider a tuple
(M1, Ts, N), M_1,¢,v), where M(_1 o) and M_; are graded polariz-
able mixed Hodge modules on X and Ts: M (_1 o)~ M_1,0, N: M(_1,0—
M _1,0(=1), c¢: Mo(= Ker(Ts —1) C M(_19) - M_; and v: M_; —
My (—1) are morphisms in the category of mixed Hodge modules with the
following properties:

(i) Ts commutes with N.

ANNALES DE L’INSTITUT FOURIER



MONODROMIC MIXED HODGE MODULE 11

(ii) The underlying D-module M_; o of M(_; ] is decomposed as

M_ig= & M,
a€e(—1,0]nQ

where M, = Ker(Ts — exp(—2my/—1a)) C M(_1 ).

(iii) ve: Mo — Mo(—1) is —N.
We denote by ¢(X) the category of such tuples (M 1,9, Ts, N), M_1, c,v).

Let M = (M,FeM,K,W,K) be a monodromic mixed Hodge module
on X x C,. We define M(_; ¢ as the nearby cycle ¢, M of M along
z, M_; the unipotent vanishing cycle ¢, 1M, T, (resp. N) the semisim-
ple part (resp. ﬁ% times the logarithm of the unipotent part) of the
monodromy automorphism of ¢, M and c¢ (resp. v) the morphism
can: ¥, oM — ¢, 1M (resp. var: ¢, 1M — 1, g M(—1)). Then, the tu-
ple (M(_1,0,Ts, N), M_1,¢,v) is an object in ¥(X). In this way, we get
a functor

F: MHM?, (X x C.) — 9(X).

PROPOSITION 2.14 ([24, Theorem 3.5]). — The functor F induces an
equivalence of categories.

In  particular, we can reconstruct M  from the tuple

((’(/)ZM7T87N)’ ¢z,1./\/l,can,var).

Remark 2.15. — As stated in Remark 2.4, we can also consider mon-
odromic mixed Hodge modules on X x C%. Then, we have a similar state-
ment to Proposition 2.11 and Proposition 2.14 for a monodromic mixed
Hodge modules M on X x C% (see [24]). In this case, M is decomposed as

M= M,

BER

where M# is defined as in the case of that on X x C., and for a € (—1,0]
and k € Z we have

MOtR = 2R M
Moreover, as a corresponding assertion to Lemma 2.13, we have

F.M= @ FFr.me.

a€e(—1,0]
kezZ

TOME 0 (0), FASCICULE 0



12 Takahiro SAITO
2.3. Example: normal crossing type

Let us consider monodromic D-modules on F = X x C™ with a stronger
condition. Let (z1,...,2,) be the standard coordinates of C™ and 7 the
projection X x C* — X.

DEFINITION 2.16. — A D-module M on X x C™ is of normal crossing
type if for any section m € m,M and 1 < i < n there exists a polynomial
b(u) € Clu] such that b(z;0,,)m = 0. In other words, for any 1 <i < n, M

is monodromic on (X x C,, x...C,, , xC,, , x---C, ) x C,,, where we

-1 Zi+1
regard (X xC,, x---C,,_, xC,,,, x---C,) x C;, as a rank one vector
bundle over X x C,, x ---C,,_, xC,,, x---C, .

Remark 2.17. — Let M be a regular holonomic D-module M of normal
crossing type on C™ and K be the perverse sheaf corresponding to M. For
1<k<nand 1 <iy,...,i; <n, we set

Vieoin = | () {2 =0} |\ U f{e=0}]ccm
1<s<k $@{i1,nnrin}
Then, the restriction of each cohomology of K to Vi, . .,
C" \ Uicscntzs = 0} is locally constant by Remark 2.5. Conversely, if
K has this property for a regular holonomic D-module on C", M is of
normal crossing type.

or

For B = (B1,...,08n) € R"™ we set

MP = ﬁ U(Ker((zi(’“)zi — B M — . M).

i=11>0

Then, we can regard M# as a Dx-module.

As mentioned, a D-module M of normal crossing type is also a mon-
odromic D-module with respect to any z;-direction. Therefore, we can ap-
ply the results in Subsection 2.2 inductively. For example, we have the
following.

LEMMA 2.18. — M is of normal crossing type if and only if M is de-

composed as
M= M.
BER™

For v € R, MY = ;5 Ker(€p — B)! C m.M is a Dx-module (see Re-
mark 2.7), where &g = Y| 2;0.,. Moreover, it is decomposed as follows.

ANNALES DE L’INSTITUT FOURIER



MONODROMIC MIXED HODGE MODULE 13

LEMMA 2.19. — We have

MY = @ MP

BER™
Bit+-+Bn=2

as a Dx-module.

Proof. — Let m be a section of M?# and [y an integer large enough so
that (2;0,, — B;)'om = 0 for any 1 < i < n. We set v := 81 + -+ 83,. Then
we have

(Ep —7)"om =0,
and thus obtain
(2.7) MP c M.

Conversely, by Lemma 2.18, m € M” is decomposed as m = mq +- - - +mg,
where m(# 0) € MPs and B, # B, for s # t. By (2.7) and the decompo-

sition (2.2), we have the converse inclusion M7 C @  geg»  MP. This

o . . Bt tBn=r
implies the desired assertion. O

Remark 2.20. — For 8 = (f1,...,0,) € R" and 1 < i < n, it is easy to
see that
2z MP c MPtei | and
d.,MP c MP~e

where e; = (0,...,0,1,0,...,0). Moreover, in a similar way to the proof of
Proposition 1.10 of [24], we can see that the morphism
zin MP — MPTe
(resp. 9., : MP — MP~e)
is an isomorphism if 8; # —1 (resp. B8; # 0). Therefore, the D-module M
is determined by the following data:
(i) The family of Dx-modules {M*}qe[—1,0pn-

(ii) The nilpotent endomorphisms z;0,, — a;: M* — M for o €
[—1,0]" and 1 < i < n.

(iii) For 1 < i < n and @ € [-1,0]™ with a; = —1 (resp. a; = 0), the
morphism z;: M* — M*t€ (resp. 9,,: M* — M%) such that
the composition 0, 0 z;: M* — M® (resp. z;00,,: M* — M) is
equal to z;0,, + 1 (resp. #;0,,) defined in (ii).

We assume that M is coherent. Let V2 M be the Kashiwara—Malgrange
filtration of M along z;. Then, by Proposition 2.10, we have the following.
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LEMMA 2.21. — For a coherent D-module M of normal crossing type,
the Kashiwara—Malgrange filtration of M along z; exists and we have
VM = P MP.
B=(B1,...,Bn)ER"
Bi=y

In particular, for a € (—1,0] the a-nearby cycle ., o M = gr{; M (resp.
the unipotent vanishing cycle ¢, 1M = gr‘_,j‘ M) of M can be described as

Uiy aM = b M
IB:(BI ,-<lﬁn)€Rn
(resp. o, 2 M= P MP).

B=(B1,....8n)ER™

The previous lemma implies that the nearby cycle 9, M and the van-
ishing cycle ¢, 1M is again a D-module of normal crossing type on X x
C., x---C,,_, x{0} xC.,,, x---C,, . This allows us to prove the following
proposition.

PROPOSITION 2.22. — Let M be a mixed Hodge module on X x C"
whose underlying D-module M is of normal crossing type. Then, the Hodge
filtration F, M is decomposed as

F,M = @ F,MP,
BER"
where F,MP := F,M N MP and the Ox|z1,...,z,]-module structure of
the right hand side is defined by the morphisms z;: F,MP — F,MP*e for
B eR™

Proof. — The proof is by induction on n. The assertion for n = 1 is
Proposition 2.11. Suppose that the statement is proved for n = ng—1 (ng >
2) and consider the case where n = ng. We set M/ = Uis1 Ker(2,0, —
B) C m.M. Since M is monodromic with respect to the z,-direction on
(X x C" 1) x C,,, we have

(2.8) M= ML, and
BER

(2.9) M= F,ME,
BER

where Fprn = FpMﬂan. Note that for if 3 is in (=1, 0] (resp. 8 is —1),
we have MP =, sM (resp. M? = ¢. 1M). As mentioned above, the
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a-nearby cycle (o € (—1,0]) and the unipotent vanishing cycle of M are
of normal crossing type. Moreover, they are a direct summand of a mixed
Hodge module and their Hodge filtrations are Fe Mg and FeMZ up to
shift. Therefore, by the induction hypothesis, we have

F,M2 = & F,MP and,
ﬁ:(ﬁl,...,ﬁn)ERn
Bn:a
F,M; ' = &y F,MP.
B=(B1,....8n)ER"
Bn:_l

By (2.9) and the strict specializability along z, = 0, we obtain the desired
assertion. O

In particular, combining it with Lemma 2.19, we have the following.
COROLLARY 2.23. — In the situation of Proposition 2.22, we have

F,M = F,M", and
~ER
M= & FM
Pyt
Butrr =1

In the next section, we will generalize this assertion to the case for gen-
eral monodromic mixed Hodge modules, which is not necessarily of normal
crossing type.

Remark 2.24. — For a mixed Hodge module of normal crossing type M
and B8 = (f1,...,0n) € (—1,0]", it is easy to see

Mﬁ = wzlvﬂl e wznaﬁnM'

Moreover, for example, for 8 = (=1, 82,...,3,) € {—1} x (=1,0]""1, we
have

MP = ¢ 1%z, Yz 50 M.

A similar statement holds for any 8 € [—1,0]". Then, we can generalize
the gluing: Proposition 2.14 to the normal crossing case. In particular, the
mixed Hodge module of normal crossing type M can be reconstructed from
the family of mixed Hodge modules {V¥;--- ¥, M}y, .
morphisms between them, where ¥; is ., , (o € (—1,0]) or ¢, 1.

.,¥,) with some
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3. The Hodge filtration of monodromic mixed Hodge
modules

Let M = (M, FoM, K,W,K) be a monodromic mixed Hodge module on
a vector bundle 7: F — X on a smooth algebraic variety X. By Proposi-
tion 2.6, we have the decomposition

M:@Mﬁ.

BER
For p € Z and 8 € R, we define an O x-submodule of M? as
F,MP = m (F,M) N MP(C 7. M).
Then, the direct sum Psep F,MP? is a m,Og-submodule of Dser M?B.
Therefore, by Lemma 2.1, we can also regard GB,BE]R FpMﬁ as an Op-

submodule of M. The purpose of this section is to show the following
theorem.

THEOREM 3.1. — For p € Z, the Hodge filtration F,, M is decomposed
as
F,M =P F,M".
BER
Remark 3.2. — This result was shown in a different way in a recent
preprint [4] by Chen—Dirks.

Since it is enough to show this theorem locally on X, we may assume
that E is a trivial bundle X x C™ and X is affine (therefore, we identify M
with the module of its global sections). Let (21, ..., 2z,) be the coordinates
of C". We set D1 :={2; =0} C X xC" and V; .= E\ D;.

Let us recall some basic properties of the localization M[«D;] and the
dual localization M[!D;] of a mixed Hodge module M. For details,
see [1, 8, 20]. We denote by M[xD;] (resp. M[!D;]) the underlying D-
module of M[+D1] (resp. M[!D1]). The stupid localization M (*D;) (resp.
(M,FeM)(xD1)) along D; of a D-module M (resp. a filtered D-module
(M, FyM)) is the Dg(xD1)(= Dp ®c|z,] C[zi"])-module (resp. the filtered
Dpg(xD;)-module) defined as

M @C[21] (C[Zfd}
(resp. (M ®c[2y) Clz'), FoM ®Cz] ClzE)).
Let V2 M be a Kashiwara—Malgrange filtration of a D-module M along 21.

PROPOSITION 3.3 (see [1, 8, 20]). — Let M= (M, F M, K,W,M) be a
mixed Hodge module on E = X x C". Then, we have the following.
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(i) The underlying D-modules are as follows:
M[*D1] = M(+Dy) = M ®c[s,) Clz{"], and
M[!D1] = D(D(M)(+D1)) = Dg @vo p, Vi, ' M,

Z1

where V! D is the V-filtration of Dg along z1 and D is the duality
functor between the category of mixed Hodge modules.

(ii) We have an (canonical) isomorphism D(M([xD;]) ~ (DM)[!Dy].

(iii) There is natural morphisms M — M([xDq] and M[!D;] — M
whose restriction to V; are isomorphisms. In particular, the stupid
localizations of the underlying filtered D-modules of M[«D;] and
M(!D4] are the stupid localization (M, FeM)(xD1) of the underly-
ing filtered D-module of M, and we have

V> 'M(xDy) =V, T'M[\Dy] = V. 7' M.
(iv) We have
V2 'M[xD1] = 2 'V M, and
E,VZ2'M[xDy] = 27 'E,V2OM  (p € Z).

(v) The Hodge filtrations are described as follows:

Za V> M, and
k>0

M[\Dy)) =Y 0F @ Fp iV, ' M,
k>0

where
WVZ2TIM =F,  MNVZ"'M and F,_, V., 'M = F,_,M NV, M.

With (iv), in particular, the filtered D-modules of M/][xD]
and M([!Dy] are determined only by the stupid localization
(M, FeM)(*Dy).

The following is a simple consequence of (i) of Proposition 3.3

LEMMA 3.4. — If M is monodromic, then M (xD;) and M|[!D] are also
monodromic.

Let p: C" — C" be the blowing up of C™ at the origin. Remark that
Cris a subvariety of C™ x P! and p is the projection to C". We write
q: C" — P! the projection to P*~1. Let [y;: ...: y,] be the homoge-
neous coordinates of P*~!. Define U; as a local chart {y; # 0} C P"~! of
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18 Takahiro SAITO

P"~1. We use the same symbol (ya,...,y,) for the coordinates of Uy, i.e.
(y2,...,yn) € Uy is the point [1: y2: ...: y,] € P"~L. Then, we have
(3.1) (C: X U1 ;> q_l(Ul) ;> Vl

((C: x U 3 (Sayla"',yn) '—>(873y17'~'78yn) € Vl)

The following simple lemma reduces a problem for a monodromic D-
module on a vector bundle to that for a monodromic D-module on a line
bundle.

LEMMA 3.5. — The isomorphism (3.1) sends the vector field s0s on
C: x Uy to the vector field € = Y| 2;0,, on Vi.

Proof. — Let G == (g1, ..., gn) be the morphism (3.1). Then, (3.1) sends
the vector filed sdy to

n

(3.2) 21y (Ogr/dso G0,

Since

we have

(3.2) = 210, + 21 _(2k/21)0x,
k=2
—¢. =

We write p; for the induced isomorphism ¢=*(U;) = V4 by p and HLp}
(the 0-th cohomology of) the pullback functor of the category of D-modules.
Since p1: ¢ 1(Uy) = V; is an isomorphism, H®LpjM; is just the pullback
piM; = Oq—l(Ul) ®pf10v1 pl_lMl as an O-module for a D-module M; on
V1. We just write p} My for H Lp; M;. Note that any section m € p} M can
be expressed as m = 1 ® m’ for some m’ € M;. The morphisms p and p;
induces morphisms X x C" — X xC" and X x ¢ Y(U1) = X x V4, denoted
by the same symbols p and p;. For a monodromic D-module M7 on X x V7,
we set ]\71 = p*M;. Lemma 3.5 immediately deduces the following.

COROLLARY 3.6. — A D-module M; on X X Vi is monodromic (in
the sense of Remark 2.4) if and only if the D-module My(= p{M;) on
X xq 1 (Uy)(~ X xC: x Uy) is monodromic with respect to the s-direction.
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By this corollary, we have a decomposition

—~ —~ 8
(3.3) My =M,
BER

where J\Zﬁ = Uso(Ker((s9s — B M, — ]\Z) We can regard J\Zﬁ as a
Dx xv,-module (see Remark 2.7). Recall that we also have

BER

where Mlﬁ = Uso(Ker((€ — B)': My — M;y). Let us see the raletionship
between (3.3) and (3.4).

LEMMA 3.7. — For 8 € R we have
—~ B _ _
Ml :1®p11(M{3)(: OX><U1®p11(MiB))7
as Dx xy,-modules.

Proof. — By Lemma 3.5, for a section m € M; and 1®m € J\Z, we have
s0s(1@m) =1® (Em).

— —~ 5
Therefore, if the section m is in Mlﬁ, the section 1 ® m € My is in My .

Hence, we have 1®pf1(M1ﬁ) C ]\Zﬂ. Let us show the reverse inclusion. Any
section m € M can be expressed as m = Y2 (1 ®@m;) with m; € M for
some (3; € R by (3.4). Assume that m is in ]\Z'B. Since 1 ® m; is in J\Zﬂi as
already shown, the decomposition (3.3) implies that > 5 ,5(1 ® T;LZ) =0.
Therefore, we have m = 5 _;(1 ® m;) and we thus obtain M; C 1®
Pt (M) O

For a monodromic mixed Hodge module M; on X x Vi, we consider the
pullback H%pi M1 of M; by p; as a mixed Hodge module, whose under-
lying D-module is pjM;. We set My := Hpi M, and (My, FyM;) is the
underlying filtered D-module on X x ¢~1(U;). Since p; is an isomorphism,
the Hodge filtration Fy M, is just the pullback of the Hodge filtration Fy M}
as that of Ox xv,-modules:

(3.5) FyMy = Oxxq-1(th) =10y 11 py L E,M;.
In order to prove Proposition 3.9 below, we need the following
LEMMA 3.8. — We have

(3.6) B,y 0 M = 10 pr ' (FyMy 0 M),
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Proof. — By Lemma 3.7 and (3.5), the right hand side of (3.6) is con-
tained in the left hand side of (3.6). Let m be a section in the left hand side.
By (3.5), we can write m = 1®@m/ for some m’ € F,M;. Let m' = ZZOZO m
be the decomposition, where m} € MP: for some B; € R with 8; # Bj
(i # j). By Lemma 3.7, 1 ® m} is in ]\Zﬂ Since m € ]\Aflﬁ, we have
1®@m} =0,1ie m,=0if 8; # 5. Hence, m' € Mlﬁ and we thus conclude
that m is in the right hand side of (3.6). O

Combining Corollary 3.6 and Proposition 2.11, we have the following.

PROPOSITION 3.9. — For a monodromic mixed Hodge module M; on
X x Vi, we have a decomposition of the Hodge filtration as
(3.7) F,My = @ F, MY,
BER

where (M1, Fo M) is the underlying filtered D-module of M; and F,M? =
F,M, N M.

Proof. — By Corollary 3.6, M; is monodromic on X x ¢ 1 (Uy) ~ X x
C% x Uy with respect to the s-direction. Therefore, by Proposition 2.11, we
have

~ —~ 8
(3.8) F,My, = @ F, M,
BER

where FPJ\ZB = Fp]\Z N ]\Zﬂ. Moreover, by Lemma 3.8, we have

F,M; = @ 1@ pyH(F,My 0 MY)
BER
(3.9)
=1®p " | D FM 0 M
BER
Note that ®BER F,M; N Mlﬁ is an Ox xy,-submodule of M;. Then, since
p1 is an isomorphism, from the equalities (3.5) and (3.9) we get the desired
equality. O
Let M = (M,F M, K,W,M) be a monodromic mixed Hodge module
on X x C". We set My := M|xxv,. Its underlying filtered D-module is
(My, FoMy) == (M, FoM)|x xv; -

COROLLARY 3.10. — Forp € Z, Fsz?_lM is decomposed with respect
to the decomposition M = P p MP” | i.e. we have

RV "M =P RV MM,
BER
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Proof. — By the strict specializability along z; of the filtered D-module
(M,FeM) (Definition 2.12), we have (see [22, Proposition 3.2.2] or [25,
Exercise 11.1))

(3.10) F, V7'M = j (F,M) NV, ' M,
where j is the inclusion X x V; < X x C™ and the intersection in the right
hand side is taken in j,M; = M[zlﬂ] By Proposition 3.9, we have
(3.11) F,My = P F, M7
BER

By Lemma 3.11 below, we have

‘/Zfilj*Ml m (]*Ml)ﬁ = V>71j*M1 mj*(Mlﬁ)’

Z1

where (j, M;)? is defined similarly to (2.1) and j, (M/) is a C-submodule of
J« M, generated by {j.m € j.M; | m € Mlﬂ} Therefore, since V>~ 1j, My =
V7'M, we have

VoM N MP = V2 M N G (M),

Hence, we have

(3.12) Vo TIM N Gu(FMY) = V2T M 0 F,MP.
Combining (3.10), (3.11) and (3.12), we obtain
BVZ'M =@ F M0V MM O
BER

The following was used in the proof of Corollary 3.10.

LEMMA 3.11. — We have
(3.13) V2T My 0 (M) = VT My 0 G (M),

Proof. — It is obvious that the left hand side contained in the right hand
side. For a section m in the right hand side of (3.13), since V>~ 1j.M; =
V7'M, m is a section of M with ((£ — 8)'m)|xxv, = 0 for some [ > 0.
Therefore, (£ — 3)'m is a section of sz’l J« M7 whose support is contained
in z; = 0. Since the multiplication by z; on szflj* Mj is injective, we have
(& —B)m =0, ie misin (j.M;)P. O

As mentioned, if M is monodromic, the localizations M[xD;] and M|[! D]
are also monodromic. Corollary 3.10 deduces the following.

COROLLARY 3.12. — If M ~ M[+D;] or M ~ M][!Dy], the assertion
stated in Theorem 3.1 is true.
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Proof. — Suppose that M = M[+D;]. Then, by Corollary 3.10, FpVZ%OM
is decomposed as F,VZ'M = Dser F,VZM n MP. Hence, by (iv) of
Proposition 3.3, F,V.2 "' M[xD1] is also decomposed. Since

F,M =Y 0¥F, V2 'M
k>0
by (v) of Proposition 3.3, we thus obtain the decomposition of F},M in this
case. The case of M = M[!D;] can be proved in the same way. O

Let us recall the Beilinson’s maximal extension. See [1, 8, 10, 11, 20] for
details. We consider the vector space I¢** := Ce, @ - - - @ Cey, with the basis
€ey... e, for e = 0,1 and k € Z3;. Moreover, we consider the nilpotent
endomorphism N of I®* so that Ne; = e;j_1 (with e_; = 0). For a D-
module M on X x C"™ with the assumption M = M (xD;), we consider
the new D-module MF := M ®¢ I=* on X x C" so that 210, (m®e;) =
210, mQ@e;+m®e;_1 and 0,,(m®e;) = 0,,mR®e; (s # 1). The morphism
IOk — [Yk (e; — ej, eg = 0) induces the morphism M%F — MLE,
Therefore, we can consider the morphism M%*[!D;] — MYF[xD;] as the
composition of the morphisms M%*[1D;] — M%¥[«D;] and M%*[xD;] —
MUY*[¥D;]. Then, the kernel of the natural morphism

M*[\Dy] — M"*[«D;]

does not depend on sufficiently large & > 1, i.e. the inductive limit
lim Ker(MOF[!D;] — MY*[xD]) exists. So, we define

2, M = lim Ker(M**[\D,] — M"*[+D1)).
k

We can generalize this construction to mixed Hodge modules; for a mixed
Hodge module M on X x C", we can define a mixed Hodge module
M on X x C", a morphism M%*[ID;] = M¥*[xD;](—1) and Z,, M =
lim, Ker(M%*[!D;] — M*[xD;]), which are compatible with the corre-
sponding objects for the underlying D-module of M. Note that the fil-
tered D-module (E,, M, Fo=,, M) depends only on the stupid localization
(M, FeM)(*D1).

PROPOSITION 3.13 (see loc. cit.). — Let M = (M, FeM,K, W M) is a
mixed Hodge module on E = X x C". Then, we have the following.

(i) There are natural morphisms between mixed Hodge modules

a: P,  M— =, M, and
b: 2, M — ¢, 1 M(-1).
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(ii) Consider the complex:
(3.14) Yoy aM — E M B Gy 1M — thy, 1 M(—1),

where the first morphisms is a & can and the second morphism is
b+ var. Then, the cohomology in the middle degree of this complex
at 2, M @ ¢, 1M is isomorphic to M.

(iii) Let Glue(X x C", D;) be the category of tuples (M', M" c,v),
where M’ is a mixed Hodge module on X x V; which is the restric-
tion of a mixed Hodge module on X x C", M" is a mixed Hodge
module on X x Dy and ¢ (resp. v) is a morphism 1, ;M — M"
(resp. M" — 4, 1 M'(=1)) such that the endomorphism v o ¢
of 1, 1M’ is the nilpotent endomorphism of ¢,, 1 M’. Then, the
functor M — (M|xxv,, ¢z 1M, can, var) induces an equivalence
of categories between the category of mixed Hodge modules and
Glue(X x C™, Dy).

If M is monodromic, it is easy to see that if M** is also monodromic.
Hence, M®*[xD;] and M®*[!D;] are also monodromic. Therefore, =,, M

is also monodromic. Then, we have the following.

COROLLARY 3.14. — For a monodromic mixed Hodge module M on
X x C", the Hodge filtration Fo=,, M is decomposed as

FpE., M =@ F,E., Mn(E., M)
BER
Proof. — By Corollary 3.12, F, M**[!D;] and F,M**[xD;] are decom-
posed. Therefore, F,,=., M, i.e. the kernel of the morphism F,M*[\D;] —
FpMsvk[*Dl} for sufficiently large k& > 1, is also decomposed. O

For the proof of Theorem 3.1, another lemma is needed.

LEMMA 3.15. — Let M be a monodromic D-module on X x C" and
V> M the Kashiwara—Malgrange filtration along z; = 0. For v € R and a
section m € V) M, let m be a decomposition m = ZZ(’:l my, where my, is
in MPx for some B, € R with the condition Bk, # Pr, for k1 # ky. Then,
we have my € V) M for any 1 <k < ko.

Proof. — For each 1 < k < kg, let 6 € R be the biggest number such
that my, € VZ‘SI’“M. We may assume that d; < g < -+ < dg,. In particular,
we have my € VZ‘SllM for any k. If 67 > -, the claim is obvious, so we
suppose &; < 7. For sufficiently large I; > 0, (210,, — 61)"*my, is in Vg‘slM
for any k. On the other hand, since my, is in MP*, we can take sufficiently
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large I > 0 such that (€ — B;)2my, = 0 for any k. Set & = 2122 2i0y,.
Then, we have

2
3 Cii(2102 — 61 (E = (B — 61))= Py = 0,
7=0

where (), ; are the binomial coefficients. Therefore, for any £, there exists
a polynomial Hy in 2194, ..., 2,0, such that

(& = (B — 61))"2my, = Hi(210z, — 61)my.
Hence, there exists a polynomial Hj, in 2101, ..., 2,0, such that

(€ = (Br — 61) M2y, = Hy(210, — 61)"vmy,.

Therefore, the section [my] € gr“;}z1 M is in (glr“;}z1 M)Pe=91 where we set

(gror, M) = | ) Ker(€ — (B — 61))'(C grft M).
I>1
Moreover, since §; < -y, we have

ko
(3.15) > ] =[m] =0 (in gyt M).

i=1

However, it is easy to check (in the same way as in the proof of Proposi-
tion 2.6) that (grf}ZIM)ﬁ N (gr‘sVIZIM)ﬁl =0 for § # [’ (this is true even if
we do not yet know that gr“zl M is not monodromic). Combining this fact

with (3.15), we have [my] = 0 in gr“;}ZlM. However, this contradicts with
[m4] # 0. This completes the proof. O

COROLLARY 3.16. — For a monodromic D-module on X x C" and a €
(—1,0], the a-nearby cycle 1, oM = gr{'}z1 M and the unipotent vanishing
cycle ¢, 1 M= gr(,zl1 M are also monodromic on X xC"~1(= X x{z; =0} x
C,, x---xC,,).

Proof. — For a € [—1,0], let [m] € gry, M be a section represented by
a section m € V.2 M. By the previous lemma, we can decompose m as

mZE mg,

k=1

where my, is in MP* for some B € R and VM. Therefore, it is enough to
see [my] is killed by some power of (£’ — ) for some ¢ € R. In the same way
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as in the proof of Lemma 3.15, there is an integer [ > 0 and a polynomial
Hy in 2101, ..., 2,0, such that

(& = (Br — a)'my, = H}(210., — a)my,.

Since [my] is killed by some power of z10,, — «, this implies that [my] is in
(gr‘{‘/z1 M)'@k_a, and the proof is complete. O

Proof of Theorem 3.1. — If n = 1, the assertion is true by Proposi-
tion 2.11. We use the induction on n. Consider the case n > 2. By (ii) of
Proposition 3.13, M is isomorphic to the cohomology in the middle degree
of the complex (3.14). By Corollary 3.14 and Corollary 3.16 with the in-
ductive assumption, all the terms of (3.14) are monodromic and the Hodge
filtrations are decomposed with respect to the decomposition of the under-
lying D-modules. Hence, so is its cohomology in the middle degree. This
completes the proof. O

4. The Fourier—Laplace transform of a monodromic mixed
Hodge module

In this section, we consider the Fourier—Laplace transform of a mon-
odromic mixed Hodge module.

4.1. The Fourier—Laplace transform of a D-module

First, let us recall the notion of the Fourier—Laplace transform of a D-
module. We refer to [2]. Let X be a smooth algebraic variety, 7: E — X
an algebraic vector bundle on X, 7¥: EY — X the dual vector bundle of F
and ¢: E xx EV — C the paring between E and EY. Moreover, let &% be
the integrable connection (Ogx, gv,d — dp); we regard it as a D-module.
We denote by p, ¢ the projections E xx EV — E and E xx EV — EV.
For a morphism f: Y — Z between the manifolds Y and Z and a complex
of D-modules Ny (resp. No) on Y (resp. Z), let fi Ny be the pushforward
of Ny (which is denoted by ff Ny in [7]), and fTNy the pullback of Ny,
which is also expressed as Lf*Ny[dimY — dim Z]. These are objects in the
derived categories of D-modules. Recall that f; (resp. fT) corresponds to
Rf. (resp. f') under the Riemann-Hilbert correspondence.

DEFINITION 4.1. — For a D-module M on E, we define the D-module
on EV called the Fourier-Laplace transform M” as

M" = HOqT(p*M R0, | pv E7%).
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It is known that (- )" defines an exact functor.

Remark 4.2. — Since p is a projection, we have H'pfM = 0 (j # —n)
and

H™"p'M = HLp*M = p*M(= Opx  pv ®p-10, p_ " M).

Remark 4.3. — For a complex of D-modules M®, we also define the
Fourier-Laplace transform of (M*)" as

(M*) = (" M* €0, . 677),

which is an object in the derived category of D-modules. Since for a D-
module (not complex) M the 0-th cohomology is the only non-trivial coho-
mology of g;(p*M Q0 pv &%), therefore this definition is compatible
with Definition 4.1, as identifying a D-module with the complex of D-
modules concentrated in degree 0.

Let us consider the projective version of the above definition. Define
E (resp. EV) as the projective compactification of E (resp. EV) i.e. the
projective bundle of the direct sum of E (resp. EY) and the trivial bundle
over X. We use the same symbol 7 and 7V for their projection to X.
Moreover, we denote by j: E < E (resp. jV: BV — E,‘VV) the inclusion of F
(resp. EV) to E (EV) and Dy (resp. DY.) the divisor E\ E (resp. EV\ EV).
We use the same symbol Do, (resp. DY) for the divisor Do, x x EV (resp
Exx DY)of E xx 1 EV. Let p (resp. q) be the projection E Xx EV > E
(resp. E x x EV = EV) and ¢ the rational function on E x x EV defined as
the pairing of E and EV, whose pole divisor is Dy, U DY, (we use the same
symbol as p: E xx EY — C). Let &% be the meromorphic connection

(O, .57 (Do UDY.), d — dgp).

DEFINITION 4.4. — For a D-module N on E, we define the Fourier—
Laplace transform N as

N" = HG(p*N @ £7%).
Since our D-modules are algebraic, N”* is expressed as follows.
LEMMA 4.5. — For a D-module N on E, we have
N" =5/ (N[g)".
Proof. — By the definition of &~ we have
PIN®E™? = (j x V)" (N|p) © E).
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Therefore, we obtain
N" = HOGi (5 % 3Y) (0" (N|p) ® £7%).)
~ j Hoq(p" (N|g) © 67%)
=Jj. (N|g)". O
Let us consider the case when X is affine and F is trivial, i.e. E ~ X xC™.
Let (z1,...,2,) be the standard coordinates of C" (we sometimes write C?
to emphasize the coordinates), C¢* the dual vector space of CZ, (C1,. .-, (n)
the dual coordinates of (C'g. Then, we have EV ~ X x (CEL. Remark that
we can identify a D-module M with the I'(E; Dg)-module I'(E; M). Recall
that since ¢ is a projection, the pushforward ¢; is described in terms of

the relative de Rham complex (see [7, Proposition 1.5.28]). The following
is well-known.

LEMMA 4.6.
(i) There is a ring isomorphism I'(EY, Dgv) ~ I'(E; Dg) which sends
P € Dx to the same element P and (; (resp. O¢,) to 0., (resp. —z;).
(ii) For a D-module M on E, the Fourier-Laplace transform M”" is
M as a C-module and its T'(E, Dgv)-module structure is induced

from the original T'(E; Dg)-module structure via the isomorphism

We will introduce a similar statement for R-modules in the next section
(Lemma 5.20). We can prove this lemma in the same way as the proof
written there. We write m” for the section of m” corresponding to m € M.
By this lemma, we have

¢ -m” = (9,m)" and

e, -m" = —(zm)".

i

(4.1)

If we take two trivializations ¢;: E ~ X xC™ (i = 1,2) and a section m €
M, the section m” for the trivialization ¢, (we write (m”); for it) does not
coincide with m” for ¢y (we write (m”)s for it), i.e. “m”” depends on the
choice of the trivialization. However, they are equal up to a multiplicative
factor, i.e. there is a holomorphic function A(x) € I'(X; Ox)(C I'(E; Og))
such that we have

(m")2 = A(z)(m"):.
Therefore, for an Ox-submodule F' of w, M, the Ox-submodule
(4.2) FM={m"en/M" | meF}

of m/ M” does not depend on the choice of the trivialization F ~ X x C".
Hence, the following definition is well-defined.
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DEFINITION 4.7. — For a D-module M on E (E is not necessary trivial)
and an Ox-submodule F of m, M, we define an O x -submodule F" of wy M"
so that for any local trivialization 7=*(U) ~ U x C" (U C X is affine) we
have

(Fw = (Flu)",
where the RHS is the one defined by (4.2).

4.2. The Fourier—Laplace transform of a monodromic mixed
Hodge module

Next, we consider a monodromic D-module M on a (not necessary triv-
ial) vector bundle E. We use the notation defined in the previous subsec-
tion. Recall that M?# is defined as

MP = JKer((€ - p)') € m.M,
1>0

where £ is the Euler vector field on E.

PROPOSITION 4.8. — If M is monodromic, then so is M”. Moreover,
we have
(M"Y = (M0,
as Ox-modules for any 8 € R, where the RHS is defined by Definition 4.7.

Proof. — We may assume X is affine and E is trivial, i.e. E ~ X x C7.
Then, we use the description by Lemma 4.6. Consider a section m” € M”"
for m € MP. We denote by £V the Euler vector field Y 1 | (;0;, on EV.
By (4.1), we have

EVmN = ((—=€ —n)m)".

Therefore, (€Y +n+3)!m" is zero for some [ > 0. This implies the assertion.

O

If M is a holonomic D-module, so is M”. On the other hand, M”" may

not be regular in general even if M is regular since &% is not regular

at infinity. Hence, M” may not be the underlying D-module of a mixed

Hodge module. In general, it is an underlying D-module of a mixed twistor
D-module (see Subsection 5.2). Nevertheless, we have the following.

LEMMA 4.9 (Brylinski [2, Théoréme 7.24]). — If M is monodromic reg-
ular holonomic D-module, so is M”.
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See also [24, Proposition 1.24]. From this lemma, it may be possible to
endow M” with a mixed Hodge module structure. In fact, when E is of
rank 1, we constructed a mixed Hodge module whose underlying D-module
is M” in [24, Subsection 3.7].

LEMMA 4.10 ([24, Subsection 3.7]). — Let M = (M, F M, K, W,K) be
a monodromic mixed Hodge module. Assume that F is of rank 1 and F is
trivialized by an isomorphism E ~ X x C,. Then, we can endow M” with a
natural mixed Hodge module structure, i.e. we can define a good filtration
F,M" of M" and (M",F,M") is the underlying filtered D-module of a
mixed Hodge module M”, with the following property: for 3 € R we have

(4.3) Fp(M") (= F,M" 0 (M")P) = (Fp+1+LﬁJM_’B_1)A,
under the isomorphism (M")? = (M~8=1" (Proposition 4.8).

Let us recall the idea of this result and describe the Hodge filtration
explicitly. Assume that F is of rank 1 and F is trivialized by an isomorphism
E ~ X xC,. Let us consider the object in ¢(X) (defined in Subsection 2.2):

(44) ((¢Z,1M @¢Z,¢OM7 1 @Ts_lﬁ canovarEBN), wz,OM(_l)’ —var, Can)7

where Ty (resp. N) is the semisimple part (resp. ﬁ times the loga-
rithm of the unipotent part) of the monodromy automorphism. By Propo-
sition 2.14, we get a mixed Hodge module which will be denoted by M” on
X x C¢. One can see that the underlying D-module of M” is M”". We set
MN = (MM FoM?, KN WoK”™). The perverse sheaf K" is the Fourier—
Sato transform of K. In the setting of Lemma 4.10, let M = ®BGR MP
and M" = @BE]R(MA)B be the decompositions. By Proposition 2.11, we
have FoM = @ 4cp F,M” and F,M" = Dser F,(M")5. By [24, Proposi-
tion 3.25], we have (4.3) for § € R.

Remark 4.11. — In [24, Proposition 3.25], only (4.3) for 8 € [—1,0] is
stated. However, it is easy to verify that (4.3) holds for any § € R by the
strict specializability.

Remark 4.12. — There are other possible mixed Hodge modules whose
underlying D-modules are M”. In this paper, we always take the one which
corresponds to (4.4) so that it coincides with the irregular Hodge filtration
(see Theorem 5.40).

Remark 4.13. — If we take two trivializations p;: E ~ X xC, (i = 1,2),
we obtain two mixed Hodge modules (H%(¢;);M)" by Lemma 4.10 and get
two Hodge module structures on M” = HO(*g;)T(H®(p;)s M)" (i = 1,2).
However, one can see that these coincide by using Remark 4.16 below. As a
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consequence, we can generalize Lemma 4.10 to the case of a (not necessary
trivial) line bundle.

Remark 4.14. — The correspondence M +— M” defines an exact functor
between the categories of mixed Hodge modules on the line bundles E and
EV. Moreover, this induces a functor between their derived categories.

We will generalize Lemma 4.10 to the case of a (not necessary trivial) line
bundle. To that end, we will express the Fourier-Laplace transformation
on a vector bundle of any rank in terms of the Fourier-Laplace transform
on some vector bundle of rank 1 with some functors between the categories
of D-modules. Note that we want to take those that fit the theory of mixed
Hodge modules as those functors. Therefore, for example, as a pullback
functor for a morphism f, we use f! not f* in the following.

We will use the following lemmas.

LEMMA 4.15 (Brylinski [2, Corollaire 6.7]). — Let E and F be a vector
bundle over X and f: E — F a morphism of vector bundles. We denote by
tf its transpose morphism ' f: FV — EV between the dual vector bundles.
Then, for a D-module M on E there is a natural isomorphism in the derived
category of D-modules

(fiM)" = ("f)' M [nF — ng),
where ng (resp. ng) is the rank of E (resp. F).

Remark 4.16. — Let ¢;: E ~ X x C" (i = 1,2) be two trivializa-
tions of a trivial vector bundle E. Then, ¢; o ¢35 1'is an isomorphism
between vector bundles. The D-module structure of (H°(p;);M)" is de-
scribed by Lemma 4.6. In this case, the D-module (H°(¢1);M)" is isomor-
phic to HO(*(¢1 0 03 )T (HO(p2);M)" through the natural morphism in
Lemma 4.15.

LEMMA 4.17 (Brylinski [2, Corollaire 6.7]). — Let X and Y be smooth
algebraic varieties, f: Y — X a morphism and E a vector bundle over X.
We denote by u (resp. u") the natural morphism from the pullback vector
bundle f*E (resp. f*EY(= (f*E)Y)) of E (resp. EY) by f to E (resp.
EV). Then, for a D-module M on X we have a natural isomorphism in the
derived category of D-modules

(uf M) ~ (u¥)T M.
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Let us consider the vector bundles E xx EY and C x EY over EY. We
define the morphism w between these vector bundles as

(4.5) w:Exx EY —CxEY

(z,¢) — ((2.4),¢),

where z (resp. €) is a section of E (resp. EV) and (z, ¢) is the pairing of z
and ¢. We can regard the projection p: E xx EV — E as the base change
of E by the morphism EY — X:

ExxyEY - F

L

EY X.

Similarly, we can regard the second projection EY xx EY — EV as the
base change of EV by EV — X:

EY xx EY —— EVY

L

EY X.

This morphism EY x x EY — EV is pV. Let ¢ be the inclusion
1 BY ~{1} x EY — CY x EV.
Then, we have the following.

LEMMA 4.18 (Brylinski [2, Proposition 6.11]). — For a D-module M on
FE we have a natural isomorphism

M”" ~ HY(H wi H"pT M)™).
Proof. — In the derived category of D-modules, we have

S(wipt M)ML —n] ~ (') (" M) (by Lemma 4.15)
(4.7) ~ J(tw) (p¥)TM”  (by Lemma 4.17)
~ M".

Note that we have M" ~ H°M”" and p'M ~ H~"p' M|[n]. Therefore, the
j-th cohomology of the complex (wip!M)" ~ (‘w)T(pTM)"n — 1] is 0 for
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j > —n, and hence by (4.7) we have
M" = H'M"
~ H'"F (wipt MON
~ HlﬁH—"(prTM)A
~ YW (HOwi H"pt M) O
By Proposition 4.18, the Fourier-Laplace transformation on a vector
bundle of any rank can always be expressed in terms of the Fourier—Laplace

transform on some vector bundle of rank 1. The following lemma was es-
sentially shown in [2]. For convenience, we present a proof.

LEMMA 4.19 (Brylinski [2]). — If M is monodromic, so is How;H ~"pT M
on C x EV. In particular, (H%wyH "p' M)" is monodromic on CV x EV.

Proof. — It is enough to show the assertion under the assumption that £
is trivial and X is one point: E ~ C™. We express any object in an algebraic
way. Let z = (21, ..., 2,) be the coordinates of C™ and ¢ = ({1, ..., () its
dual coordinates. Note that we have

H™"p'M ~ C[z,¢] ®cjz) M.
We decompose w into
io: ExXE—»Cysx ExEY
(z,¢) — ((2,€),2,¢)
and
Po: Cs x Ex E— Cyx EY
(87 z’ C) '—> (S’ C)'
Then, we have
HOwi H"p' M ~ HO(p,,)+ H®(i,,)+ H "p' M.
Set N := HO(i,)1H "p'M. Then, we can express N as
N ~ ((C[zad ®C[z] M) ®c (C[as]
Let DR¢, xExEv/c, xpv (N) be the relative de Rham complex:
N — Q(%:SXEXEV/(CSXEV QN-—...— QgstxE\//CSxEV ® N’

where chngxEv/ngEv ® N is in degree 0. Then, we can express
HO(p,)+N as

Ho(pw)TN = Ho(pw)*(DRCSxExEV/(CSxEV (N))a
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i.e. the cokernel of the morphism

n—1

n
Q¢ xexpvjexpy ON — Q¢ xpxpv/c,xev @N.

Set dz := dz; A --- A dz,. We fix the isomorphism QgstxEv/Cstv ~
Oc.xexpvdz. Then, a section of H (pw)+N can be represented by a sum
of some sections in the form:

dz® f(¢) @m® oL,

where f(¢) € C[¢], m € M and | € Zs,. Note that a section of H%(p,, )1 N
in the form:

dz® 0., (f({)@m®d.)
=dz® f({)®I,;m@ 0, +dz @ (=G) () @m® I
is zero. Therefore, we have
(4.8) [dz® f(Q) @ Em® d)] = [dz ® (2,¢)(f(¢) @m® L)),
in H%(p,,)+N, where € = Y27, 2;0,,. Moreover, since
(805 +1+1)0L = ol 1s,
we have

(505 +1+1)[dz ® f({) @m @ J;] = dz @ (2,{)(f(¢) ®m © §,*)
=dz® f({)@Em® I, (by (4.8)).

By the assumption that M is monodromic, there exists a polynomial b(u) €
C[u] such that b(E)m = 0. Hence, we obtain

b(s0, + 1+ 1[dz® f(¢)@m®dl] = [dz®f) @ b(E)m @ 0]

in H%(p,)sN. We thus conclude that HOwTH_"pTM is monodromic on
C, x EY and this completes the proof. O

H OwTH —npf M is an object in the category of mixed Hodge modules
on a line bundle C x EY over EV, where we use the same symbols HOwT
and H~"p! as the functors between the categories of mixed Hodge mod-
ules. Moreover, by Lemma 4.19, HOwTH_"pTM is a monodromic mixed
Hodge module. Therefore, by Lemma 4.10, we can define a mixed Hodge
module (H%wiH "ptM)" on CV x EY whose underlying D-module is
(Hw; H="p'M)". Applying the functor H':T to it, we obtain a mixed
Hodge module

HYH(H wi H"pt M)
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on EY whose underlying D-module is H.f ((H°wiH "pfM)"). By
Lemma 4.18, we have M ~ HY/((Hw; H="pf M)").

DEFINITION 4.20. — Let p: E — X be a vector bundle whose rank is
greater than or equal to 2 and M a monodromic mixed Hodge module on E.
Then, we define a mixed Hodge module M” whose underlying D-module
is M as
(4.9) M” = HYI(HOwi Hpt M) (D).

Remark 4.21. — The Tate twist “(1)” is needed so that Theorem 5.40
below holds.

It is not easy to compute the Hodge filtration of M” directly from the
definition because the pushforward of the mixed Hodge module is com-
plicated object in general. However, in the next section, we will compare
the Hodge filtration FyM” with the irregular Hodge filtration (see The-
orem 5.40), and by virtue of it, we will get a concrete description of the
Hodge filtration of M” (Corollary 5.41).

5. Irregular Hodge filtrations
5.1. Irregular Hodge filtrations

As mentioned in the previous section, the exponentially twisted module
&%, in particular the Fourier—Laplace transform of a regular holonomic
D-module, is not always regular, and the Fourier—Laplace transform is not
always equipped with any mixed Hodge module structure since the un-
derlying D-module of a mixed Hodge module is regular. Nevertheless, we
endowed a natural mixed Hodge module structure on the Fourier—Laplace
transform of the underlying D-module of a monodromic mixed Hodge mod-
ule (Lemma 4.10 and Definition 4.20). On the other hand, Esnault—Sabbah—
Yu [6], Sabbah—Yu [21] defined a natural filtration called the irregular
Hodge filtration on the exponentially twisted module, in particular the
Fourier—Laplace transform of the underlying D-module of a mixed Hodge
module, which are a generalization of the filtration on the twisted de Rham
cohomologies defined by Deligne [5], Yu [27] and Sabbah [18]. Moreover,
Sabbah [19] established the category of irregular Hodge modules as a full
subcategory of integrable mixed twistor D-modules to handle such filtra-
tions in more functorial way like the theory of mixed Hodge module. In
this section, we will review the irregular Hodge theory briefly.
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Let us recall the notion of R-modules. For details, see [8, 15, 20]. Let X
be a smooth algebraic variety and py the projection X xCy — X, where Cy
is C with the coordinates A\. Rx denote the sheaf of subalgebras in Dxxc,
generated by Ap3©x over Oxxc,, where O x is the sheaf of vector fields on
X. If we identify py,Ox xc,-modules with Ox ®@¢ C[A]-modules, Rx is the
sheaf of ring associated to the Rees module RpDx = @pEZ F,Dx )\ C
Dx ®c C[]A*] of the filtered ring (Dx, FoDx), where Fy Dy is the order
(with respect to differentials) filtration of Dx. For a local chart (z1,...,2,)
of X, we set 0,, := A0y, which is a section of Rx. Moreover, we denote
by RiX“t the sheaf of subalgebras in Dx ¢, generated by Rx and A20y. A
Ri*-module . is called an integrable Ry-module.

Example 5.1. — Let (M, FoM) be a filtered D-module on X. We set

RpM =Y F,MX C M ®C[\*!].
PEZ
Then, RpM is an Rx-module. An Rx-module is called strict if it has no
C[\]-torsion. RpM is strict. Moreover, RpM has a natural RZ*-module
structure, i.e. Rp M is an integrable Rx-module. Remark that we have

RpM/(A\—1)RpM ~ M.

We can generalize the thoery of D-modules to the theory of R-modules.
For example, we can define the 6-operations, the Kashiwara—Malgrange fil-
trations, the nearby-vanishing functors, localizations and Beilinson’s gluing,
even for R-modules, which are denoted by the same symbols as in the theory
of D-modules (for example, like f; and f ). In particular, for an Ry-module
A and a divisor D C X, we can define a localization (resp. dual localiza-
tion) . [*D] (resp. .#[\D]) of .# along D, which has the same properties
as described in Proposition 3.3 (see loc. cit.). Remark that .#[«D] is not
equal to the naive localization .#(xD) = M @0y .., Oxxc, (*D) in gen-
eral. If .# is the Rees module RpM of a filtered D-module (M, Fe M) (see
Example 5.1), RpM[*D] (resp. RpM|[!D]) coincides with the Rees mod-
ule of the filtered D-module (M[«D], Fe M [+«D]) (resp. (M[!D], FeM|[!D])).
Moreover, the strict (Q or R-)specializability explained in Definition 2.12
can also be generalized for R-modules. Moreover, we have the notion of
holonomicity for R-modules.

The category MTMgOd(X ;Q) of integrable mixed twistor D-modules
with good Q-structures, introduced by Mochizuki [8], contains the cate-
gory MHM(X) of mixed Hodge modules as a full subcategory, which is
a generalization of the category of pure twistor D-modules introduced by
Sabbah [15] and the category of mixed twistor structures introduced by
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Simpson [26]. Moreover, Sabbah [19] defined an abelian full subcategory
IrrMHM(X; Q), called the category of irregular mixed Hodge modues (with
Q-structures), of MTM™ | (X; Q) which contains MHM(X). We can write

good

MHM(X) C IrMHM(X; Q) ¢ MTM™ (X Q).

good

We will explain them in a little more detail.

A mixed twistor D-module 7 € MTMigIgtod(X ;Q) is a pair of Rt
modules .41, #5, a sesqui-linear pairing C' of .#; and .#5 and a weight
filtration with a Q-structure satisfying some conditions. For a mixed Hodge
module M = (M, FeM, K, W,K), we can construct a natural mixed twistor
D-module J = (M, #,C) € MTM}Y, 1(X;Q) such that .# = RpM
(see [8, Proposition 13.5.4]), and this construction defines the inclusion
MHM(X) C MTMigI(’fod(X ;Q) above (i.e. a fully faithful exact functor

MHM(X) < MTM™ (X;Q)).

good

Remark 5.2. — In [8], the “underlying R-module” of an algebraic mixed
twistor D-module 7 on X is an R(xH)-module M on a compactification
X of X, where we set H := X \ X (see Definition 14.1.1). However, since
we believe the difference in the terminology will not cause any confusion,
we call A4 == .4 |x the underlying R-module in this paper.

Remark 5.3. — In the following, we do not consider the weight filtrations
and the Q-structures of mixed twistor D-modules. So, we forget them and
treat an object in MTMlg%tOd(X;Q) as a R-triple (A, .#>,C) with some
conditions.

Notation 5.4. — Let Y be another smooth algebraic variety and f: X —
Y be a morphism. In [8, Section 14], the functors

Tfe, Ths DPMTM, 4 (X; Q) — DPMTMY, (Y3 Q)

good good
I 7 DPMTMgoq (Y Q) — DPMTM4(X; Q)

are defined, each of which is compatible with the corresponding functor
in the theory of mixed Hodge modules. For an underlying integrable R-
module .# of a mixed twistor D-module .7 on X, we denote by Zf,.# the
underlying complex of integrable R-modules of 7f,.7. Tfi.#, g* .4 and
1g' ¥ are defined in the same way for an underlying R-module of a mixed
twistor D-module .4 on Y.

Remark 5.5. — For a morphism f: X — Y and an underlying R-module
of a mixed twistor D-module on X, the object Tf..# is not the same “the
D-module theoretical pushforward” f;.# in general, even though the un-
derlying (complex of) D-modules are equal. If f is projective, we have
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Tt = fir# . In the general case, we first take a smooth variety X (resp.
Y) containing X (resp. Y) such that Hx = X \ X (resp. Hy ==Y \ Y)
is a divisor, and a proper morphism f: X — Y which induces f: X — Y.
Moreover, let A be the underlying R-module of a mixed twistor D-module
on X whose restriction .# |x is .. Then, Tf,.# is expressed as

() = Fi(M=Hx])|y-

The same result holds for 7f;.#. Similarly, 7f* is neither “the scheme theo-
retical pullback” f* or “the D-module theoretical pullback” fT in general.

Next, we review about the rescaling of R-modules. We consider a complex
plane C, with the coordinates 7 and set X := X xC, and Xy := X x {7 =
0}. Let j: X xC*xCy — X xC, be the inclusion, ¢: X xC:xCy — X xC,
the projection, and p a morphism

w: X xCixCy — X xCyx  ((z,7,A\) — (x,\/7)).

Then, for an (algebraic) R'Z*-module .# (an object on X x C,) we con-
sider the pullback p*.# = Oxxcx:xcy, ® w4 as O-module and its push-
forward (as an algebaric object) j.u*.# by j. The object j.u*.# is an
Oxxc, xc, ({7 = 0})-module and denoted by 7#. Remark that in the
analytic setting we have to modify the definition a bit not to use the push-
forward by the open embedding j ([19, 2.2.a]), but in the algebraic setting
our definition is enough. The Ox ¢, xc, (*{7 = 0})-module "#Z can be en-
dowed with a natural R (+{7 = 0})-module structure so that for a section
m € ./ and a vector field § on X, we have

A1®m) =7 Am,

)
AM(1@m) =1 \m,
(5.1) 9
0,(1®m)=-1® A\dym, and
AN20\(1®@m) =T @ A2dym.

This R (+{r = 0})-module "# is called the rescaling of .#. We say
that ./ is well-rescalable if the RIf(+{r = 0})-module "# is strictly R-
specializable and regular along 7 = 0 ([19, Definition 2.19]).

The notions of rescaling and well-rescalablity generalize to R-triples
and filtered R-triples ([19, 2.3.d]). Then, the category of irregular mixed
Hodge modules IrrMHM(X; Q) (with Q-structure) is defined as the full
subcategory of MTM™ (X;Q), which consists of graded well-rescalable

good

filtered R-triples whose rescaling are also in MTMig‘ZtOd(TX ;Q) (see [19,

Definitions 2.50 and 2.52]). By [19, Proposition 2.68], the subcategory

MHM(X) € MTM},4(X; Q) is contained in IrrMHM(X; Q).
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PROPOSITION 5.6 ([15, Theorem 2.62 and Proposition 2.67]). — The
(cohomology of) projective pushforward and smooth pullback preserves the
well-rescalability property for filtered R-triples. Therefore, each induces the
functor between the category of irregular Hodge modules. More generally,
the same holds for a non-characteristic inverse image ([9, Proposition 6.64]).

The important fact is that “the exponential twist” is contained in
IrMHM(X; Q) although not in MHM(X), as explained below. Let ¢ be a
rational functioin on X and P(C X)) its pole divisor. Then, we can define a
R (xP x Cy)-module Ox xc, (xPxC)) -e?/X 50 that Oxxc, (*xPxCy) /X
is Oxxc, (*P x Cy) as Ox xc,-module and

A0 - (me?/?) = (Mm) e/ +0(p)e?/?,  and
A28y - m e/ = —(pm) e?/A

for m € Oxxc,(*P x Cy) and a vector field § on X. This module is

twistor-specializable along P x C, and we define éa)f//\ = (Oxxc, (xP X
Cy)e?/M)[*(P x Cy)] (see [21, Proposition 3.3]) .

LEMMA 5.7 ([21, Proposition 3.3], [19, Theorem 0.2 and 2.4.g]). —
The object éﬁ?” underlies an object of MTMigr:)tod(X;(@). More strongly,
this belongs to IrrMHM(X; Q). Moreover, for an R™-module .# which
underlies an object of MHM(X) C MTMigr(‘)tod(X;Q), i.e. the Rees module
of an underlying filtered D-module of a mixed Hodge module on X, the

Ri"*-module .# ®0x xcy éa)f/A underlies an object of IrTMHM(X; Q).
For an Rx-module .#, we set
Epr(A) =M |(\—1).4# € Mod(Dx),

and call it the underlying D-module of .#. An important feature of well-
rescalable good Ri*-module is that we can define a natural good filtration
on Epg(.#) called the irregular Hodge filtration. Let us recall the defini-
tion.

Through the identification X x C} with the image of the diagonal em-
bedding X x C§ < X x C, x Cy (7 is the parameter for the rescaling), we
have

(5.2) i*_z\Rxxc, c, (+{1 = 0}) = Rx ®c[y C[\*],

where i-—y is the inclusion {7 = A} — X x C; x Cy and Rx ¢, c, is the
subalgebra of Rxxc, generated by Rx and Oxxc, xc, (which does not
contain “0,”).

Let m°: X x C; — X be the projection, .# a well-rescalable good R-
module and M its underlying D-module Epg (.#).
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LEMMA 5.8 ([19, Remark 2.20]). — We have an isomorphism between
Rx ®cpy CIA*]-modules (not R'F*-modules)
(5.3) Gl s 7 M
which sends a section 1@ (1®@m) € Oxxc ®i_ 1\ to1®[m] € Oxxc: ®
7°~ M where m is a section of .4, 1 @ m is the one in T.#, and [m)] is the
image of m under 4 — ZEpr(.# ). Moreover, under the isomorphism (5.3),
the natural action A20y on w°*M corresponds to the action A\20y + 70,
on ii_,\"# . More precisely, for k € Z and a section m € .4, the section
1 ® (A20) + 70,)(AF @ m) of i*_,"# corresponds to (A\20))(A\F @ m)(=
kX1 @ m) under the isomorphism (5.3).

Proof. — Since poir=y: X x C\, =~ X x {7 = A\} = X x C, is the
morphism (x,\) — (z,1), by (5.2) we have (5.3). We remark that 1® (\*®
m) corresponds to \¥ ® m under (5.3). Then, the second statement follows
from the definition of the actions (5.1) of 7Z. O

m°* M has a natural grading induced by the M-adic filtration
NOxxe; ® M C 7" M.

Here, for brevity we write )\kOXXC; ® M for A’“OXXC; @ 7 ' M. Then,
the k-th graded piece is gr*m°*M = A¥ @ M. The corresponding graded
module is denoted by gr(m°*M)(= ),y gr¥n°* M), which is Ox [\ E!]|@ M.
We can regard it as a Rp D x-module. Remark that by the definition of well-
rescalability we can consider the Kashiwara-Malgrange filtration V.* (".#4)
along 7 =0 of "#.

LEMMA 5.9 ([19, Lemma 2.21]). — For B €R, we have (1 —\VA("4) =
(1 — N\t N V2 (). Therefore, we obtain an inclusion

VP — i
In particular, we can regard i*_,V/("#) as a submodule of m°*M by
Lemma 5.8.

For a € [0, 1), the A-adic filtration \* ® M C 7°* M induces a filtration
on i*_,\V.-“("#). The corresponding graded module gr(i*_, V- *("#)) is
a graded Rp D x-submodule of gr(7°*M) = Ox[A\*!]® M. Since gr(7°* M)
is a strict graded RpDx-module, so is gr(if_,V, “("#)). Therefore,
gr(if_\V-*()) comes from the Rees module associated to a filtration
of M.

DEFINITION 5.10 ([19, Definition 2.22]). — For « € [0, 1), the irregular
Hodge filtration FX§ M is the unique good filtration of the D-module

TOME 0 (0), FASCICULE 0



40 Takahiro SAITO

M indexed by Z such that the corresponding Rees module RFifi .M =

D,z FX MAP(C MXFY)) is equal to gr(i*_,\V,*(")).

We can regard the family {F./Y , M} 4c(0,1) pez as a filtration of M indexed
by R. If .# comes from a filtered D-module, the irregular Hodge filtration
is equal to the original one as follows.

PROPOSITION 5.11 ([19, Proposition 2.40]). — For a filtered D-module
(M, FeM), the corresponding Rees module .#4 = Rp M is a well-rescalable
good RZ*-module. Moreover, the irregular Hodge filtration FI*"M is equal
to the original filtration FyM. In particular, FI** M jumps only at the in-
tegers.

For an irregular Hodge module 7, the underlying R¥-module . is
well-rescalable and good. So, we can consider the irregular Hodge filtra-
tion on Epgr(.#). As already mentioned, for a mixed Hodge module M =
(M, FeM, K, W,M), we can regard it as an irregular Hodge module whose
underlying R'2*-module is the Rees module Rp M. Therefore, by the propo-
sition above, the irregular Hodge filtration on Epg (.#) = M is the original

Hodge filtration Fg M.

5.2. The Fourier—Laplace transforms of R-modules and the
irregular Hodge filtrations

In Section 4, we introduced the Fourier-Laplace transform of a D-module
on a vector bundle (or the projective compactification of a vector bundle).
For a monodromic mixed Hodge module, we endowed the Fourier—Laplace
transform of its underlying D-module with a structure of mixed Hodge
module (Definition 4.20). As explained there, in general, we can not de-
fine “the Fourier—Laplace transform of a (non-monodromic) mixed Hodge
module” in the category of mixed Hodge modules. However, for a (not nec-
essary monodromic) mixed Hodge module, if we regard it as an integrable
mixed twistor D-module as explained in Subsection 5.1, we can naturally
define “the Fourier-Laplace transform” of it in the category of irregular
mixed Hodge module. To explain it, we first recall the definition of the
Fourier—Laplace transform of an R-module and its basic properties.

The following is the list of references for this subsection. In [14, 15, 16,
17, 18], Sabbah considered the Fourier-Laplace transformation (as an R-
triples) of a variation of Hodge structure or a twistor D-module on a com-
plex line and proved that the R-triple is an integrable twistor D-module.
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In [6] and [21], they introduced and studied exponential R-module “&7”
as a twistor D-module. Moreover, in Domingez—Reichelt—Sevenheck [3] and
Mochizuki [9], they defined (with a slightly different formulation in each
paper) the Fourier-Laplace transform of an integrable R-module or an in-
tegrable mixed twistor D-module on C™. The content of this subsection is a
review and restatement of these papers, so there are essentially no original
contents.

Let m: E — X be a vector bundle on a smooth algebraic variety X and
7V EY — X its dual bundle. We use the notations defined in Section 4 for
a vector bundle E. For example, E (resp. EV ) is the projective compact-
ification of E (resp. EY). Moreover, ¢ the rational function on E xx EY
defined as the pairing of E and EVV whose pole divisor is Do, U DY, . Recall
that the R™-modules & g Y pv and éa};fi );(EV are the underlying R-modules

of mixed twistor D-modules (Lemma 5.7).

DEFINITION 5.12. — For the underlying R™-module .# (resp. .4 ) of
a mixed twistor D-module on E (resp. E), we define the Fourier—Laplace
transform A" (resp. /") as

%Mﬂﬂﬂﬁﬂ®%%%)

5.4
o) (resp. /" = HY'q.(5" N @ & ‘P/A —[x(Dc UDL)])).

LEMMA 5.13. — Let A be the underlying R™-module of a mixed
twistor D-module on E. Then, we have

(A Mgy = (ANp)"
Proof. — By the definition (see Remark 5.5), we have

(H[p)" = Hq.(p" (N |p) @ £7/Y)

— HG(7' ¥ @ &/ [+Dog UDL))|
= (A")|pv. O
COROLLARY 5.14. — In the setting of Lemma 5.13, we have

N o (5 (AN | 2) M) [=D5].

Proof. — Since .4 is the underlying R-module of a mixed twistor D-
module, we have

(5.5)  (P*N @ E N x(Doo UDL)] = (p* N @ &9/ [xDso][*DY.].
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By [8, Lemma 3.2.12] or [20, Corollary 9.7.1], we have
NN = HOG (7N @ 69/ [+Dag UDY.))
= HOG (7" @ 7%/ [%Dog U DY) [*DY].

Since HOG; ((p* N @&~/ [* Do UDY.])| v is (A|g)", we have the desired
assertion. O

Remark 5.15. — If .# (resp. .#) is the Rees module of a filtered D-
module (M, Fo M) (resp. (N, FeN)), the underlying D-module of .#" (resp.
A M) is the Fourier—Laplace transform M” (resp. N) defined in Section 4.

By Lemma 5.7 and Proposition 5.6, we obtain the following.

PROPOSITION 5.16. — If .# (resp. #") is the Rees module of the un-
derlying filtered D-module of a mixed Hodge module, .#" (resp. N") is
the underlying R™-module of an irregular mixed Hodge module.

Remark 5.17. — For a monodromic mixed Hodge module, we defined a
mixed Hodge module whose underlying D-module is the Fourier—-Laplace
transform of its underlying D-module (Definition 4.20). As explained in
Lemma 5.7, we can regard it as an irregular mixed Hodge module. On the
other hand, we have another “Fourier-Laplace transform” made from a
monodromic mixed Hodge module, which appeared in Proposition 5.16. So
we have two definitions of “the Fourier-Laplace transform of a monodromic
mixed Hodge module” in the category of irregular mixed Hodge modules.
In general, the two are different, but they are related to each other. We
will observe it in Subsection 5.4.

Let us see .4 and A" have better descriptions. We need the following
lemma.

LEMMA 5.18. — For the underlying R™-module .# on E of a mixed
twistor D-module, we have

(P* N @ E /M) [¥ Do UDYL] = (p* N @ /M) (xDyo ) [*DYL].

Proof. — This proof is inspired by the proof of Proposition A.2.7 of [15]
and the one of Lemma 3.1 of [21]. We assume that X is one point variety.
We can prove in the general case in the same way. In this case, F and
EV are vector spaces of rank n. Let (21,...,2,) be the coordinates of F
and (Cy, ..., (p) its dual coordinates of EV. We write C7 (resp. C!) for E
(resp. EY) with the coordinates (z1,...,2,) (resp. ((1,...,(s)). Moreover,
P (resp. P?) is the projective compactification of £ = C? (resp. E = C).
Remark that Do (vesp. DY) is the divisor P? \ CZ (resp. P¢ \ Cf).
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By the equality (5.5), it is enough to show

(5.6) (0" © EP ) kDo) = (57N @ E#/)(+Dos).

Let [20: 21 : -+ : 2zn) (vesp. [o: (1 : -+ : u)) be the homogeneous coordi-
nates of P (resp. P{') and U; = {z; = 1}(=~ C") (resp. U} = {(; = 1}) an
open subset of P? (resp. ]P’Z‘) with the coordinates (2q, - - -, 2i—1, Zit1s -« - 2n)

(resp. (Cos---»Cj=1,Cj+15---,Cn)) for 4,5 = 0,...,n. Then, {U;}; (resp.
{U}'};) is a covering of PZ (resp. P?). Note that Do (resp. DY) is defined
by 2o (resp. (o). Therefore, the assertion is clear on Uy x P{". So, it is enough
to prove the equality (5.6) on Uy x Uy, Uy x Uy and U; x Uy. We may
assume n = 2.

On Uy xUy . — Let V2 (p* A ®E~?/*) be the Kashiwara-Malgrange fil-
tration along zg. For a section m € 4|y, and m®1 € ﬁ*ﬂ@g’“"/HleUov,
we have z&(m x 1) € ‘Qﬁ’l(ﬁ*JV@pgxpg &~/ for some k > 0 by an stan-
dard property of the V-filtration. Let kg > 0 be the smallest k£ and assume
ko > 1. Remark that on Uy x Uy (with the coordinates (zo, 22, (1,(2)), we
have ¢ = (1/20)(¢1 + 22¢2). Then, we have

(8¢,)2° (m @ 1) = = (1/20) - 25° (Mm@ 1)
=zt me1).
Since the operators O, preserves the filtration V3 , the section z(]f"*l (m®1)
is also in V> ~!. This contradicts the definition of k. Therefore, we have
ko =0,ie. m®1isin V>~ (p* A4 ®&~/*). This implies that V2 (p* A ®
&=/} is constant on U; x Uy and we thus obtain the equality (5.6).

On U; x Uy. — Similarly to the previous case, for a section m € A|y,,
we take the minimum ko such that zi°(m®1) € V2N pr N @E79/N) and
assume ko > 1. We have ¢ = (1/(20¢0))(1 + 22(2) on Uy x Uy'. Then, we
have

(630 + G2G00¢z) 2 (m® 1) = 25" (m @ 1).
Therefore, kg is 0 and thus by the same argument in the previous case, we
obtain the equality (5.6).

On Uy x Uy. — We can prove it in the same way. O
As mentioned in Remark 5.5, 7g, is not g; in general. Nevertheless, the

following holds.

COROLLARY 5.19. — For the underlying R™'-module .# of a mixed
twistor D-module on FE, we have

M = Hoq(p* M @ ).
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Proof. —NLet A be the underlying R™™-module of a mixed twistor D-
module on E whose restriction 4| is .#. Then, by Lemma 5.18 we have

M = HG ("N @ E P xDoo UDL]) v
= HOG(p" N © &/ (+Dog)[*DL]) v
By [8, Lemma 3.2.12] or [20, Corollary 9.7.1] again, the last term is equal to
HOGi (p* A © & %/*)(#Doo)) DY, v,
i.e.
0~ ((~x —o/A
Hoqi((p" A @ &%) (D)) BV

This is equal to H q;((p*.# @ &~%/*), which completes the proof. O

Finally, let us describe the Fourier—Laplace transform when X is affine
and FE is trivial. Fix the trivialization F ~ X x C™. As above, we write C?
(resp. C) for C™ with the coordinates (21,...,2y) (resp. the dual coordi-
nates ((i,...,¢n)). Due to Corollary 5.14, in order to know .4, we need
to know (4|g)". Under the assumption above, since F and EV are affine,
we can identify the R™™*-modules on them with the modules of their global
sections. Therefore, we sometimes write (A|g)" for T'(E; (A |g)").

LEMMA 5.20. — Let .# be the underlying R™-module of an mixed
twistor D-module on E = X x C?} for a smooth affine variety X. Then,
as a C[\-module, I'(X x C;.#") is isomorphic to T'(X x CZ;.#) and
under this identification, the vector field 8 on X acts as the same 6, (; acts
as 0., and O¢, acts as —z;. Moreover, A20y acts as A20y + Aecn, where

n
Een = > i1 %i0z,

Proof. — We may assume X is one point variety, i.e. E = C} We set
My = p M QE PN and P = Qégxcg/cg ® C[AJA ™k, where Qégxcgﬂcg
is the sheaf of relative holomorphic k-forms. Then, the R-module structure
of .#, defines the connection .# — &' @ M\ (m — Y|, dz;/A®0,,m).

This morphism is naturally extended to the relative de Rham complex
M —)JZ{1®,//1 —)...—)ﬂf”@%l,

where the rightmost term is of degree 0. Fixing the isomorphisms /! ~

@1 Oczxcrdzi/A and gk~ NN@, Ocuxcpdzi/A), one can see that

this complex is the Koszul complex of the R-module .# with respect to the

regular sequence 0, ,...,0,, . Therefore, the only non-trivial cohomology
is the O-th one and that is

DI

i=1
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by the identification @™ ~ O@;Xc? dzy A -+ A dzp, /A", The pushforward
of an R-module by a projection can be expressed as a relative de Rham
cohomology. Therefore, by Corollary 5.19 we have

%A’:Hoq*(%l —)%1®%1—>—>ﬂn®%1)

=N (J//l/zn:@//h)

i=1
in the category of R™-modules. Taking the global sections of
@ (A0 37—, Ditth), since we have T(C? x Cf; . 44) = T(CL; #)[¢] (with
the twisted actions by &~¢/*), we obtain

D(CE ™) ~ T(CL.)[C]) Y 0., T(CLs . )[C].
=1

By looking at the actions on I'(C?; .#)[(], we thus get the second assertion.

O

Combining Lemma 5.20 and Corollary 5.14, we now understand the R™™-
module structure of A",

DEFINITION 5.21. — In the setting of Lemma 5.20, for a section m €
I'(X x C%;.#) we denote by m” the corresponding section of .#" under
the isomorphism I'(X x CL; #) ~T(X x CZ;.4").

In terms of the terminology in the proof of Lemma 5.20, m” is the class
represented by a section (dzq A -+ Adz,/A\") @ m € @™ ® A,. Then, by
Lemma 5.20, we have

A-m” = (m)",
Gi- m” = (5zim)/\7
(5.7) A A
d¢, -m” = —(zm)", and
A0y - m” = ((\20x + Aécn)m)™.
Remark 5.22. — The section m” depends on the choice of the trivializa-

tion of E. However, similarly to Definition 4.7, we can define an Ox «c,-
module F" of w) . #" for an Ox «c,-submodule .# of m, .4 .

5.3. Fourier—Laplace transforms of a monodromic mixed Hodge
modules

In this subsection, we will compute the irregular Hodge filtration of the
Fourier—Laplace transform of a monodromic mixed Hodge module. To sim-
plify the description, we will consider the Fourier—Laplace transforms of
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mixed Hodge modules on C? (with the coordinates (z1, ..., zy)). However,
we can generalize the results to the Fourier—Laplace transform on a general
vector bundle (see Remark 5.39).

We will use the notation defined in the previous subsection. Let
M = (M,FM,K,ZW,K) be a mixed Hodge module on C? and
N = (N,F,N,K', W,K') the pushforward of M by the inclusion j: C? <
P? (since our module is always algebraic, we can consider such an ob-
ject). We denote by .# (resp. .4#") the corresponding R(ic“,zﬁ—module (resp.
RIEY) of (M, FyM) (resp. (N,F,N)) (see Example 5.1). Remark that we
have </VA|¢;2 = /" and NA|C? = M" (see Corollary 5.14). By Propo-
sition 5.16, 4" is also the underlying Ri™*-module of an irregular mixed
Hodge module. Then, as explained in subsection 5.1, Epr(A") = N/ is
equipped with the irregular Hodge filtration FI** N (Definition 5.10).

In the following, we assume that M is monodromic. Then, by Proposi-
tion 2.6 and Theorem 3.1 we have the decompositions

M= M and FM=EF.M"
BER BER

where M# = Uiz Ker(Eer — B)!. Therefore, we have
M =P F,MON.

BER
pEZ
C¢ is the dual space of C7 with the dual coordinates ((i,...,Gn). Let
[Co ¢ -+ : Cn] be the homogeneous coordinates of P¢ (= P(Cy)) and {U;}1

(U = {¢ # 0}(= C") C Pg) the affine open covering of P?. Note that
Uy = (C?. To understand the irregular Hodge filtration Fi" N/, we will
compute the restriction of FI'"N” to each affine open subset U,’ respec-
tively.

5.3.1. The irregular Hodge filtration on M"

First, we compute Fi'"N” cr (= FI*M"). In order to do that, we need
to compute V.- *((.#")), where (.#") is the rescaled module of .Z" and
7 the rescaling parameter (see Subsection 5.1). Since Cf x C; x C, is affine,
we identify the sheaves on it with the modules of global sections of them

and they are represented by the same symbol by abuse of notation. Then,
Ta") is Ocy [T A @0y A" as an Oczxe, xc, (({T = 0})-module
¢

with an R™-module action defined as (5.1). Moreover, recall that (a global
section of) .#” can be expressed as m” for m € .# (see Definition 5.21).

ANNALES DE L’INSTITUT FOURIER



MONODROMIC MIXED HODGE MODULE 47

LEMMA 5.23. — In this setting, we have
(5.8) V()= P e FEMN)"
i, pEZL,BER
i—p—B27y

Proof. — We remark that since [.#") is strictly R-specializable along 7
(by the definitions of the well-rescalability and the irregular Hodge module),
Kashiwara—Malgrange filtration V*(T(.#")) exists and each graded piece
gr,(.#")) is strict. Therefore, if a non-zero section s € T.Z") is killed
by (79, —yA)! for some | > 0, the section s is in V(T.#")) and not in
V().

Let m be a section of F,M?. Then, mA? is in .#. By (5.7), we have

N0 (mAP)N = ((Ecn + p)ymAPTH,

Therefore, by (5.1), for ¢ > 0 we have

70, (7' @ (MAP)N) = (IATH + 77718, ) (1 @ (mAP)™)
(5.9) =it @ (mAPTHN — 77 @ A20, (mAP)")

=ir" T @ (mAPTHYN — @ ((p+ Ecn )mAPTHN,
Hence, we have
(10, — (i —p— B)A)(T' @ (mAP)") = =" @ ((Ecn — B)mAPTH.

By induction, for [ > 1 we obtain

(187 = (i—p = BN (1 ® (mA)") = (=1)'* @ ((Ecy — B)'mAPT)".
Therefore, 78 @ (mAP)N € T.#") is killed by (70, — (i — p — B)A)! for
sufficiently large [ > 0 and hence 7% ® (mAP)" is in V'~ P=#(T.#")) for the
reason stated at the beginning of this proof. We thus conclude that the
RHS of (5.8) is contained in the LHS.

Any section s € V) ((.#")) is a sum of some sections 7¢ @ (mAP)" for
some i € N, p € Z and m € F,MP. Let s = s,, + -+ + s,, be the
decomposition of s such that s,,(#0) € >, , 5 7® (F,MPAP)" and
71 < -+ < k. As we proved, s, is in V1 ((.#")) and not in V27 ((.47)).
Hence, 7, is greater than «. This implies that the LHS of (5.8) is contained
in the RHS.

This completes the proof. 0

Recall that for a € [0,1) we can regard gr(i*_ V. *(T.#"))) as a sub-
module of gr(i*_, ((.#"))) = gr(n®* M") ~ Ocn M ®0., M™ (see Sub-

¢
section 5.1). Note that the isomorphism

(5.10) gr(i7_y (A ™))) = Ocy [AF] ©0en M"
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is defined so that (a section of the LHS represented by) the section 1 ®
(mAP)N € (™) corresponds to 1®@m”. Moreover, the Rees module of the
irregular Hodge filtration FX} ,M” is equal to gr(if_, V. *((.#"))) (see
Definition 5.10). Therefore, in order to know F™7 ,M" it remains to see the
image of gr(i*_,V, *((.#"))) under the isomorphism (5.10).

THEOREM 5.24. — For a € [0,1) and 8 € R, we have

FIt M = @) (Fpp ooy MP)"
BER

Proof. — By Lemma 5.23, we have

BV =i | D e (RMI)
4,p€L,BER
i—p—f>—a

Under the identification (5.10), the RHS is (as a subset of Ocn A @ MM

(5.11) B D NeERMH.
i€Z p€EL,BER
i—p—BZ—a

Note that the condition i — p — 8 > —« is equivalent to

where | — 3] is the largest integer less than or equal to o — 5. Therefore,
(5.11) is equal to
P N (Fippap M)
i€Z,BER
This implies the desired result. g

5.3.2. The irregular Hodge filtration of M” at infinity

Next, let us consider the irregular Hodge filtration on NV A‘Ulv for ¢ =
1,...,n. Since they can all be computed in the same way, we will consider
the case where ¢ = n. In this subsection, we assume that n > 2. However
this assumption is not essential; the argument proceeds in exactly the same
way also for the case n = 1. Actually, all the results hold also in that
case (after changing the notations appropriately). Let ({), (], ...,¢,_1) be
the coordinates of U,/(~ C") so that the point of P? corresponding to
(ChsChyvasClhq)is [Ch = ¢ o oor ¢y ¢ 1]. Then, we have Uy N U,/ =

n—1
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{¢0 # 0} = {¢n # 0}, DL N U, ={¢ =0}, ¢ = 1/G and § = G/¢y for

i=1,...,n—1on Uy NU, . Moreover, we have

(5.12) Euy (z ZQ%) = —Go0¢-
i=1
Let j,/ be the inclusion Uy N U,/ < U,. By Lemma 5.14, we have
(5.13) (A Moy = )i (A7) oy oy ) [+{G6 = 0}-

Since U, N Uy (resp. Uy) is affine, we may identify (.#")|yyquy (resp.
(jX)T((,///AﬂUOvaX)) with the module of its global sections and regard it
asa (U NUY RUvav)-module (resp. a T'(Uy; Ryy )-module). Then, we
can write (j,, )+ (-#"|uynvy) in an algebraic way as

% ®(C[Cn] C[Cn ]
Moreover, we can write the RHS of (5.13) as

M" R¢ie,) CICE[+{¢) = 0]

Its underlying D-module is M" ®c(¢,] C[¢']. Remark that the underlying
D-module of (.#")|yynuy is also expressed as the same M" ®cjc,] C[¢H
(under the identification of the sheaf of module and the module of its global
sections). However, in the following, we always regard M”" ®c¢,) C[¢E!] as
the underlying D-module of (j);((«#")|uyruy ), i.e. M» @cye,) CIGE s
a D-module on U (not Uy N U,/). Moreover, for a section m € M, the
section m" ® 1 € M ®cc, C[¢F'] is simply denoted by m” if there is no
confusion.

LEMMA 5.25. — If we regard U,/ as a trivial line bundle CC/ x (C¢p %
+x Cer ) over (Cgg x --- x Cer ), the D-module M ®cc, [Cil] is
monodromic on this line bundle, i.e. we have

M @i, CIGE) = @M @cie,) CIGES,
BER
where we set
(M" @cie, ClGr e, = |J Ker(Gpdg — B)' (€ M" @i, CIGH)).
1>0

In particular, for § € R we have
grhy (M" ®cye, Cl¢E) ~ (M" @y, C[Cﬁfl])éz,

as F((Cq X oee X (Cc;w_l;O)—modu]es, where gr€ is the graded piece of the
Kashiwara—Malgrange filtration VC.{) along ¢, = 0. Moreover, for € R we
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have

(5.14) (MA®c[cn]C[C$1])?6: >,
JELZ,~ER
J+y+n=p

where ¢}’ (M?)" is the subset of M" ®cic,) CI¢E!] generated by {¢mN(=
mh @ ¢y’) € MM ®clen Cl +1]1 | m € M7} and the RHS of (5.14) is the
subset {320 1 s; | s; € QY (M™)" (ji € Z,7i € Z,ji +vi+n = B)} of
M" @cc,; C[¢EY (in other words, it is not the T'(U,Y; O)-module generated
by {¢o (M™)"}, but the T(C¢y x---xC¢r ;5 O)-module generated by them).

Proof. — As we already remarked, for a section m € M, we write m” for
the section m" ® 1 € M”" ®¢jc,] C[¢E!]. For m € M and j € Z, consider
a section ¢}’m”. Then, we have

o0 (¢h'm™) = ¢ (5 + oDy )m”
= (o’ (4 — Evy)m”
= G (G + Eco +n)m)".

This implies the desired assertions. O

Remark 5.26. — Similary to Y jez~er ((’J]'(M"Y)A above, for a family
J+v+n=p8
{Ai}s of subsets of (M" ®c¢yc,) (C[Cnil])?(,J we denote by >, A; the I'(C¢; x

-+ xC¢ ;0)-submodule of (M" ®c(c,,) (C[Cnil])lg6 generated by {4, };, not
the I'(U)Y; O)-module generated by them, when no confusion arises.

For 8 € R, we define a positive integer jg € Z>o by
jp = max{[—F] —n —1,0}.
We will use the following elementary lemma.

LEMMA 5.27.

(i) For any 8 € R and j € Zx, the inequality j + 8 +n > —1 holds if
and only if the inequality j > jg holds.
(ii) For any 8 € R, we have

jg+B+n>=—1

(iii) For e Randr >0, if jg+ 5 +n >r, we have jg = jg_1="--- =
jﬁ—r—lzo-
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COROLLARY 5.28. — We have
(5.15) chl(//ﬂ ®cie, CICEIHG =01 = > o) (FpMPAPY™,
j=0,p€Z,BER
iZis

Proof. — By Proposition 3.3, for v > —1 we have
V3 (" i) CIGEIHC = 0}]) = V] (4" e,y CIGE),
By Lemma 5.25, the RHS is equal to
Yo @ EMI)

J,PEZL,BER
JH+B+n=y

Since V! (@i, CICE NI+ = 0}]) is G~V (A @i, CICEi+{Gh =
0}]) (see Proposition 3.3), we have
(5.16) V' (4" @c) CIGHHG =0 = Y G (M)

J,PEL,BER
j+p+n>—1

Moreover, for j <0, 8 € R with j+ 8+ n > —1 and p € Z, we have
o (FpMPON)N = ¢ (B, MPAP)"
= (O F M)
C (Fp_jMBJrj)\pfj)/\
= OBy MNP
The last term is contained in the RHS of (5.15). Therefore, together with (i)

of Lemma 5.27, the RHS of (5.16) is equal to the RHS of (5.15). This
completes the proof. O

Recall again that .#” ®cic,; C[¢E][*{¢) = 0}] is a submodule of
M D¢, C[¢E] generated by chl(///A ®c(c,) CI¢EY]) (Proposition 3.3).
Therefore, by Corollary 5.28, we have the following.

COROLLARY 5.29. — We have
MO e CICEHG =0 = > 5 (FMI)",
k,j>0,pEZ,BER
iZis

Note that the rescaled module 7 (.#" ®cc,) C[¢E][+{¢) = 0}]) is
Ouvy [T, )] B0,y x (A" Bcic,) Cl¢r'+{¢h = 03),

as an Opy xc, xc, (*{7 = 0})-module with an R™"-module action (5.1).
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LEMMA 5.30. — We have
(5.17) V(7 (A" @cic,) ClG | [+{¢ = 0}]))
=P D> Aedd EHMIw)
i€Z k,j>0,p€Z,BER
Jzig
i—k—p—B2y
Proof. — As in the proof of Lemma 5.23, if a section
s € 7(" @ci,) UGG = 0}])
is killed by (79, —y\)! for some [ > 0, s is in
V(7 (" ©cic,) CIGT G = 01))-

Let B8 be a real number and m a section of FpMﬁ. For j,k € Z>( with
j+B+n > —1and i € Z, we consider a section 7 ® 8k6 oI (mAP)N €
T ®¢ic,) CICE[#{¢) = 0}]). Recall that we have

O¢, = *)\Cn&Cg and
=G
on Uy NU, and
A0\ (mAP)N = (A0 + Acn)mAP) (= ((p + Ecn)mAPTN).
Therefore, we have
20, (%, G (mAP)) = N0 ((—ACnen )E¢ 7 (mAP)™)
= (RA(=AGEer) ¢ 7 + (= AGaEey) P A203) (mA?) "
— k(=ACnep) ¢ (mA 1)
+ (= AGEer) G ((p + Ecn ymAP TN
=05, 7 ((k + p + Eox ymAP )"
By using this, we obtain
7071 @ B, ¢ (mAP)")
—irtl g 5126<(l)j(m)\17+1)/\ _ritl g >\25A(5’Z6 éj(mAp)A)
=irtle® 5’26C6j (mAPTHA
— 7 @O G (k +p + EcpymAr )"

=7 @8k (¢ (i — b — p— Ecy)mAPT)",
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Therefore, we have
(18- = (i — k= p— B)N (7" @ B, ¢ (mAP)")
— it ® 6k{) (/)j((g(Cg - ﬂ)mAp+1)A,
and hence
(18- = (i — k= p— B)N' (7' @ B, ¢t (mAP)")
= (-)'7 @0 ¢ (Ecy — B)'mA ",
for [ > 0. Since the RHS is zero for sufficiently large [ > 0, we conclude that
T'® 5’56 27 (mAP)" is killed by (78, — (i — k — p — B)A)! for some [ > 0 and
hence 7/ ® 8¢, ¢y (mAP)" is in VIZF=P=P(T (" @cic,,) CG[+{¢h = 0}).
We thus conclude that the RHS of (5.17) is contained in the LHS.

In the same way as the proof of Lemma 5.23, we can show the LHS

of (5.17) is contained in the RHS. O
Now, we can compute the irregular Hodge filtration Fir(M” ®C[¢n]
C[Cfl])( FX,N"yy) in the same way as for FJ™ M".

THEOREM 5.31. — For a € [0,1) and p € Z we have

(5.18) Er (M" ®ci,) CI¢EY)

= Z C/m ] Fotla—p JMB)

7=20,B€R

+ Z 84’C0 Foktla- ﬁJMB)
k>0,8€R

Proof. — The proof is similar to that of Theorem 5.24. By Lemma 5.30,
we have

V(A ®cre,) CIGH (¢ = 03]))
=il (P > ' © 0 G T(F,MPAPY).

i€Z k,j>0,peZ,BER
Jj=is
i—k—p—pB2—a
Therefore, the Rees module of the irregular Hodge filtration (a submodule
of Oyy [\ @ (M" @i, CIG ') is

i k 17 A
P > N ® 0k Gy (F,MP)".
i€Z k,j>0,p€Z,BER
JjZis
I P
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Hence, after replacing 7 by p we have

(5.19)  FIL, (M @c, ClGi D = > 966G (Flp—k-pray M)
k,j>0,8€R
Jjzis
Therefore, by (i) and (ii) of Lemma 5.27, the RHS of (5.18) is contained in
the RHS of (5.19).

We show the converse inclusion. For ko, jo € Zxo, B0 € R with jo > jg,
(<= jo+Bo+n=>—1)and m € Flp_i,_gy+a] MPo | we consider a section
akOC’JOmA, which is in the RHS of (5.19). By (i) of Lemma 5.27, we have
Jo > Jge- We set ji = jo — jg, € Z>o so that jg, + j{ = Jo-

The case: j(/) > ko. — In this case, we have

akog/]ﬁo"rjo Za CIJBD+JO ako l (fOI' some ag € Z)

—Z as Gy (0, (Ecz +m))om)

(5.20)
0
L o
< Z%Moﬂo (FLp—ko—ﬂo+aJ+2(ko—z)Mf3° (ko—=))A
1=0
ko
C ZC(/)Jﬂ0+]0_l(FLP*(ﬁof(kofl)%l»aJ MBO—(ko—l))/\.
1=0
The last term is contained in the first part of RHS of (5.18) since jj — 1 >
—ko =0

The case: ji < ko. — If jj =0, 8?5(6jﬁ°+j6mA is in the RHS of (5.18).

So, we assume jj, > 1. In this case, we “divide” 8?0 as

akoc/JBo"t‘Jo _ aéf:) Joa]oc—l]ﬁo"r]om

Then, by (5.20) for 330%750 +0mA | the section 8 ho ]Oaj%{)jﬁ" +omA s con-
O

tained in

i
ko—3t) -1dsg+ib—1 (ko
(5.21) > 0GBl (ko -ty oy M 0T,
=0

Then, by induction on the exponent of d¢; (remark that ko — jo < ko
since jj > 1), we conclude that the RHS of (5.21) is contained in the RHS
of (5.18). O

Moreover, we have the following.
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COROLLARY 5.32.

(i) Fora € [0,1), p€ Z and v € R>_1, we have

irr g+
(5.22) FYL VO (M ®c, ClGi = D @ (Fprap MO
Jj20,8€R
Jp+B+n+i>y

(ii) For « €10,1), p € Z and v € R<g, we have

(5.23) Fifery (M ©ce, ClGT )= > 05G" (FpkiiasM?)",
k>0,8€R
Jp+Btn—k=y

where the sum Y in the RHS is the one defined in Remark 5.26.

Proof. — Recall that M” ®¢(c,] C[¢F!] is monodromic with respect to
the {{-direction by Lemma 5.25 and we have

(M ®cie CIGDE = >0 @/ (M),
JELZ,~NER
J+y+n=p8

where the sum } is the one defined in Lemma 5.25 or Remark 5.26. There-
fore, the term ¢)’"*7(Fpy|a—p/ MP?)" (resp. 8’“6 07" (Fp—kt(a—p) MP)") in
the first (resp. second) term of (5.18) is contained in VCZ (M" ®cc, CI¢EY)
if and only if js +8+mn+j > v (resp. jg+ B+ n —k > 7). Hence, by
Theorem 5.31, we have

(5.24) FIL V(M @cp,) C¢EY)

a+p Ccl) n

Jjgt+i
= Z 0o’ (FpﬂafBJMﬂ)A
j20,8€R
JptB+n+izy

k17
+ E 9¢160"" (Fyp—k+a—p) MY
k=0,8€R
Ja+Brn—k>y

To prove (i), we assume that v € Rx_;. Then, for £ > 1 (not 0) with
jg+B+n—k =, wehave jg+ 8 +n >k — 1(> 0). Therefore, we get
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jg =+ =jp—x = 0 by (iii) of Lemma 5.27. Therefore, we have
086" (Fp—rt la—p M) = 08, (Fpet [a—p MP)"

= ((0:,(Ecn + 1) Fy_ ey (apy M)

C (Fpshtla—g M)

= éjﬁfk(Fp+k+La,5JMﬁ_k)A (since jg—x = 0).
Hence, the term 8’“(,)%” (Fp—kt|a—p] MP)" for k > 1 in the second part of
the RHS of (5.24) is contained in its first part (for s = 0). This completes
the proof of (i).

To prove (ii), we assume that v € R.g. The first term of (5.24) is con-
tained in V%(M/\ ®cic,) C[¢E]) unless s = 0. Hence, for v < 0, we have

(5.25) i erl (M” &cie,; CIGE')
~ Y 0 (Fy kg ampy MO O
k>0,8€R

JetB+n—k=vy
COROLLARY 5.33. — For « € [0, 1), the irregular Hodge filtration
FLo(M" ®cie,) CIG)
satisfies the strict specializability property along () = 0.

Proof. — First, let us see the condition (i) in Definition 2.12. For v > —1,
by (i) of Corollary 5.32, we have

irr ig+J
(5.26) Fr} gri(M” &cic,) C¢EY]) ~ > 0" (o MO
j=0,8€R
ja+B+nti=y

It is enough to see that for v = 79 > 0 and a section o in the RHS of (5.26),
C(’)_la is in the RHS of (5.26) for v = vo — 1. Consider a section ¢;’**/m”
for jg fﬁ +n+j =9 and m € FPHQ,BJMB. If 7 > 1, it is clear that
27H¢?" T m”) is in the RHS of (5.26) for v = 7o — 1. So, let us assume
that j = 0. By (iii) of Lemma 5.27, we have jz = jg_1 = 0. Therefore, we
have
(,)_1 ) (l)jﬁm/\ _ Céjﬁ (aznm)/\

C " (Fpsla—p) 1 M7~H)"

= " Fpta—-1) M) (by js = ja-1=10).
The last term is contained in the RHS of (5.26) for v = ~¢ — 1. This
completes the proof of the condition (i) in Definition 2.12.
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Let us check the condition (ii) in Definition 2.12. By (ii) of Corollary 5.32,
for v < 0 we have

(5.27) F ey (M @i CIGE N = Y 05" (Fookpamsy M)
kE>0,8€R
JetB+n—k=vy

For 79 < —1 (not < 0), consider a section 85, 478 m" with jz+B+n—k = o
and m € F,_j4|a—p JMﬁ Since jg+ B +mn > —1 by (ii) of Lemma 5.27, we
have k > 1. Moreover, 8?671C635mA is in the RHS of (5.27) for v = v + 1.
Therefore, we have

Fit ey (M" ®ci,) CGH']) C Og - Fitpoaery (M" ®cie,) CIGD),
which is the condition (ii) in Definition 2.12.

This completes the proof. g

Remark 5.34. — Corollary 5.33 is derived by Theorem 1.6 of
Mochizuki [9], which is an assertion about the strict specializability in a
more general setting. The above proof is a concrete verification of this fact.

Finally, we check that “the irregular Hodge filtration at infinity is local-
ized”.
COROLLARY 5.35.
(i) For o € [0,1), we have

irr 1 rr
FUL Ve (M @ce, CIGT) = G Fal Vo (M7 @cie, CIG).
(ii) We have
Fi,(M" ®ci,) € =D O Fi, Ve (M ®cic,) CIGT)).

k>0

Proof. — The assertion (i) of Corollary 5.32 implies that
irr 1 irr
Foz—&—pvg’ (M/\ ®(C[Cn] (C[Cil]) - C/ Foz—i—pV(/ (M ®(C[Cn] (CKT%I])

Conversely, we  consider e (Fpila—p MP)",  where
(

g(’)jB(FpHa_mM*B)A is the term for s = 0 and [ = 0 in (5.22). Since
jg+ B +mn =0, by (iii) of Lemma 5.27, we have jg = jz_1 = 0. Therefore,
we have

1 ;
6 (Flppra) MP)N = ¢ (Fpp oy MP)"

= (02, Fp+|a—p Mﬂ)
C (Fptla—pgl+1 M

= " (Fpya—(a—1)) MP~) (by jig = ja—1).

A
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The last term is contained in F&r_’{_pVC/ Y(M” ®cie,) C[¢EY]). This completes
the proof of (i).
(ii) follows from the strict specializability Corollary 5.33. O

For a filtered D-module (M, FoM) on U,/, we define (M, FeM)[+{¢} =
0}] as the filtered D-module M (+{{} = 0}) with the filtration defined by
the same formula as (v) of Proposition 3.3. Then, we can write

(M” @cie,) ClGT, Fate (M @cic,) CG))
= (M" ®cic,) ClGH], Fale (M ®cie,) ClG ) [+{¢) = 0}]

This corollary means that the irregular Hodge filtration has the same prop-
erties as the Hodge filtration of the localization of an usual mixed Hodge
module.

Obviously, we have the same statement also for the irregular Hodge filtra-
tion of N/ \Uiv fort =1,...,n—1. Therefore, we can restate Corollaries 5.33
and 5.35 as follows.

COROLLARY 5.36. — For a € [0,1), the irregular Hodge filtration
FiI* N" has the strict specializability property along DY,. Moreover, we
have

(N FYLGNT) = (NP FYL N [+D)-

Remark 5.37. — We will later prove that the filtration {FJ”"N"},cz is
the Hodge filtration of a mixed Hodge module (Corollary 5.51). Since the
Hodge filtration of a mixed Hodge module is strictly specializable along any
divisor, Corollary 5.36 for a = 0 follows also from this fact. Corollary 5.36 is
an improvement on it since it says that the strict specializability properties
hold also for other « € [0,1).

Remark 5.38. — By (5.18), the restriction of F)l¥ (M" ®cc,] C[¢FY) to
Uy NUY is

> (Fpria—piMP)" &cye,) CIGEY.
BER

Therefore, the computation (5.18) is consistent with Theorem 5.24.

Remark 5.39. — We remark that we can generalize all the results in this
subsection, especially Theorems 5.24 and 5.31, to mixed Hodge modules
on a vector bundle on a smooth algebraic variety. For this purpose, it is
enough to prove them in the case of trivial vector bundles. We omit the
details.
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5.4. The irregular Hodge filtration and the mixed Hodge
module structure of M”

We continue to consider the setting of the previous subsection. In Sec-
tion 4, we defined a mixed Hodge module structure on M” and thus M”"
is equipped with the Hodge filtration F,M”. On the other hand, in the
previous subsection we computed the irregular Hodge filtration Foifi,M A
on M” for a € [0,1). In this subsection, we will prove the following.

THEOREM 5.40. — We have the equality
F;rrM/\ _ FpM/\
for any p € Z.
By Theorem 5.24, we have the following.

COROLLARY 5.41. — For p € Z, we have
F,M" = ) (Fpy -5 MP)".
BER

Recall that the mixed Hodge module structure on M” is defined by
the formula (4.9). Since it is difficult to compute the Hodge filtration of
the pushforward of a mixed Hodge module in general, it is also difficult
to compute F,M" just following the definition. So, we take a different
approach, which takes the advantage of the strength of the theory of mixed
twistor D-modules and the irregular Hodge theory.

Notation 5.42. — For an R™-module .# and an integer [ € Z, we set
M) =N

Note that if .# is the Rees module RpM corresponding to a filtered D-
module (M, FM), we have

A (1) = Rp(M(1)),
where M (1) is the Tate twist of the filtered D-module (M, FyM).
We need to generalize Lemmas 4.15 and 4.17 to R-modules.

LEMMA 5.43. — Let .#, and .#> be the underlying R™-modules of
mixed twistor D-modules on a smooth algebraic variety X. Assume that
the intersection of the characteristic varieties Ch(.#,) and Ch(.#52) is con-
tained in a zero section Cy x T*X. Then, for an algebraic variety Y with
a morphism f:Y — X, we have

Tty @ f ity ="F (M) © M) (dy)[dy],
where we put dy '= dimY — dim X.
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Remark 5.44. — In [9], we say “.#) and .#> are non-characteristic” if
the assumption in Lemma 5.43 holds.

Proof. — Let Ax: X — X x X and Ay:Y — Y XY be the diagonal
embeddings. By the assumption, Ax is non-characteristic with respect to
M1 R Ms. Therefore, by [9, Corollary 4.56], dim X (= 2dim X — dim X)-th
one is the only non-trivial cohomology of A (.#, X .#5), and we have

(5.28) HYIX (TN (ty R oMy)) ~ N (M) R M) (— dim X).
The RHS is .4 ® .#>(— dim X). By using this fact, we have
Tr' oty @ T dly ~ TN (Tf oty RTF tty) (dim V) [dim Y]
~ IALTUF % ) (ot R oty (dim Y ) [dim Y]
~ THTIAN (tty R ) (dim Y) [dim Y]
~ Tty ® M) (dy)[dy]. ]
Let E be an algebraic vector bundle over a smooth algebraic variety X.

LEMMA 5.45. — Let Y be a smooth algebraic variety and f: Y — X
a morphism. We denote by u (resp. u") the natural morphism f*FE — FE
(resp. f*EY — EV). For the underlying R™-module .# of an integrable
mixed twistor D-module on FE, we have a natural isomorphism in the cat-
egory of R™-modules

(H (o)) = B () ™) (j € Z).

Proof. — We consider the following diagram

f*E<C— f*E xy f*EV -1~ f*EV .

E<~" ExyE —% . FEv

Note that since any projection is non-characteristic with respect to any

R-module, we have
!

W) =~ @) (ng)nsl,
where ng is the rank of E. Moreover, we have
—p/A « p—p/A
‘gf*%/fo*Ev ~ (uxu") gEf)/(E

~ Tu s uV) 65 p(—dy) [ —dy).
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Therefore, we have

1
<3
S
B\
I

T

S
®

i

)
~
<

1

) () @ w x ) 67 (—dy — ) =dy = )

HIg
~ HTq (
~ B (Tu ) () @ T x u¥)' 679 (=dg = np)[~dy — ]
~ 1T (Tu x u¥) (P tt) ® §=9/)) (—np)[~ng
~ 1) (. (') © E9/)) (=np)[~ng]
~ B (. (0" tt) © 679
= 1 Mu).

where the second isomorphism follows from the exactness of Fourier—Laplace
transform, the 4-th isomorphism follows from Lemma 5.43 and the 6-th
isomorphism follows from the base change: [8, Proposition 14.3.27]. g

LEMMA 5.46. — Let f: X — Y be a morphism between smooth alge-
braic variety X and Y and .# (resp. ) be the underlying R™'-module
of an integrable mixed twistor D-module (resp. a smooth integrable mixed
twistor D-module, i.e. an admissible variation of mixed twistor structure)
on X (resp. Y). Then, we have the following isomorphism in the derived
category of R™-modules:

ol @ L) =Tl © 2.
Proof. — Take a smooth variety X containing X such that Hx = X \ X
is a divisor in X, and a proper morphism f: X — Y which induces f: X —

Y. Moreover, take the underlying R™-module .# of a mixed twistor D-
module on X whose restriction .#|x is .#. Then, we have

Tl @ L) =1 (M ® [*2)[xHx]).

Let Ag: X < X x X and Ay: Y < Y x Y be the diagonal embedding.
Then, by [9, Proposition 4.58], we have

(M ® F* L) [xHx) = NG (A [+Hx] B F*2)(dim X)[dim X].
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Therefore, we have

Tt @ f* L) ~ Tf*TAL(/}?[* Hx] R F*£)(dim X)[dim X]
v AF % ). (A xHx] B F*.2)(dim X)[dim X]
~ TAY(f x f) (A X [+Hx] K [*.2)(dim X)[dim X].

(5.29)

| Z

where we used the base change for the second isomorphism. Let p , (resp.
py.i) be the i-th projection (i = 1,2) of X x X (resp. Y x Y). Then, we
have

(5.30) (F x F)i(A[+Hx|R F*2)
= (F x D) A [+Hx| @ py , 7 2)
= (F x D%, MN+Hx] @ (f % ) py22)
= (F x )0 A [+Hx)) © py5. 2,

where the final isomorphism follows from the projection formula. Moreover,
since 7})')?1 ~ p%,l(dim X)[dim X], we have

(F < )i (0 (A xHx]) = (T x J),"p'c (A xHx])(— dim X )[— dim X]
TF % )W (A 1+Hx])(~ dim X)[~ dim X]

1
ol

12

Dy 1 TF, (A [+ Hx])(— dim X )[— dim X]
~ py o Tf. () (dy) [dy],

where we used the base change formula for the third isomorphism. Com-
bining it with (5.29) and (5.30), we obtain

Tttt @ f* L) =~ A (T () R L) (dim Y ) [dim V]
ng*( )®Z,

where the last isomorphism follows from (5.28) (or [9, Proposition 4.58]).
O

LEMMA 5.47. — Let F be another vector bundle over X, f: E — F a
morphism and ng (resp. np) the rank of the vector bundle E (resp. F).
We denote by 'f: FV — EV its transpose morphism. For the underlying
Ri™_-module .# of an integrable mixed twistor D-module on E, we have a
natural isomorphism in the category of R™-modules

(HI Tt = HIY™ (Yt (),

where we put ny :=ng —nr.
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Proof. — We consider the following diagram

E<Y ExyEY 1. pgv

\t fT
p

f EXXF\/ i

"
q
ifxl
’ ’

F<l FpxyFV 2o FV.

63

Then, in the same way as the argument in the proof of Lemma 5.45, we

have

(5.31) (H'Tf,.00)"
~ H% () el @ &)
~ B () futl @ E=9/) (—np)[~nr]
~ 1T (T x 1), ") A @ E/)(—np)[—np]
~ 5T T % 1), (") @ (F < 1) 679 (-
~ 1" (")t ® (f x 1)* 69 (—np)[-nF]

ng)[—n

where we used the base change formula for the third isomorphism and

Lemma 5.46 for the 4 th isomorphism. Since 1 x *f is non-characteristic

with respect to cg’E Ev, we have

A A
(f x 1) Ff)/(FV ~(Ix'f)* E:f;/(EV

~ M1 ) 6 (ng)ng).

Therefore, we have

M)t @ (f x1) 6= = )t @ (1 x )6 (g
Tt f) (p ol @ &) (=np) [

12

R

Tx ) (ot @ &9,
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where we used Lemma 5.43 for the second isomorphism. Combining it
with (5.31), we have

(HTfott ) = HI% 50 L) (9 tt © 89/ (—np)[—np]
~ B f) T (p ot © 8=/ (—np)[—np)
~ HIT ) T ("l © &%/ (ng)ng]
~ HI ) (),

where we used the base change formula for the second isomorphism. This
completes the proof. O

For a vector bundle E over X, we use the morphisms w: Exx E — CxE,
p: Exx EY — FE and 1: EY — CY x EY defined in Section 4 just before
Lemma 4.18. We define the terminology: “monodromic R-modules” in a
similar way to Definition 2.3.

LEMMA 5.48. — For the underlying R™-module .# of an integrable
mixed twistor D-module on E, assume that .# is monodromic. Then, we
have an isomorphism:

(5.32) M~ HYOH(H W p* ) (1),
Proof. — Since p is a projection, we have
't ~ p*  (dim X)[dim X].

Moreover, since (ij :p*M)” is monodromic by Lemma 4.19, ¢ is non-
characteristic with respect to (H7%w,p*.#)". Therefore, we have

BN H o p* ) =~ 1 (H Yo, p* )N (—1)[-1].
Therefore, we have
H'B (HO %o, p* )
~ H'BNH™ 2 Tw) (p* ) ) (ng — 1) (by Lemma 5.47)
~ BV (H ) (H 2 Bt (~n) (s — 1)
o HlTLI(H"E_lT(tw) (H~"eTpY ,////\))( 1) (by Lemma 5.45)
~ HpY otwo ) ™ (-1)
~ #"(-1). O
Let us consider the irregular Hodge filtration of the right hand side
of (5.32). Remark that if an R-module .#; on CV x EV is monodromic

with respect to CV-direction, ¢ is non-characteristic with respect to ;. In
particular, we have H'%' 4 ~ M (—1).

ANNALES DE L’INSTITUT FOURIER



MONODROMIC MIXED HODGE MODULE 65

LEMMA 5.49. — Let .#, be the underlying R™-module of an irregular
Hodge module on CV x EV and its underlying D-module is denoted by
M. Assume that .#1 (resp. "#1) is monodromic with respect to the C-
direction (resp. C,-direction). Moreover, assume that H' T\ .#\(= v*.#,(—1))
is the underlying R'™-module of an irregular Hodge module on EV. Then,
for o € [0,1), we have
(5.33) EX My = FY, My,
where we regard 1* M, as the underlying D-module of H'")' 4.

Proof. — Consider the rescaling T¢c*.#) (resp. "#1), which is an object
on C, x EV (resp. C, x CV x EY). We denote by the same symbol ¢ the

inclusion C; x EV — C, x CV x EV. Then, by the definition, it is obvious
that we have

W) ~ .
Note that for v € R we have
(5.34) Vi () = P ),
B2y
where (#1)" = @) Ker(r0, — v)k C T, . Moreover, it is clear that for
B € R we have
(My)P = o (My)P.
Therefore, we have
V:L*T/ﬂl — @ L*(T'//I)ﬂ
B2y

= V(L) (by (5.34)).
Hence, we obtain
F_AVE T (-1) = XN (5 VE (L)),
in ¢* M;[A*1]. This equality means the equality (5.33). O

Remark 5.50. — In [9] (see Theorem 1.5 in loc. cit.), Lemma 5.49 and
some stronger results are shown in a more general situation. For example,
H'Y5' ¥ is always an irregular Hodge module. But, we do not need it here.

Proof of Theorem 5.40. — By Lemma 5.48, we have
FYMN = B Y (HOwe H "l M)
By Lemma 5.49, the RHS is equal to
(5.35) VFR(HOweH "t M)
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By (4.3) and Theorem 5.24, the Hodge filtration (defined by Lemma 4.10)
of the Fourier-Laplace transform of a monodromic mixed Hodge module
on a line bundle coincides with the irregular Hodge filtration (for a = 0).
Therefore, for p € Z we have

(5.36) F™(H % H"pT M) = F,(H w; H™"pT M)",

where the RHS is the Hodge filtration defined by Lemma 4.10. Hence, (5.35)
is equal to

VF,(H wi H"pT M)
On the other hand, by Definition 4.20, we have
F,M" = Fp_H'/(Hwi H "pt M)".

By the definition of the pullback functor H'.! (between the category of
mixed Hodge modules), we have

Fy HYY(HOwi H " M) ~ * Fy (H i H "pt M)

Combining these equality together, we obtain
F,M" = F;,”M/\. d

Finally, we discuss the relationship between the irregular Hodge filtra-
tion and the Hodge filtration of M” “at infinity”. Let M” be the mixed
Hodge module defined in Definition 4.20. Moreover, let M?” be the mixed
Hodge module which is the unique extension of M” to P¢ such that

MA = W[*Dgo] We denote by M” the underlying D-module. Then,
we have (by Lemma 4.5)

MA = N,
where N is the one defined in the first part of Subsection 5.3. By Theo-
rem 5.40 and Corollary 5.36, we have the following.

COROLLARY 5.51. — We have
F"N" = F,M",

for any p € Z. In particular, the irregular Hodge filtration {F)"N"},cz
(for o = 0) is the Hodge filtration of a mixed Hodge module.
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