Étale difference algebraic groups
Annales de l'Institut Fourier, Volume 74 (2024) no. 4, pp. 1451-1519.

Étale difference algebraic groups are a difference analog of étale algebraic groups. Our main result is a Jordan–Hölder type decomposition theorem for these groups. Roughly speaking, it shows that any étale difference algebraic group can be build up from simple étale algebraic groups and two finite étale difference algebraic groups. The simple étale algebraic groups occurring in this decomposition satisfy a certain uniqueness property.

Les groupes algébriques aux différences étales sont des analogues aux différence des groupes algébriques étales. Le résultat principal de cet article est un théorème de décomposition de type Jordan–Hölder pour ces groupes. Nous montrons que tout groupe algébrique aux différences étale peut être construit à partir de groupes algébriques étales simples et de deux groupes algébriques aux différences étales finis. Les groupes algébriques étales simples apparaissant dans cette décomposition satisfont une certaine propriété d’unicité.

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/aif.3621
Classification: 14L15, 12H10, 37B05
Keywords: Difference algebraic group, étale algebraic group, expansive endomorphism, profinite group.
Mot clés : Groupe algébrique aux différences, groupe algébrique étale, endomorphisme expansif, groupe profini.
Wibmer, Michael 1

1 Institute of Analysis and Number Theory Graz University of Technology Kopernikusgasse 24 8010 Graz (Austria)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2024__74_4_1451_0,
     author = {Wibmer, Michael},
     title = {\'Etale difference algebraic groups},
     journal = {Annales de l'Institut Fourier},
     pages = {1451--1519},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {74},
     number = {4},
     year = {2024},
     doi = {10.5802/aif.3621},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3621/}
}
TY  - JOUR
AU  - Wibmer, Michael
TI  - Étale difference algebraic groups
JO  - Annales de l'Institut Fourier
PY  - 2024
SP  - 1451
EP  - 1519
VL  - 74
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3621/
DO  - 10.5802/aif.3621
LA  - en
ID  - AIF_2024__74_4_1451_0
ER  - 
%0 Journal Article
%A Wibmer, Michael
%T Étale difference algebraic groups
%J Annales de l'Institut Fourier
%D 2024
%P 1451-1519
%V 74
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3621/
%R 10.5802/aif.3621
%G en
%F AIF_2024__74_4_1451_0
Wibmer, Michael. Étale difference algebraic groups. Annales de l'Institut Fourier, Volume 74 (2024) no. 4, pp. 1451-1519. doi : 10.5802/aif.3621. https://aif.centre-mersenne.org/articles/10.5802/aif.3621/

[1] Bachmayr, Annette; Wibmer, Michael Algebraic groups as difference Galois groups of linear differential equations, J. Pure Appl. Algebra, Volume 226 (2022) no. 2, 106854, 26 pages | DOI | MR | Zbl

[2] Borceux, Francis; Janelidze, George Galois theories, Cambridge Studies in Advanced Mathematics, 72, Cambridge University Press, 2001, xiv+341 pages | DOI | MR | Zbl

[3] Bourbaki, Nicolas Elements of Mathematics. Algebra. II. Chapters 4–7, Springer, 1990, vii+461 pages (translated from the French by P. M. Cohn and J. Howie) | MR | Zbl

[4] Boyle, Mike; Schraudner, Michael d group shifts and Bernoulli factors, Ergodic Theory Dyn. Syst., Volume 28 (2008) no. 2, pp. 367-387 | DOI | MR | Zbl

[5] Buium, Alexandru Differential algebraic groups of finite dimension, Lecture Notes in Mathematics, 1506, Springer, 1992, xvi+145 pages | DOI | MR | Zbl

[6] Bywaters, Timothy P.; Glöckner, Helge; Tornier, Stephan Contraction groups and passage to subgroups and quotients for endomorphisms of totally disconnected locally compact groups, Isr. J. Math., Volume 227 (2018) no. 2, pp. 691-752 | DOI | MR | Zbl

[7] Chatzidakis, Zoé; Hrushovski, Ehud An invariant for difference field extensions, Ann. Fac. Sci. Toulouse, Math., Volume 21 (2012) no. 2, pp. 217-234 | DOI | Numdam | MR | Zbl

[8] Cohn, Richard M. Difference algebra, Interscience Publishers, 1965, xiv+355 pages | MR | Zbl

[9] Di Vizio, Lucia; Hardouin, Charlotte; Wibmer, Michael Difference Galois theory of linear differential equations, Adv. Math., Volume 260 (2014), pp. 1-58 | DOI | MR | Zbl

[10] Fagnani, Fabio Some results on the classification of expansive automorphisms of compact abelian groups, Ergodic Theory Dyn. Syst., Volume 16 (1996) no. 1, pp. 45-50 | DOI | MR | Zbl

[11] Giordano Bruno, Anna; Virili, Simone Topological entropy in totally disconnected locally compact groups, Ergodic Theory Dyn. Syst., Volume 37 (2017) no. 7, pp. 2163-2186 | DOI | MR | Zbl

[12] Glöckner, Helge; Raja, Chandiraraj R. E. Expansive automorphisms of totally disconnected, locally compact groups, J. Group Theory, Volume 20 (2017) no. 3, pp. 589-619 | DOI | MR | Zbl

[13] Jantzen, Jens Carsten Representations of algebraic groups, Pure and Applied Mathematics, 131, Academic Press Inc., 1987, xiv+443 pages | MR | Zbl

[14] Kitchens, Bruce P. Expansive dynamics on zero-dimensional groups, Ergodic Theory Dyn. Syst., Volume 7 (1987) no. 2, pp. 249-261 | DOI | MR | Zbl

[15] Kitchens, Bruce P. Symbolic dynamics. One-sided, two-sided and countable state Markov shifts, Universitext, Springer, 1998, x+252 pages | DOI | MR | Zbl

[16] Kitchens, Bruce P.; Schmidt, Klaus Automorphisms of compact groups, Ergodic Theory Dyn. Syst., Volume 9 (1989) no. 4, pp. 691-735 | DOI | MR | Zbl

[17] Kolchin, Ellis R. Differential algebraic groups, Pure and Applied Mathematics, 114, Academic Press Inc., 1985, xvii+271 pages | MR | Zbl

[18] Levin, Alexander Difference algebra, Algebra and Applications, 8, Springer, 2008, xii+519 pages | DOI | MR | Zbl

[19] Lind, Douglas; Marcus, Brian An introduction to symbolic dynamics and coding, Cambridge University Press, 1995, xvi+495 pages | DOI | MR | Zbl

[20] Milne, James S. Algebraic groups. The theory of group schemes of finite type over a field, Cambridge Studies in Advanced Mathematics, 170, Cambridge University Press, 2017, xvi+644 pages | DOI | MR | Zbl

[21] Ovchinnikov, Alexey; Wibmer, Michael σ-Galois theory of linear difference equations, Int. Math. Res. Not. (2015) no. 12, pp. 3962-4018 | DOI | MR | Zbl

[22] Reid, Colin D. Endomorphisms of profinite groups, Groups Geom. Dyn., Volume 8 (2014) no. 2, pp. 553-564 | DOI | MR | Zbl

[23] Ribes, Luis; Zalesskii, Pavel Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 40, Springer, 2010, xvi+464 pages | DOI | MR | Zbl

[24] Schmidt, Klaus Dynamical systems of algebraic origin, Progress in Mathematics, 128, Birkhäuser, 1995, xviii+310 pages | MR | Zbl

[25] Shah, Riddhi Expansive automorphisms on locally compact groups, New York J. Math., Volume 26 (2020), pp. 285-302 | MR | Zbl

[26] The Stacks Project Authors The Stacks project, 2022 (https://stacks.math.columbia.edu)

[27] Sutherland, Wilson A. Introduction to metric and topological spaces, Oxford University Press, 2009, xii+206 pages | DOI | MR | Zbl

[28] Szamuely, Tamás Galois groups and fundamental groups, Cambridge Studies in Advanced Mathematics, 117, Cambridge University Press, 2009, x+270 pages | DOI | MR | Zbl

[29] Tomašić, Ivan; Wibmer, Michael Strongly étale difference algebras and Babbitt’s decomposition, J. Algebra, Volume 504 (2018), pp. 10-38 | DOI | MR | Zbl

[30] Tomašić, Ivan; Wibmer, Michael Difference Galois theory and dynamics, Adv. Math., Volume 402 (2022), 108328, 61 pages | DOI | MR | Zbl

[31] Waterhouse, William C. Introduction to affine group schemes, Graduate Texts in Mathematics, 66, Springer, 1979, xi+164 pages | DOI | MR | Zbl

[32] Wibmer, Michael Almost-simple affine difference algebraic groups, Math. Z., Volume 299 (2021) no. 1-2, pp. 473-526 | DOI | MR | Zbl

[33] Wibmer, Michael Expansive dynamics on profinite groups, Fundam. Math., Volume 256 (2022) no. 1, pp. 77-112 | DOI | MR | Zbl

[34] Wibmer, Michael Finiteness properties of affine difference algebraic groups, Int. Math. Res. Not. (2022) no. 1, pp. 506-555 | DOI | MR | Zbl

[35] Willis, George A. The nub of an automorphism of a totally disconnected, locally compact group, Ergodic Theory Dyn. Syst., Volume 34 (2014) no. 4, pp. 1365-1394 | DOI | MR | Zbl

[36] Willis, George A. The scale and tidy subgroups for endomorphisms of totally disconnected locally compact groups, Math. Ann., Volume 361 (2015) no. 1-2, pp. 403-442 | DOI | MR | Zbl

Cited by Sources: