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NOTE ON COLEMAN’S FORMULA FOR THE
ABSOLUTE FROBENIUS ON FERMAT CURVES

by Tomokazu KASHIO

ABSTRACT. — Coleman calculated the absolute Frobenius on Fermat curves ex-
plicitly. In this paper we show that a kind of p-adic continuity implies a large part
of his formula. To do this, we study a relation between functional equations of the
gamma function, monomial relations on CM-periods, and their p-adic analogues.

RESUME. Coleman a calculé explicitement le Frobenius absolu sur les courbes
de Fermat. Dans cet article, nous montrons qu’une sorte de continuité p-adique
implique une grande partie de sa formule. Pour ce faire, nous étudions une relation
entre les équations fonctionnelles de la fonction gamma, les relations monomiales
sur CM-périodes, et leurs analogues p-adiques.

1. Introduction

We modify Euler’s gamma function I'(z) into

Fae) = 2 =exp(¢'0.2) (2>0)

and focus on its special values at rational numbers. Here we put (s, z) =

Y reo(z+ k)75 to be the Hurwitz zeta function. The last equation is due to

Lerch. One has a“simple proof” in [14, p. 17]. The gamma function enjoys

some functional equations:

(1.1)  Euler’s Reflection formula: Fo(z) (1l —2) = .;,
2sin7mz

(1.2)  Gauss’ Multiplication formula:

d—1 k
IIT (z + d) =d? %7 (dz) (deN).
k=0

Keywords: Absolute Frobenius, Fermat curves, Gross—Koblitz formula, p-adic gamma
function, CM-periods, p-adic periods.
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2 Tomokazu KASHIO

For proofs, see [1, §3, 4]. The main topic of this paper is a relation between
such functional equations and monomial relations of CM-periods, and its
p-adic analogue. We introduce some notations.

DEFINITION 1.1. — Let K be a CM-field. We denote by Iy the Q-vector
space formally generated by all complex embeddings of K:

IKZ: @ Q~0’.

o€Hom(K,C)
We identify a subset S C Hom(K, C) as an element ) g o € Ixc. Shimura’s

period symbol is the bilinear map

pK:IK XIK%CX/@X

characterized by the following properties (P1), (P2).

(P1) Let A be an abelian variety defined over Q, having CM of type
(K,E). Namely, for each o0 € Hom(K,C), there exists a non-zero
“K-eigen” differential form w, of the second kind satisfying

k*(wo) = o(k)w, (k€ K),

where k* denotes the action of k € K via K = End(A) ®z Q on the
de Rham cohomology H}p(A,C). Then we have

= = {0 € Hom(K,C) | w, is holomorphic},

7! [ws (0 €E)

mod @X
fv Wo (0 € Hom(K,C) — )

pi(0,E) E{

for an arbitrary closed path v C A(C) satisfying fv wy # 0.
(P2) Let p be the complex conjugation. Then we have

pi (o, T)pr(poo,7) =pk(o,T)px(o,poT) =1 mod @X
(0,7 € Hom(K, C)).

We note that, strictly speaking, Shimura’s px in [13, §32] is a bilinear
map on EBaeHom(K,C) Z - 0. The period symbol also enjoys the following
relations:

(P3) Let ¢: K’ 2 K be an isomorphism of CM-fields. Then we have

pi(0,7) =pg/(cot, 7o) mod Q" (0,7 € Hom(K, C)).

ANNALES DE L’INSTITUT FOURIER



NOTE ON COLEMAN’S FORMULA 3

(P4) Let K C L be a field extension of CM-fields. We define two linear
maps defined as

Res: I, —» Ik, o~ o|lg (¢ € Hom(L,C)),
Inf: I — I, o= Y & (0€Hom(K,C)).

s€Hom(L,C)
o|lk=0
Then we have

k(Res(X),Y) = pr(X,Inf(Y)) mod Q" (X €1, Y € Ig).

The following results by Gross—Rohrlich and the above relations (P3),
(P4) provide an explicit formula [14, Theorem 2.5, Chap. III] on px for
K =Q((y) (Cy =¥, N > 3). We can rewrite it in the form (1.5) by the
arguments in [8, §6]. Let o, € Gal(Q(¢n)/Q) ((b, N) = 1) be defined by
op(¢n) = (&, (a) € (0,1) denote the fraction part of « € Q — Z.

THEOREM 1.2 ([5, Theorem in Appendix]). — Let Fy : 2V + ¢y =1
be the Nth Fermat curve, 1, s = 2" 1y*~Ndz its differential forms of the
second kind (0 < r,8s < N, r 4+ s # N). Then we have for any closed path
v on Fx(C) with [ 15 # 0

TG o
(13) [/nr,s (r g) dQ(CN) :

THEOREM 1.3 ([5, §2], [14, §2, Chap. IIT]). — The CM-type correspond-
ing to ny s Is

L<b<N, (b,N)=1,

(1.4) e =10 <bNr>+<?\«;>+<b(NNT5>>:1

That is, we have

Wﬁlfvnr,s (r+s<N) —x

pQ(CN)(id, Er,s) = {f . (7- s N) mod Q .
5 Thrys

COROLLARY 1.4 ([8, Theorem 3]). — We have for any £ € Q — 7Z

(1.5) Foo(%)zﬂ%_%)p(@(( id, Z (1 < >)-0b mod Q.
(b,N)=

Here the sum runs over all b satisfying 1 <b< N, (b,N) = 1.

TOME 0 (0), FASCICULE 0



4 Tomokazu KASHIO

Note that (1.5) holds true even if (a, N) > 1, essentially due to (P4).
Although the following is just a toy problem, we provide its proof by using
the period symbol, in order to explain the theme of this paper: we may
say that some functional equations of the gamma function “correspond” to
some monomial relations of CM-periods.

PROPOSITION 1.5 (A toy problem). — The explicit formula (1.5) im-
plies the following “functional equations mod@>< “on T'(f):

« . ”. a N—-a\ _ —x
Reflection formula”: I's (N) T's ( N > =1 modQ,

d—1
. 9. . 5 a k dCL —x
“Multiplication formula”: kli[OFoo (N + d> =TIy (N> mod Q.
Proof. — “Reflection formula” follows from (P2) immediately. Concern-
ing “Multiplication formula”, we may assume that d | N. Under the ex-
pression (1.5), “Multiplication formula” is equivalent to

d—1
o ' 1 ab kb
ﬂ-Zk:02 <N+d>pQ(CN) id, Z <22_<N+d>> -

(b,N)=1 \k=0

1_jad . 1 dab
=2 Fpg (1d D2 <2<N>>'Ub

(b,N)=1

This follows from the multiplication formula

(1.6) :i_;& <x + Z) = B (dz)

for the 1st Bernoulli polynomial By (z) =z — 3. O

The aim of this paper is to study a p-adic analogue of such “correspon-
dence”. More precisely, we shall characterize the p-adic gamma function by
its functional equations and some special values. Then we show that the
period symbol and its p-adic analogue satisfy the corresponding properties
to such functional equations. As an application, we provide an alternative
proof of a large part of Coleman’s formula (Theorem 2.4(1)): originally,
Coleman’s formula was proved by calculating the absolute Frobenius on all
Fermat curves. We shall see that it suffices to calculate it on only one curve
(Remark 3.7).

Remark 1.6. — Yoshida and the author formulated conjectures in [8, 9,
10] which are generalizations of Coleman’s formula, from cyclotomic fields

ANNALES DE L’INSTITUT FOURIER



NOTE ON COLEMAN’S FORMULA 5

to arbitrary CM-fields: Coleman’s formula implies “the reciprocity law on
cyclotomic units” [7] and “the Gross-Koblitz formula on Gauss sums” [3, 6]
simultaneously. The author conjectured a generalization [8, Conjecture 4]
of Coleman’s formula which implies a part of Stark’s conjecture and a gen-
eralization of (the rank 1 abelian) Gross-Stark conjecture simultaneously.
The results in this paper (in particular Remark 3.7) are very important
toward this generalization, since we know only a finite number of algebraic
curves (e.g., [2]) whose Jacobian varieties have CM by CM-fields which are
not abelian over Q.

The outline of this paper is as follows. First we introduce Coleman’s
formula [4] for the absolute Frobenius on Fermat curves in Section 2. The
author rewrote it in the form of Theorem 2.4: roughly speaking, we write
Morita’s p-adic gamma function I'j, in terms of Shimura’s period symbol
Dk, its p-adic analogue pg ,, and modified Euler’s gamma function I'o.
In Section 3, we show that some functional equations almost characterize
I, (Corollary 3.3), and the corresponding properties ((3.7), Theorem 3.5)
hold for px, P p, I'so- Then we see that a large part (Corollary 3.6) of Cole-
man’s formula follows automatically, without explicit computation, under
assuming certain p-adic continuity properties. Unfortunately, our results
have a root of unity ambiguity although the original formula is a complete
equation, since some definitions are well-defined only up to roots of unity.
In Section 4, we confirm that we can show (at least, a part of) needed p-adic
continuity properties relatively easily.

2. Coleman’s formula in terms of period symbols

Coleman explicitly calculated the absolute Frobenius on Fermat
curves [4]. The author rewrote his formula in [7, 8] as follows.

2.1. p-adic period symbol

Let p be a rational prime, C, the p-adic completion of the algebraic
closure Q, of Q,, and ps the group of all roots of unity. For simplicity,
we fix embeddings Q — C, C,, and consider any number field as a subfield
of each of them. Let B.s C Bgqr be Fontaine’s p-adic period rings. We
consider the composite ring Bcris@ C Bggr- Let A be an abelian variety

TOME 0 (0), FASCICULE 0



6 Tomokazu KASHIO

with CM defined over @, v a closed path on C A(C), and w a differential
form of the second kind of A. Then the p-adic period integral

/ Hl ) X HdR(A Q) — Bcrlb(@pv (’77 '_>/

is defined by the comparison isomorphisms of p-adic Hodge theory, instead
of the de Rham isomorphism (e.g., [8, §5.1], [7, §6]). Here HZ denotes the
singular (Betti) homology. Then, in a similar manner to px, we can define
the p-adic period symbol

PKp: IK X IK — (Bcris@p - {0})Q/@X
satisfying p-adic analogues of (P1), (P2), (P3), (P4). Here we put (BerisQp—
{0})? := {2 € Bar | In € N s.t. 2" € BuisQ, — {0}}. Moreover the “ratio”

[/ e / “’”} € (T x (BassQy — {01))/Q”

depends only on ¢ € Hom(K, C) and the CM-type Z. That is, if we replace
A,we,y with A, w!  ~' for the same E, o, then we have

fry/ wlo f’y/7p wé’ —X

f v Yo f v,p Yo
Therefore we may consider the following ratio of the symbols [px : px pl,
which is well-defined up to fioo.

PROPOSITION 2.1 ([8, Proposition 4]). — There exists a bilinear map

[prc : Prcpl: Tic % Tic = (€ % (Berss@p = {0) %)/ (t100 % 1100)Q
satisfying the following.
(1) Let A,E,0,wy,v be as in (P1). Then

[Pk : pK,P](J’ E)

{(2) L wo: (2mi);t [ wo] (0 €E)
.

(0 € Hom(K,C) — E)

W,
il

mod (oo X uoo)@x.
Here (271), € Beis Is the p-adic counterpart of 27i defined in, e.g.,
8, §5.1].
(2) We have for o,7 € Hom(K, C) and for the complex conjugation p
P Pl (0,7) - [P 2 Prpl(poo,m) =1 mod (oo X oe)Q

—X

[prc 1 P pl(0,7) - [P i PEpl(0,poT) =1 mod (Hoo X poo)Q

ANNALES DE L’INSTITUT FOURIER



NOTE ON COLEMAN’S FORMULA 7

(3) Let v: K' =2 K be an isomorphism of CM-fields. Then we have for
o,7 € Hom(K,C)

px i p)(0:7) = [P prcrpl(00 1,7 00) mod (ftoo X f100)Q

(4) Let K C L be a field extension of CM-fields. Then we have for
X e IL, Y € Ik

[Pk : prc.p) Res(X),Y) = [pr : prp) (X, Inf(Y)) mod (poo X f100)Q

2.2. Coleman’s formula

Theorem 2.4 below is essentially due to Coleman [4, Theorems 1.7, 3.13].
Note that the original formula does not have a root of unity ambiguity.
First we prepare some notations. We assume that p is an odd prime.

DEFINITION 2.2.
(1) Let C, == {z € CJ | |z|, = 1}. We fix a group homomorphism
exp,: Cp — (Czl)

k
which coincides with the usual power series exp,(z) = ;" %5 on
the convergence region. For a € C;, 8 € Cp, we put

ol = exp,,(3log, a)

with log,, Iwasawa’s p-adic log function.

(2) For z € C, we put
2" = exp,(log,(2)), 2= pordez
Here we define ord, z € Q by |z|, = |p\§rd“. Note that z = 2” mod
oo (2 € C)).

3) We define the p-adic gamma function on Q,, as follows.
p
(a) On Z,, I';y(2) denotes Morita’s p-adic gamma function which
is the unique continuous function I'y: Z,, — Z, satisfying

Iyn)=-n" J[ &k (meN).

1<k<n—1, ptk

TOME 0 (0), FASCICULE 0



8 Tomokazu KASHIO

b) On Q, — Z,, we use I'y: Q, — Z, — OX defined
p p p {p p Q

in [7, Lemma 4.2], which is a continuous function satisfying

Tyl 4 1) = 2°Ty(2), Tp(22) = 27T, ()T, ( * §> '

Such a continuous function on Q, — Z, is unique up to multi-
plication by e
(4) For z € Z,, we define 2y € {1,2,...,p}, z1 € Zy, by

Z =29+ pz.

Note that when p | z, we put zy = p, instead of 0.
(5) Let W, be the Weil group defined as

W, ={r e Gal(@/(@p) | T|Q'Lpu" = agcg'r with degT € Z}.

Here Q" denotes the maximal unramified extension of Qy, o, the
Frobenius automorphism on Qy".

(6) We define the action of W, on QN [0, 1) by identifying QN [0,1) =
loo- Namely

T(%) ::% it T(Ch)=Ck (TEW,).

(7) Let ®es be the absolute Frobenius automorphism on Bes. We
consider the following action of W, on BeyisQp = Beyis @gur Q,:

=0T o1 (reW,).

cris

(8) For & € QN (0,1) we put

p (%> . Foo() -.(217Ti)%_<ﬁ'>pQ(<{\,)7p (ide(b,N):l (% - <aﬁb>) Ub)
(27i)2 <N>pQ(<N) (1d’2(b,N):1 (3 - <aﬁb>) Ub)
€ (BerisQp — {01)%/p1cc.-
This definition makes sense since
Lo ()
(271)%_<%>p<@(<w) (id, Z(b,N):l (% - <aﬁb>) Ub)

by (1.5) and the ratio [px : pkp| is well-defined up to pic by
Proposition 2.1.

€ @ - Bcris@p

ANNALES DE L’INSTITUT FOURIER



NOTE ON COLEMAN’S FORMULA 9

Remarks 2.3.

(1) Let pp—1 be the group of all (p — 1)st roots of unity, p” = {p" |
n€Z}, 1+ pZ, :={1+pz |z € Zy}. Then we have the canonical

decomposition
Q;; — Hp—1 X pZ X 14 pr,
> — (w(zp—ordpz) , pordpz ; Z*),

where w denotes the Teichmiiller character. The maps z — z*, 2’

provide a similar (but non-canonical) decomposition of C). More-

b

over, we note that the maps z expp(z),z*,z are continuous

homomorphisms.
(2) We easily see that

7(2) = (pz), M) =2xn4+1 (z€ Zpy N (0,1), 7€ Wy, degt =1).
THEOREM 2.4 ([8, Theorem 3]). — Let p be an odd prime.
(1) Assume that z € Z,) N (0,1). Then we have
P(z)
@ (P(r71(2)))
(2) Assume that z € (Q — Z,)) N (0,1). Then we have
Ly(r(2)) _ p 72 p(7(2))
Ip(z) @ (P(2))
Remark 2.5. — As a result, we see that the right-hand sides of Theo-
rem 2.4(1), (2) are p-adic continuous on z, (z,7(z)) respectively, since the

left-hand sides are so. We use only the p-adic continuity in the next section,
in order to recover Theorem 2.4(1).

1

Lp(2) Elﬁ_T%m mod fiee (T € W, degT =1).

mod peo (T € Wp).

3. Main results

Morita’s p-adic gamma function I',: Z, — Z,; is the unique continuous
function satisfying

(3.1) r,(0) =1, I'y(z+1) _ )z (z € Z)),

I'p(2) -1 (z €pZ,).
In this section, we study other functional equations characterizing I',, and
provide an alternative proof of Coleman’s formula in the case z € Z,).
Strictly speaking, we only “assume” that the right-hand sides of Theo-
rem 2.4(1), (2) are continuous on z, (z,7(z)) respectively (of course, this
is correct). Then we can recover a “large part” (Corollary 3.6) of Theo-
rem 2.4(1). We assume that p is an odd prime.

TOME 0 (0), FASCICULE 0



10 Tomokazu KASHIO

3.1. A characterization of Morita’s p-adic gamma function

I',(z) satisfies the following p-adic analogues of multiplication formulas,
which we consider only up to roots of unity in this paper. For the detailed
formulation and its proof, see [11, “Basic properties of I',” in Section 2 of
Chapter IV].

PROPOSITION 3.1. — Let d € N with p { d. Then we have for z € Z,
d—1 1
(3.2) H r, (z + d) = @D (d2) mod fis.
k=0

Note that if p | d, then z—l—s is not in the domain of definition of Morita’s
I',. In the rest of this subsection, we show that multiplication formulas (3.2)
and some conditions characterize Morita’s p-adic gamma function (at least

up 0 fico)-

PROPOSITION 3.2. — Assume a continuous function f(z): Z, — CJ
satisfies
d—1 3
(3.3) kl;[of <Z + d) = f(dz) mod us (ptd).

Then the following holds.
(1) LD 1mod e depends only on ordy z.

f(2)
(2) The values
o (f(p’“H))b
. )

characterize the function f(z) up to fi. More precisely, for z € Z,,
we write the p-adic expansion of z — 1 as

k=0

Then we have

k—1
. 1 k—1—i(
flz) = o 7 mod ps  Wwith g = cy, H c (=1

k=0 i=0
Conversely, assume that

—1

(3.4) f(l—l—Zxkpk)EHaikpz mod piee (2 €{0,1,...,p—1})
k=0 k=0

for constants oy, € C) satisfying ay — 1 (k — o). Then f(z) satisfies the
functional equations (3.3).

ANNALES DE L’INSTITUT FOURIER



NOTE ON COLEMAN’S FORMULA 11

Proof. — We suppress modjis. Assume (3.3). Replacing z with z + %,
we obtain szl f(z+ %) = f(dz+1). It follows that fgf(;l) = f(fd(f;)l).
That is, ‘

f(z+1)

f(2)
Then the assertion (1) is clear. Let ¢ == (g(p*))’, an == zo+z1p+- - -+T,p"
(0 < x; < p—1). We easily see that

9(2) = =g(dz) (ptdeN).

#{y=1,2,...,a, |ordpy=Fk} =z, + Z xip’;k*l(pfl) (0<k<n).
i=k-+1

Then we can write
flan +1) = (f(1)g(1)g(2) -+ g(an))” = fF(1) ag’af - apr

k—1—1
with ay = ¢ Hf:_ol ot =1 Since lim,,_, o f(an + 1) converges, so do
lim, o0 f(a, +1)” and HZO:O a*. Moreover we can write

f2)=f@) [T e
k=0

Consider the case of d = 2, z = 3 of (3.3): f(
noting that —3 = 373° ) 2-1pF, we obtain

1 o bt oo
1f<2) E]"(l)kl;[oo%2 , that is, f(l)zkljoak z,

Then the assertion (2) is also clear.

Next, assume (3.4). When ord, z = k, we see that fgf(;l) = ag% (resp.

ap) if k > 0 (resp. k = 0). In particular, g(z) = fif(j)l) mod o, depends

1)f(1) = f(1). Therefore,

only on ord, z. When z+ 2’ = 1, the p-adic expansions z — 1 = ZZO:O zip”,
2 —1=Y72, x,pk satisfy zy + 2}, = p — 1 for any k. Then we have

2
Therefore the case z = 0 of (3.3) holds true since we have (HZ: f(g)) =
HZ;} f(EYf(1 — %) = 1. Then (3.3) for z € N follows by mathematical

TOME 0 (0), FASCICULE 0
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induction on z noting that

§f<z+1+ ) Hf(z—l— ) (+Z>,
fldz+d) = f(dz)g(dz) - g(dz + d — 1),

k
ord, (dz + k) = ord, (z + d) .

Since N is dense in Z,, we see that (3.3) holds for any z € Z,. O

The following corollary provides a nice characterization of I'y(z) mod fi00
in terms of functional equations and one or two special values.

COROLLARY 3.3. — Assume a continuous function f(z): Z, — C} sat-
isfies

d—1
[17(s+5)=st@) modpe wha)
k=0

o (U0

Then the following equivalences hold:

and put

1) eco=c1=- & f(z) = cg_% mod fio-
(@) cr=c= & f(2) = F(er /o) mod s

Proof. — We suppress modpus.. For (1), assume that ¢ = ¢; = ---
Then

k—1—1 k
1)
—ck”c (P :cp.

Hence we have by Proposition 3.2

— oo k -1 _k
—1 y 1 1
wk*T Zk_—of”“’ z P =145 -2
<1+§ mkp> =cg =cy =cy 2.

k=0

The opposite direction is trivial by definition ¢, = (£ gf’(;j)l) )?. For (2), the

k . —
assumption ¢; = ¢y = -+ - implies apg = ¢o, = (cl/co)pk ' (k>1).In
this case we have

oo k_p—l_k o _ 1 ohea
o, Tkp" =I5t cepFloE=lp
(1—1— E TP > —c0 (c1/co)Ler=1 2

since Y oo, zppt Tl = —20 — 4, O

ANNALES DE L’INSTITUT FOURIER



NOTE ON COLEMAN’S FORMULA 13
3.2. Alternative proof of a part of Coleman’s formula
We fix 7 € W, with deg7 =1 and put

2) = s PR B
(3.5) Gi(?): (p ‘I)T(P(T_l(z)))) (2 € Zpy N (0,1)),

p(‘r"l(z)—z)ordpzp(z) ¢
Gao(z) = B(P(r1(2))) (€ (Q- Z(p)) N (0,1)).

Here we added ( )’ to the right-hand sides of Coleman’s formulas (Theo-
rem 2.4); in order to resolve a root of unity ambiguity, only superficially.
Note that G corresponds to Theorem 2.4(2) replaced z with 771(2).

By Theorem 2.4(1), we see that G is continuous for the p-adic topology.
G5 is not p-adically continuous in the usual sense, on the whole of (Q —
Zpy) N (0,1) (for details, see Remark 3.8). Theorem 2.4(1) only implies the
following “continuity”:

(3.6) Gi(z) is continuous for the relative topology
induced by z € (Q — Z,)) N (0,1) = Qp x Qp, 2 = (2,7 (2)).

In Corollary 3.6, oppositely, we show that the p-adic continuity of G1, G2

implies a “large part”
Gi(z) = az_%bzl+%Fp(z) mod fioe  (a,b € C)
of Theorem 2.4(1):
Gi(z) =Tp(z) mod fiee.

Besides we shall show the continuity of G1(z) in Section 4, independently
of Theorem 2.4.

Hereinafter in this section, we forget Theorem 2.4. We assume the fol-
lowing Assumption instead.

ASSUMPTION 3.4. — G (%) is p-adically continuous and Go(z) is contin-
uous in the sense of (3.6). In particular, we regard G as a p-adic continuous
function:

Gl(Z)Z Zp — (Cp.

First we derive “multiplication formula”:

d—1
(3.7) H Gy (z + Z) = d' 4=t G (dz) mod pes (pfdeN)
k=0

independently of Theorem 2.4.

TOME 0 (0), FASCICULE 0



14 Tomokazu KASHIO

Proof of (3.7). — We suppress modpe. Let 2z € Z,) N (0, 4). By Defi-
nition 2.2(8) and (3.5) we can write
im0 Cr(z 4 5)
G1(dz)
d— _ —1 1 -1(yak
N G L Poo (' (d2)) kmop? T )
Poo(d) koo Too(m (24 8)) ) P71

x “products of classical or p-adic periods”,

where the “products of classical or p-adic periods” become trivial by (1.6),
as we saw in the proof of Proposition 1.5. Besides we see that

k 7 dz) k
1 — — — —
{7’ <z—|— )‘k—(),...,d 1} { + ’k 0,...,d 1}.

To see this, it suffices to show that {771(¢%¢¥) | kK = 0,...,d — 1} and
{Tﬁl(Cf\lﬁ)%Cﬁ | k. =0,...,d — 1} coincide with each other. We easily see
that both of them are the inverse image of 7=!(¢%#) under the dth power
map floo — foo, T — . Hence we obtain
im0 G1(z 1 5)
G1(dz)

_ 1(dz)
ISP eth) o ( P (7 (d2)) ) Mg pd= 5
+5

Foo(dz) Z;él—\ (T*ld(dz) pE—T —1(dz)

_ df—dz . (I)T(d'rfl(dz)—%) 1= d%—dz . drfl(dz)—%

by (1.2), (1.6). For the last “=", we note that ®, acts on Q, 3 d” (@9)-3
as 7. By Remark 2.3(2), we have 77!(dz) = (dz); + 1. Then the assertion
is clear. m
n b
Furthermore we can show that ¢, = (f Scp(pjf)l)> for f(z) = ?;((j)) is
constant, at least for n > 1.
THEOREM 3.5. — We assume Assumption 3.4 and put f(z) = ?;((i))

(1) The following functional equations hold.

d—1
Hf(HZ)—f(dZ) mod i (p1d).
k=0

n b
(2) We have ¢; = cy = --- for ¢, = (f(p +1)) .
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NOTE ON COLEMAN’S FORMULA 15

Proof. — We suppress mod pio. (1) follows from (3.2), (3.7). For (2), we
need for z € pZ,

Gi(pz)Gi(z+1) _ Dp(pz)lp(z+1)
Gi(pz +1)Gi(2) — Tp(pz+ 1)Tp(2)

Since the right-hand side is equal to {i Eigg by (3.1), it suffices to show
that

G1(pz)G1(z+1)
Gi(pz +1)G1(2)

=1 (z€pZ,).

Note that we can not use the definition (3.5) directly since z, z+1,pz, pz+1
are not contained in (0,1) simultaneously. Therefore a little complicated

argument is needed as follows. Let z € Z,) N (0, %) By Remark 2.3(2), we
have

7(2) = (pz) = pz, hence 771 (pz) = 2.

We can write

H = P
1(2) G1(p2)
= prH D ) - (@) T ek ) e T e B
P(z)P(z+1)--- P(z + 54)
X

P(pz)
x @, ( P(z) > |
P(T_l(Z))P(T—l(z + %)) . P(T_l(z i ijl))

Here we note that ord,(z + %) =—1fork=1,...,p— 1. We have

k k
(3.8) {Tl <z+p)‘k0,...,p1}{z; ‘k(),...,pl}

since both of {T‘l(C]‘(,C;f) |k=0,...,p—1}, {Q;}%N’“ |k=0,...,p—1} are
the set of the pth roots of (§ when 2z = &. Therefore the p-power parts of
Hi become

Z+(z+%)+...+(z+1’p;l)7%,%+17...,z++f1 _ (p—1)z

p

TOME 0 (0), FASCICULE 0



16 Tomokazu KASHIO
Moreover the “period parts” of H; become trivial by (1.6), (3.8). Namely

we can write

— ,(p—1)z °°<Z)Foo(z+%>roo(z+p771)
Hy(z) = p®~Y S
l'oo(2)
XQT(Fw<9F«xif>~-rw«*zl>>

By using the original Multiplication formula (1.2) for I's,, we obtain
Hi(z) = p®Dep2#op 3 = 1.

Next, let 2 = £ € Z,) N (—%,O). Then we have

e 7(2+1)=pz+1. Hence 771 (pz + 1) = 2 + 1.

o {TTHCRG) TR = Loph = {C ¢ = G} = {GRY [k =
1,...,p} Hence{Tfl(er%)|k:1,...,p}:{%|k:1,...,p}.

Then we can prove similarly that

Gao(z+ 1) Ga(z+ )G (2 + 1)

H. =
2(2) Gi(pz+1)
— p(z+%)+~~+(z+”,%1)+(z+1)—r*1(z+%)—~~—r*1(z+’%1)—fl(z+1)
Pz+ 1) Pz + 24Pz +1)

X p p

P(pz+1)

& P(z+1)
T\PETH ) P e+ )P (2 +1)

PP T ) (e ) = S e - LR G (pat) ot l—f

Here H;(z) = 1 mod po implies H;(z) = 1 (i = 1,2) since we have
= exp,(log,r) = exp,(0) = 1 for © € poo. (G1(2),G2(z) are in the

b
x
image under ( )* by definition, so are H;(z).) In particular, we have

Gilpz) _ g, <z+;) - G (z+p;) <z€Z<p>“ (0»]13))7

G1(2)
G () e () (emn ()

ANNALES DE L’INSTITUT FOURIER



NOTE ON COLEMAN’S FORMULA 17

Let z € pZ,). Then there exist 2} € pZ, N (0, %), 2y € pLp) N (f%, 0)
which converge to z when n — oo respectively. Then we can write

Gi(pz) . Gi(pz)) . 1 p—1
=lim — 22 = lim Gy (2} + = |- Ga | 2} + ——
i) nl_{go Gl(Z?lL) nl_{lgo 2| 2y T » 2| 2, + » )
Gi1(pz+1) . Gi(pz, +1) ) ( _ 1> ( B p—1>
SR im 2225 T i @ 2)...a L

Cr(z11)  no Gi(on 1) ke 2\ Pn Ty ) (e T

Recall that Ga(z) is continuous in the sense of (3.6). Clearly we have for
k=1,....,p—1

k k
S 5242 (n— o).
p p

Additionally we see that

k + k k
1 <z,jf—|—) :an—FT*l <> — E—!—T*1 <) (n — o)
p p p p p

by noting that 7=1(z + 2') = 771(2) + 771(2') mod Z (Vz,2'), 771(2) =
+
Zmod Zifp|z = € (—%, %), T’l(%) € [L p?%l] It follows that

5,
k k
lim Go (z;l' + ) = lim G, (z; + )
n—oo p n—roo p

Then the assertion is clear. O

By Corollary 3.3, we obtain the following.

COROLLARY 3.6. — Assume Assumption 3.4. Then there exist con-
stants a, b satisfying

Gi(z) = a” 76713, (2) mod fiee.

Remark 3.7. — In addition to the above results, by computing the ab-
solute Frobenius on only one Fermat curve, we obtain Coleman’s formula
G1(z) =T'p(z) mod pieo. For example, when p = 3, Yve obtajn it for z = %, %

o —1.,3
by the computation on F5. It follows that a™ b1 = @ bic = 1, hence
a=b=1.

Remark 3.8. — We used the assumption p | z only in the last paragraph
of the proof for Theorem 3.5 because G2 is not p-adically continuous on

the whole of (Q — Z;)) N (0,1). For example, we put
1 pn+1
2= —+———€(Q—-7Z,)N(0,1) (neN
P2 prt24(1—p)n @ (p)) (0,1) ( )
and take 7 € W, with deg7 =1 so that

T(sz) = C;zl

TOME 0 (0), FASCICULE 0



18 Tomokazu KASHIO
In particular we see that
1 .
zp, — — for the p-adic topology.
p

On the other hand we see that

) =771 < ! ) + 771 (an ) mod Z
TNz =T = |+
P’ Pt (1—p)n

ol p" o (1-p"
P> P (l-p)n P2+ (1 —p))’
- (1—p)" . {(1,2) if n is odd,
P22+ (1-p)) (0,1) if n is even.

Hence we have

% 1 e
Tﬁl(zn) _ P (pn+2a(1p)p) y — P2 1 %f n=2k+1, k— oo,
L~ gty — 1= e ifn =2k k — oo,

Then, by Theorem 2.4(2), we see that Ga(z,) = (Tp(2n)/Tp(77(20)))°
does not converge p-adically although z, does.

4. On the p-adic continuity

In the previous section, we showed that the p-adic continuity of the right-
hand sides of Theorem 2.4(1), (2) implies a large part of Theorem 2.4(1)
itself. In this section, we see that it is relatively easy to show such p-
adic continuity properties, without explicit computation. For simplicity,
we consider only the case z € Z,. Assume that p{ N.

LEMMA 4.1 ([3, §VI]). — Let 1 < r,s < N withr+s # N. We consider
the formal expansion of the differential form n,. s = x"y*~N df on Fy: zN 4+
N'=1at (z,y) = (0,1):

Zbrs .’E 77

(-1)7 (]:’n__T1> (n=7r mod N),
0 (n#£r mod N).

ANNALES DE L’INSTITUT FOURIER



NOTE ON COLEMAN’S FORMULA 19

Let ® be the absolute Frobenius on HéR(FN, Qp). Then there exists a, s €
Q, satisfying
(I)(nhs) = Qpt s/ Tpt st
for ' s with1 <r',s’ < N, pr =7’ mod N, ps = s mod N.

Then we have

L pby s (n)
e = o)
n=r mod N rs/\P
(4.1) / p<iv_1)
N3k——L < ¥ -1 >
pk 4 2o

We note that «, s depends only on (TN/, Sﬁ/) That is a, ¢ with N = Ny
is equal to v ¢ With N = tN.

PROPOSITION 4.2. — - ¢ is p-adically continuous on (Tﬁ/, SN/) € (ZpyN
(0,1))%.

Proof. — It suffices to show that a,s o with N = Ny is close to a,; «

with N = N, when - is close to 3 and +*+ is close to 3*. We may assume
1 2 1 2

N := N; = N, by considering N = Ny Ny. First we fix v/ := r} = r} and

assume that s} is close to s,. Then we can take the same k for the limit

expressions (4.1) of ays o, a,r g . We easily see that if pl| (s} — sb), then

p' 1| (51— s2). In fact, we can write s, = ps; — ;N with [; = 0,1,...,p—1

since 0 < s;,8; < N for i =1,2. If p | (s} — s5), then we have p | (I; — l2),

’ ’
517952

so l; = ly. Therefore we obtain s; — s9 = . It follows that s; also is

’
close to sp. Hence the continuity on %; is clear since the numerator (resp.

the denominator) of the expression (4.1) is a polynomial on % (resp. QN,)

For the variable %, we replace x with y. In other words, replace the point
(x,y) = (0,1) for the expansion with (1,0). Then the continuity on %
follows from the same argument. O

also

COROLLARY 4.3. — G1(%z) defined in (3.5) is p-adically continuous on
2 € LpyN(0,1). In particular, we may regard G1(z) as a continuous function
on Zy.

Proof. — CM-types E, ; of (1.4), corresponding to 7, s, generate the Q-
vector space {Y_ €y -0 | €5+ Cpoo is a constant}. More explicitly, we claim

TOME 0 (0), FASCICULE 0



20 Tomokazu KASHIO

that

1 ab 1 =

o \ X7 Op = = Sa,s T Ob,
(b%):l (2 <N>> ’ N 1<s<1\;a+s;£N 7 b%): 1 ’
where s runs over 1 < s < N with a+ s 7é N in the first sum of the right-
hand side. By the definition (1 4), oy € 4, if and only if (2) + (52) < 1.
Namely () = &, %,...,1— % — (%). The number of such b is congruent
to —1 — ab mod N. Hence we have

L me 3 (e 2 k()

1<s<N, (b,N)=1 (b,N)=1
a+s#N

Here we note that ab # 0 mod N since (b,N) = 1, a # 0 mod N. Then
the above claim follows. By substituting this into Definition 2.2(8), we can
write

2=

N

p(2) Poe( )25 ¥ Thicsen, wroen (271 fw,,nas)

= 1_a
(2mi)z™w H1<5<N a+s;éN(27n f Na, s)

-1 (a+s<N)
0 (a+s>N)

mod oo,

ey =

since the part Z(@N):l op becomes trivial by Proposition 2.1(2). We can
strengthen the congruence relation = of the formula (1.3) into an equality
=, by selecting a specific closed path 7y (e.g., o = Nyn with vy in [12,
Proposition 4.9]). Then we have

-1

P (%) =c- (27ri)pT+% H (/%’p 77a,s> N mod fioo,

1<s<N, a+s#N

where we put

o I‘(%) F(a]—\i}s) ~
- (emw 1<S<NQ+S¢NF<;>F<;>
Since (1.2) implies that
F(a]—&\}s) B N aa'
ey TET(E) - TN
we obtain
o= D) (PEMCR TG 3ot ) T v
(2m) ¥ (1) T(<N) T(&)N 2sin( &) '
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For the last equality we used (1.1) and the difference equation I'(z 4+ 1) =
zI'(z). Take 7 € W, with deg T = 1. Then we have

/

Gl (CI//) Ep%_%Laﬁg
N o (P(%))
, ~
Y e R | mod 1

—N—1(, _ 1!
Pt (a 1)' 1<s<N, a+s#N

by noting that ®,((27i),) = p(27i), and . (sin(F7)) = 7(sin(F7)) =
:l:sin(aﬁ/ ). Here o/, s’ denote integers satisfying 1 < a/,s’ < N, pa =
a’ mod N, ps = s’ mod N as above. By Proposition 4.2, o, ¢ are con-
tinuous for a’. When « is in a small open ball, as we saw in the proof of
Proposition 4.2, we may write ' = pa — M for a fixed M (M is [N in the
proof of Proposition 4.2). Then the remaining part becomes

(1—p)a’+M

Ne=(a’ —1)! p"N v (a4 M)

— =47 (d+ M +1

P i e G Ty sy sy prag vk
which is also continuous as desired. O
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