[Polynômes orthogonaux avec coefficients de récurrence périodiquement modulés dans le cas bloc de Jordan]
Nous étudions des polynômes orthogonaux avec coefficients de récurrence périodiquement modulés, lorsque est une véritable extrémité du spectre de la matrice de Jacobi périodique correspondante. En particulier, nous montrons que leur mesure d’orthogonalité est purement absolument continue sur une demi-droite réelle et purement discrète sur son complémentaire. De plus, nous fournissons une formule constructive pour la densité, en termes de déterminants de Turán. Nous déterminons aussi le comportement asymptotique exact des polynômes orthogonaux. Enfin, nous étudions les limites d’échelle du noyau de Christoffel–Darboux.
We study orthogonal polynomials with periodically modulated recurrence coefficients when lies on the hard edge of the spectrum of the corresponding periodic Jacobi matrix. In particular, we show that their orthogonality measure is purely absolutely continuous on a real half-line and purely discrete on its complement. Additionally, we provide the constructive formula for the density in terms of Turán determinants. Moreover, we determine the exact asymptotic behavior of the orthogonal polynomials. Finally, we study scaling limits of the Christoffel–Darboux kernel.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Orthogonal polynomials, asymptotics, Turán determinants, Christoffel functions, scaling limits
Mot clés : Polynômes orthogonaux, asymptotiques, déterminants de Turán, fonctions de Christoffel, limites d’échelle
Świderski, Grzegorz 1 ; Trojan, Bartosz 2
@article{AIF_2024__74_4_1521_0, author = {\'Swiderski, Grzegorz and Trojan, Bartosz}, title = {Orthogonal polynomials with periodically modulated recurrence coefficients in the {Jordan} block case}, journal = {Annales de l'Institut Fourier}, pages = {1521--1601}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {4}, year = {2024}, doi = {10.5802/aif.3624}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3624/} }
TY - JOUR AU - Świderski, Grzegorz AU - Trojan, Bartosz TI - Orthogonal polynomials with periodically modulated recurrence coefficients in the Jordan block case JO - Annales de l'Institut Fourier PY - 2024 SP - 1521 EP - 1601 VL - 74 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3624/ DO - 10.5802/aif.3624 LA - en ID - AIF_2024__74_4_1521_0 ER -
%0 Journal Article %A Świderski, Grzegorz %A Trojan, Bartosz %T Orthogonal polynomials with periodically modulated recurrence coefficients in the Jordan block case %J Annales de l'Institut Fourier %D 2024 %P 1521-1601 %V 74 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3624/ %R 10.5802/aif.3624 %G en %F AIF_2024__74_4_1521_0
Świderski, Grzegorz; Trojan, Bartosz. Orthogonal polynomials with periodically modulated recurrence coefficients in the Jordan block case. Annales de l'Institut Fourier, Tome 74 (2024) no. 4, pp. 1521-1601. doi : 10.5802/aif.3624. https://aif.centre-mersenne.org/articles/10.5802/aif.3624/
[1] An introduction to random matrices, Cambridge Studies in Advanced Mathematics, 118, Cambridge University Press, 2010, xiv+492 pages | DOI | Zbl
[2] Measures for orthogonal polynomials with unbounded recurrence coefficients, J. Approx. Theory, Volume 207 (2016), pp. 339-347 | DOI | MR | Zbl
[3] Critical edge behavior in the perturbed Laguerre unitary ensemble and the Painlevé V transcendent, J. Math. Anal. Appl., Volume 474 (2019) no. 1, pp. 572-611 | DOI | MR | Zbl
[4] An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, 1978, xii+249 pages | MR | Zbl
[5] Finite gap Jacobi matrices, I. The isospectral torus, Constr. Approx., Volume 32 (2010) no. 1, pp. 1-65 | DOI | MR | Zbl
[6] Properties of generalized Freud polynomials, J. Approx. Theory, Volume 225 (2018), pp. 148-175 | DOI | MR | Zbl
[7] Uniform asymptotics for orthogonal polynomials with exponential weight on the positive real axis, Asymptotic Anal., Volume 89 (2014) no. 1-2, pp. 1-19 | DOI | MR | Zbl
[8] Perturbations of orthogonal polynomials with periodic recursion coefficients, Ann. Math., Volume 171 (2010) no. 3, pp. 1931-2010 | DOI | MR | Zbl
[9] Unbounded Jacobi matrices at critical coupling, J. Approx. Theory, Volume 145 (2007) no. 2, pp. 221-236 | DOI | MR | Zbl
[10] Strong asymptotics of orthogonal polynomials with respect to exponential weights, Commun. Pure Appl. Math., Volume 52 (1999) no. 12, pp. 1491-1552 | DOI | MR | Zbl
[11] Eigenvalues and spectral gaps related to periodic perturbations of Jacobi matrices, Spectral methods for operators of mathematical physics (Operator Theory: Advances and Applications), Volume 154, Birkhäuser, 2004, pp. 91-100 | DOI | MR | Zbl
[12] Jacobi matrices: eigenvalues and spectral gaps, Methods of spectral analysis in mathematical physics (Operator Theory: Advances and Applications), Volume 186, Birkhäuser, 2009, pp. 103-113 | DOI | MR | Zbl
[13] Spectral gaps resulting from periodic perturbations of a class of Jacobi operators, Constr. Approx., Volume 20 (2004) no. 4, pp. 585-601 | DOI | MR | Zbl
[14] Orthogonal polynomials, spectral measures, and absolute continuity, J. Comput. Appl. Math., Volume 65 (1995) no. 1-3, pp. 115-124 | DOI | MR | Zbl
[15] Absolute continuity for unbounded Jacobi matrices with constant row sums, J. Math. Anal. Appl., Volume 267 (2002) no. 2, pp. 695-713 | DOI | MR | Zbl
[16] Spectral transition parameters for a class of Jacobi matrices, Stud. Math., Volume 152 (2002) no. 3, pp. 217-229 | DOI | MR | Zbl
[17] Approximating the weight function for orthogonal polynomials on several intervals, J. Approx. Theory, Volume 65 (1991) no. 3, pp. 341-371 | DOI | MR | Zbl
[18] Spectral analysis of second order difference equations, J. Math. Anal. Appl., Volume 63 (1978) no. 2, pp. 421-438 | DOI | MR | Zbl
[19] Asymptotic behaviour of some families of orthonormal polynomials and an associated Hilbert space, J. Approx. Theory, Volume 210 (2016), pp. 41-79 | DOI | MR | Zbl
[20] The asymptotic analysis of generalized eigenvectors of some Jacobi operators. Jordan box case, J. Difference Equ. Appl., Volume 12 (2006) no. 6, pp. 597-618 | DOI | MR | Zbl
[21] Spectral properties of Jacobi matrices by asymptotic analysis, J. Approx. Theory, Volume 120 (2003) no. 2, pp. 309-336 | DOI | MR | Zbl
[22] Spectral analysis of unbounded Jacobi operators with oscillating entries, Stud. Math., Volume 209 (2012) no. 2, pp. 107-133 | DOI | MR | Zbl
[23] Multithreshold spectral phase transitions for a class of Jacobi matrices, Recent advances in operator theory (Groningen, 1998) (Operator Theory: Advances and Applications), Volume 124, Birkhäuser, 2001, pp. 267-285 | DOI | MR | Zbl
[24] Spectral properties of selfadjoint Jacobi matrices coming from birth and death processes, Recent advances in operator theory and related topics (Szeged, 1999) (Operator Theory: Advances and Applications), Volume 127, Birkhäuser, 2001, pp. 387-397 | DOI | MR | Zbl
[25] Spectral analysis of selfadjoint Jacobi matrices with periodically modulated entries, J. Funct. Anal., Volume 191 (2002) no. 2, pp. 318-342 | DOI | MR | Zbl
[26] Asymptotic behavior of generalized eigenvectors of Jacobi matrices in the critical (“double root”) case, Z. Anal. Anwend., Volume 28 (2009) no. 4, pp. 411-430 | DOI | MR | Zbl
[27] Spectral theory for a class of periodically perturbed unbounded Jacobi matrices: elementary methods, J. Comput. Appl. Math., Volume 171 (2004) no. 1-2, pp. 265-276 | DOI | MR | Zbl
[28] Sum rules for Jacobi matrices and their applications to spectral theory, Ann. Math., Volume 158 (2003) no. 1, pp. 253-321 | DOI | MR | Zbl
[29] Orthogonal polynomial ensembles in probability theory, Probab. Surv., Volume 2 (2005), pp. 385-447 | DOI | MR | Zbl
[30] The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on , Adv. Math., Volume 188 (2004) no. 2, pp. 337-398 | DOI | MR | Zbl
[31] On the instability of the essential spectrum for block Jacobi matrices, Constr. Approx., Volume 48 (2018) no. 3, pp. 473-500 | DOI | MR | Zbl
[32] Applications of universality limits to zeros and reproducing kernels of orthogonal polynomials, J. Approx. Theory, Volume 150 (2008) no. 1, pp. 69-95 | DOI | MR | Zbl
[33] Universality limits for exponential weights, Constr. Approx., Volume 29 (2009) no. 2, pp. 247-275 | DOI | MR | Zbl
[34] A new approach to universality limits involving orthogonal polynomials, Ann. Math., Volume 170 (2009) no. 2, pp. 915-939 | DOI | MR | Zbl
[35] An update on local universality limits for correlation functions generated by unitary ensembles, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 12 (2016), 078, 36 pages | DOI | MR | Zbl
[36] Spectral edge behavior for eventually monotone Jacobi and Verblunsky coefficients, J. Spectr. Theory, Volume 9 (2019) no. 3, pp. 1115-1155 | DOI | MR | Zbl
[37] Orthogonal polynomials and absolutely continuous measures, Approximation theory, IV (College Station, Tex., 1983), Academic Press Inc., 1983, pp. 611-617 | MR | Zbl
[38] Asymptotics for orthogonal polynomials defined by a recurrence relation, Constr. Approx., Volume 1 (1985) no. 3, pp. 231-248 | DOI | MR | Zbl
[39] Strong and weak convergence of orthogonal polynomials, Am. J. Math., Volume 109 (1987) no. 2, pp. 239-281 | DOI | MR | Zbl
[40] Self-adjoint second-order difference equations with unbounded coefficients in the double root case, J. Difference Equ. Appl., Volume 20 (2014) no. 3, pp. 438-472 | DOI | MR | Zbl
[41] Spectra of some selfadjoint Jacobi operators in the double root case, Opusc. Math., Volume 35 (2015) no. 3, pp. 353-370 | DOI | MR | Zbl
[42] Discrete spectrum in a critical coupling case of Jacobi matrices with spectral phase transitions by uniform asymptotic analysis, J. Approx. Theory, Volume 161 (2009) no. 1, pp. 314-336 | DOI | MR | Zbl
[43] Spectral analysis of a class of Hermitian Jacobi matrices in a critical (double root) hyperbolic case, Proc. Edinb. Math. Soc., II. Ser., Volume 53 (2010) no. 1, pp. 239-254 | DOI | MR | Zbl
[44] Titchmarsh–Weyl formula for the spectral density of a class of Jacobi matrices in the critical case, Funct. Anal. Appl., Volume 55 (2021) no. 2, pp. 94-112 | DOI | MR | Zbl
[45] Orthogonal polynomials, Memoirs of the American Mathematical Society, 18, American Mathematical Society, 1979 no. 213, v+185 pages | DOI | MR | Zbl
[46] Orthogonal polynomials, recurrences, Jacobi matrices, and measures, Progress in approximation theory (Tampa, FL, 1990) (Springer Series in Computational Mathematics), Volume 19, Springer, 1992, pp. 79-104 | DOI | MR | Zbl
[47] A first-order spectral phase transition in a class of periodically modulated Hermitian Jacobi matrices, Opusc. Math., Volume 28 (2008) no. 2, pp. 137-150 | MR | Zbl
[48] The absolutely continuous spectrum of Jacobi matrices, Ann. Math., Volume 174 (2011) no. 1, pp. 125-171 | DOI | MR | Zbl
[49] On the spectrum of periodic perturbations of certain unbounded Jacobi operators, Opusc. Math., Volume 36 (2016) no. 6, pp. 807-818 | DOI | MR | Zbl
[50] The moment problem, Graduate Texts in Mathematics, 277, Springer, 2017, xii+535 pages | DOI | MR | Zbl
[51] Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes, J. Funct. Anal., Volume 205 (2003) no. 2, pp. 414-463 | DOI | MR | Zbl
[52] Uniform and smooth Benzaid–Lutz type theorems and applications to Jacobi matrices, Operator theory, analysis and mathematical physics (Operator Theory: Advances and Applications), Volume 174, Birkhäuser, 2007, pp. 173-186 | DOI | MR | Zbl
[53] The Christoffel–Darboux kernel, Perspectives in partial differential equations, harmonic analysis and applications (Proceedings of Symposia in Pure Mathematics), Volume 79, American Mathematical Society, 2008, pp. 295-335 | DOI | MR | Zbl
[54] Szegö’s theorem and its descendants. Spectral theory for perturbations of orthogonal polynomials, M. B. Porter Lectures, Princeton University Press, 2011, xii+650 pages | MR | Zbl
[55] An example of spectral phase transition phenomenon in a class of Jacobi matrices with periodically modulated weights, Operator theory, analysis and mathematical physics (Operator Theory: Advances and Applications), Volume 174, Birkhäuser, 2007, pp. 187-203 | DOI | MR | Zbl
[56] Periodic perturbations of unbounded Jacobi matrices II: Formulas for density, J. Approx. Theory, Volume 216 (2017), pp. 67-85 | DOI | MR | Zbl
[57] Periodic perturbations of unbounded Jacobi matrices III: The soft edge regime, J. Approx. Theory, Volume 233 (2018), pp. 1-36 | DOI | MR | Zbl
[58] Periodic perturbations of unbounded Jacobi matrices I: Asymptotics of generalized eigenvectors, J. Approx. Theory, Volume 216 (2017), pp. 38-66 | DOI | MR | Zbl
[59] Asymptotics of orthogonal polynomials with slowly oscillating recurrence coefficients, J. Funct. Anal., Volume 278 (2020) no. 3, 108326, 55 pages | DOI | MR | Zbl
[60] Asymptotic behavior of Christoffel–Darboux kernel via three-term recurrence relation II, J. Approx. Theory, Volume 261 (2021), 105496, 48 pages | DOI | MR | Zbl
[61] Asymptotic behaviour of Christoffel–Darboux kernel via three-term recurrence relation I, Constr. Approx., Volume 54 (2021) no. 1, pp. 49-116 | DOI | MR | Zbl
[62] Orthogonal polynomials with periodically modulated recurrence coefficients in the Jordan block case II (2021) (https://arxiv.org/abs/2107.11154)
[63] About essential spectra of unbounded Jacobi matrices, J. Approx. Theory, Volume 278 (2022), 105746, 47 pages | DOI | MR | Zbl
[64] Absolute continuity of spectral measure for certain unbounded Jacobi matrices, Advanced Problems in Constructive Approximation, Birkhäuser, 2002, pp. 255-262 | DOI | Zbl
[65] Universality and fine zero spacing on general sets, Ark. Mat., Volume 47 (2009) no. 2, pp. 361-391 | DOI | MR | Zbl
[66] Asymptotics for orthogonal polynomials and three-term recurrences, Orthogonal polynomials (Columbus, OH, 1989) (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 294, Kluwer Academic Publishers, 1990, pp. 435-462 | MR | Zbl
[67] Orthogonal polynomials and Painlevé equations, Australian Mathematical Society Lecture Series, 27, Cambridge University Press, 2018, xii+179 pages | DOI | MR | Zbl
[68] Strong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory, Constr. Approx., Volume 25 (2007) no. 2, pp. 125-175 | DOI | MR | Zbl
[69] Critical edge behavior and the Bessel to Airy transition in the singularly perturbed Laguerre unitary ensemble, Commun. Math. Phys., Volume 332 (2014) no. 3, pp. 1257-1296 | DOI | MR | Zbl
[70] Universality for eigenvalue correlations from the unitary ensemble associated with a family of singular weights, J. Math. Phys., Volume 52 (2011) no. 9, 093302, 14 pages | DOI | MR | Zbl
[71] Asymptotic behavior of orthogonal polynomials. Singular critical case, J. Approx. Theory, Volume 262 (2021), 105506, 34 pages | DOI | MR | Zbl
[72] Uniform asymptotics of a system of Szegö class polynomials via the Riemann–Hilbert approach, Anal. Appl., Singap., Volume 9 (2011) no. 4, pp. 447-480 | DOI | MR | Zbl
Cité par Sources :