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NOTE ON COLEMAN’S FORMULA FOR THE
ABSOLUTE FROBENIUS ON FERMAT CURVES

by Tomokazu KASHIO

Abstract. — Coleman calculated the absolute Frobenius on Fermat curves ex-
plicitly. In this paper we show that a kind of p-adic continuity implies a large part
of his formula. To do this, we study a relation between functional equations of the
gamma function, monomial relations on CM-periods, and their p-adic analogues.

Résumé. — Coleman a calculé explicitement le Frobenius absolu sur les courbes
de Fermat. Dans cet article, nous montrons qu’une sorte de continuité p-adique
implique une grande partie de sa formule. Pour ce faire, nous étudions une relation
entre les équations fonctionnelles de la fonction gamma, les relations monomiales
sur CM-périodes, et leurs analogues p-adiques.

1. Introduction

We modify Euler’s gamma function Γ(z) into

Γ∞(z) := Γ(z)√
2π

= exp(ζ ′(0, z)) (z > 0)

and focus on its special values at rational numbers. Here we put ζ(s, z) :=∑∞
k=0(z +k)−s to be the Hurwitz zeta function. The last equation is due to

Lerch. One has a“simple proof” in [14, p. 17]. The gamma function enjoys
some functional equations:

Euler’s Reflection formula: Γ∞(z)Γ∞(1 − z) = 1
2 sin πz

,(1.1)

Gauss’ Multiplication formula:(1.2)
d−1∏
k=0

Γ∞

(
z + k

d

)
= d

1
2 −dzΓ∞(dz) (d ∈ N).

Keywords: Absolute Frobenius, Fermat curves, Gross–Koblitz formula, p-adic gamma
function, CM-periods, p-adic periods.
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2 Tomokazu KASHIO

For proofs, see [1, §3, 4]. The main topic of this paper is a relation between
such functional equations and monomial relations of CM-periods, and its
p-adic analogue. We introduce some notations.

Definition 1.1. — Let K be a CM-field. We denote by IK the Q-vector
space formally generated by all complex embeddings of K:

IK :=
⊕

σ∈Hom(K,C)

Q · σ.

We identify a subset S ⊂ Hom(K,C) as an element
∑

σ∈S σ ∈ IK . Shimura’s
period symbol is the bilinear map

pK : IK × IK → C×/Q×

characterized by the following properties (P1), (P2).
(P1) Let A be an abelian variety defined over Q, having CM of type

(K, Ξ). Namely, for each σ ∈ Hom(K,C), there exists a non-zero
“K-eigen” differential form ωσ of the second kind satisfying

k∗(ωσ) = σ(k)ωσ (k ∈ K),

where k∗ denotes the action of k ∈ K via K ∼= End(A) ⊗ZQ on the
de Rham cohomology H1

dR(A,C). Then we have

Ξ = {σ ∈ Hom(K,C) | ωσ is holomorphic},

pK(σ, Ξ) ≡

{
π−1 ∫

γ
ωσ (σ ∈ Ξ)∫

γ
ωσ (σ ∈ Hom(K,C) − Ξ)

mod Q×

for an arbitrary closed path γ ⊂ A(C) satisfying
∫

γ
ωσ ̸= 0.

(P2) Let ρ be the complex conjugation. Then we have

pK(σ, τ)pK(ρ ◦ σ, τ) ≡ pK(σ, τ)pK(σ, ρ ◦ τ) ≡ 1 mod Q×

(σ, τ ∈ Hom(K,C)).

We note that, strictly speaking, Shimura’s pK in [13, §32] is a bilinear
map on

⊕
σ∈Hom(K,C) Z · σ. The period symbol also enjoys the following

relations:
(P3) Let ι : K ′ ∼= K be an isomorphism of CM-fields. Then we have

pK(σ, τ) ≡ pK′(σ ◦ ι, τ ◦ ι) mod Q× (σ, τ ∈ Hom(K,C)).

ANNALES DE L’INSTITUT FOURIER



NOTE ON COLEMAN’S FORMULA 3

(P4) Let K ⊂ L be a field extension of CM-fields. We define two linear
maps defined as

Res : IL → IK , σ̃ 7→ σ̃|K (σ̃ ∈ Hom(L,C)),

Inf : IK → IL, σ 7→
∑

σ̃∈Hom(L,C)
σ̃|K=σ

σ̃ (σ ∈ Hom(K,C)).

Then we have

pK(Res(X), Y ) ≡ pL(X, Inf(Y )) mod Q× (X ∈ IL, Y ∈ IK).

The following results by Gross–Rohrlich and the above relations (P3),
(P4) provide an explicit formula [14, Theorem 2.5, Chap. III] on pK for
K = Q(ζN ) (ζN = e 2πi

N , N ⩾ 3). We can rewrite it in the form (1.5) by the
arguments in [8, §6]. Let σb ∈ Gal(Q(ζN )/Q) ((b, N) = 1) be defined by
σb(ζN ) := ζb

N , ⟨α⟩ ∈ (0, 1) denote the fraction part of α ∈ Q − Z.

Theorem 1.2 ([5, Theorem in Appendix]). — Let FN : xN + yN = 1
be the Nth Fermat curve, ηr,s := xr−1ys−N dx its differential forms of the
second kind (0 < r, s < N , r + s ̸= N). Then we have for any closed path
γ on FN (C) with

∫
γ

ηr,s ̸= 0

(1.3)
∫

γ

ηr,s ≡
Γ( r

N )Γ( s
N )

Γ( r+s
N )

mod Q(ζN )×.

Theorem 1.3 ([5, §2], [14, §2, Chap. III]). — The CM-type correspond-
ing to ηr,s is

(1.4) Ξr,s :=

σb

∣∣∣∣∣∣∣
1⩽ b⩽N, (b, N) = 1,〈

br

N

〉
+
〈

bs

N

〉
+
〈

b(N −r−s)
N

〉
= 1

 .

That is, we have

pQ(ζN )(id, Ξr,s) ≡

{
π−1 ∫

γ
ηr,s (r + s < N)∫

γ
ηr,s (r + s > N)

mod Q×
.

Corollary 1.4 ([8, Theorem 3]). — We have for any a
N ∈ Q − Z

(1.5) Γ∞

( a

N

)
≡ π

1
2 −⟨ a

N⟩pQ(ζN )

id,
∑

(b,N)=1

(
1
2 −

〈
ab

N

〉)
·σb

 mod Q×
.

Here the sum runs over all b satisfying 1 ⩽ b ⩽ N , (b, N) = 1.

TOME 0 (0), FASCICULE 0



4 Tomokazu KASHIO

Note that (1.5) holds true even if (a, N) > 1, essentially due to (P4).
Although the following is just a toy problem, we provide its proof by using
the period symbol, in order to explain the theme of this paper: we may
say that some functional equations of the gamma function “correspond” to
some monomial relations of CM-periods.

Proposition 1.5 (A toy problem). — The explicit formula (1.5) im-
plies the following “functional equations modQ×” on Γ( a

N ):

“Reflection formula”: Γ∞

( a

N

)
Γ∞

(
N − a

N

)
≡ 1 mod Q×

,

“Multiplication formula”:
d−1∏
k=0

Γ∞

(
a

N
+ k

d

)
≡ Γ∞

(
da

N

)
mod Q×

.

Proof. — “Reflection formula” follows from (P2) immediately. Concern-
ing “Multiplication formula”, we may assume that d | N . Under the ex-
pression (1.5), “Multiplication formula” is equivalent to

π
∑d−1

k=0
1
2 −⟨ a

N + k
d ⟩pQ(ζN )

id,
∑

(b,N)=1

(
d−1∑
k=0

1
2 −

〈
ab

N
+ kb

d

〉)
· σb


≡ π

1
2 −⟨ ad

N ⟩pQ(ζN )

id,
∑

(b,N)=1

(
1
2 −

〈
dab

N

〉)
· σb

 .

This follows from the multiplication formula

(1.6)
d−1∑
k=0

B1

(
x + k

d

)
= B1(dx)

for the 1st Bernoulli polynomial B1(x) = x − 1
2 . □

The aim of this paper is to study a p-adic analogue of such “correspon-
dence”. More precisely, we shall characterize the p-adic gamma function by
its functional equations and some special values. Then we show that the
period symbol and its p-adic analogue satisfy the corresponding properties
to such functional equations. As an application, we provide an alternative
proof of a large part of Coleman’s formula (Theorem 2.4(1)): originally,
Coleman’s formula was proved by calculating the absolute Frobenius on all
Fermat curves. We shall see that it suffices to calculate it on only one curve
(Remark 3.7).

Remark 1.6. — Yoshida and the author formulated conjectures in [8, 9,
10] which are generalizations of Coleman’s formula, from cyclotomic fields

ANNALES DE L’INSTITUT FOURIER



NOTE ON COLEMAN’S FORMULA 5

to arbitrary CM-fields: Coleman’s formula implies “the reciprocity law on
cyclotomic units” [7] and “the Gross–Koblitz formula on Gauss sums” [3, 6]
simultaneously. The author conjectured a generalization [8, Conjecture 4]
of Coleman’s formula which implies a part of Stark’s conjecture and a gen-
eralization of (the rank 1 abelian) Gross–Stark conjecture simultaneously.
The results in this paper (in particular Remark 3.7) are very important
toward this generalization, since we know only a finite number of algebraic
curves (e.g., [2]) whose Jacobian varieties have CM by CM-fields which are
not abelian over Q.

The outline of this paper is as follows. First we introduce Coleman’s
formula [4] for the absolute Frobenius on Fermat curves in Section 2. The
author rewrote it in the form of Theorem 2.4: roughly speaking, we write
Morita’s p-adic gamma function Γp in terms of Shimura’s period symbol
pK , its p-adic analogue pK,p, and modified Euler’s gamma function Γ∞.
In Section 3, we show that some functional equations almost characterize
Γp (Corollary 3.3), and the corresponding properties ((3.7), Theorem 3.5)
hold for pK , pK,p, Γ∞. Then we see that a large part (Corollary 3.6) of Cole-
man’s formula follows automatically, without explicit computation, under
assuming certain p-adic continuity properties. Unfortunately, our results
have a root of unity ambiguity although the original formula is a complete
equation, since some definitions are well-defined only up to roots of unity.
In Section 4, we confirm that we can show (at least, a part of) needed p-adic
continuity properties relatively easily.

2. Coleman’s formula in terms of period symbols

Coleman explicitly calculated the absolute Frobenius on Fermat
curves [4]. The author rewrote his formula in [7, 8] as follows.

2.1. p-adic period symbol

Let p be a rational prime, Cp the p-adic completion of the algebraic
closure Qp of Qp, and µ∞ the group of all roots of unity. For simplicity,
we fix embeddings Q ↪→ C,Cp and consider any number field as a subfield
of each of them. Let Bcris ⊂ BdR be Fontaine’s p-adic period rings. We
consider the composite ring BcrisQp ⊂ BdR. Let A be an abelian variety

TOME 0 (0), FASCICULE 0



6 Tomokazu KASHIO

with CM defined over Q, γ a closed path on ⊂ A(C), and ω a differential
form of the second kind of A. Then the p-adic period integral∫

p

: HB
1 (A(C),Q) × H1

dR(A,Q) → BcrisQp, (γ, ω) 7→
∫

γ,p

ω

is defined by the comparison isomorphisms of p-adic Hodge theory, instead
of the de Rham isomorphism (e.g., [8, §5.1], [7, §6]). Here HB denotes the
singular (Betti) homology. Then, in a similar manner to pK , we can define
the p-adic period symbol

pK,p : IK × IK → (BcrisQp − {0})Q/Q×

satisfying p-adic analogues of (P1), (P2), (P3), (P4). Here we put (BcrisQp−
{0})Q := {x ∈ BdR | ∃n ∈ N s.t. xn ∈ BcrisQp − {0}}. Moreover the “ratio”[∫

γ

ωσ :
∫

γ,p

ωσ

]
∈ (C× × (BcrisQp − {0}))/Q×

depends only on σ ∈ Hom(K,C) and the CM-type Ξ. That is, if we replace
A, ωσ, γ with A′, ω′

σ, γ′ for the same Ξ, σ, then we have∫
γ′ ω′

σ∫
γ

ωσ
=
∫

γ′,p
ω′

σ∫
γ,p

ωσ
∈ Q×

.

Therefore we may consider the following ratio of the symbols [pK : pK,p],
which is well-defined up to µ∞.

Proposition 2.1 ([8, Proposition 4]). — There exists a bilinear map

[pK : pK,p] : IK × IK → (C× × (BcrisQp − {0})Q)/(µ∞ × µ∞)Q×

satisfying the following.
(1) Let A, Ξ, σ, ωσ, γ be as in (P1). Then

[pK : pK,p](σ, Ξ)

≡

{
[(2πi)−1 ∫

γ
ωσ : (2πi)−1

p

∫
γ,p

ωσ] (σ ∈ Ξ)
[
∫

γ
ωσ :

∫
γ,p

ωσ] (σ ∈ Hom(K,C) − Ξ)

mod (µ∞ × µ∞)Q×
.

Here (2πi)p ∈ Bcris is the p-adic counterpart of 2πi defined in, e.g.,
[8, §5.1].

(2) We have for σ, τ ∈ Hom(K,C) and for the complex conjugation ρ

[pK : pK,p](σ, τ) · [pK : pK,p](ρ ◦ σ, τ) ≡ 1 mod (µ∞ × µ∞)Q×
,

[pK : pK,p](σ, τ) · [pK : pK,p](σ, ρ ◦ τ) ≡ 1 mod (µ∞ × µ∞)Q×
.

ANNALES DE L’INSTITUT FOURIER



NOTE ON COLEMAN’S FORMULA 7

(3) Let ι : K ′ ∼= K be an isomorphism of CM-fields. Then we have for
σ, τ ∈ Hom(K,C)

[pK : pK,p](σ, τ) ≡ [pK′ : pK′,p](σ ◦ ι, τ ◦ ι) mod (µ∞ × µ∞)Q×
.

(4) Let K ⊂ L be a field extension of CM-fields. Then we have for
X ∈ IL, Y ∈ IK

[pK : pK,p](Res(X), Y ) ≡ [pL : pL,p](X, Inf(Y )) mod (µ∞ × µ∞)Q×
.

2.2. Coleman’s formula

Theorem 2.4 below is essentially due to Coleman [4, Theorems 1.7, 3.13].
Note that the original formula does not have a root of unity ambiguity.
First we prepare some notations. We assume that p is an odd prime.

Definition 2.2.

(1) Let C1
p := {z ∈ C×

p | |z|p = 1}. We fix a group homomorphism

expp : Cp → C1
p

which coincides with the usual power series expp(z) :=
∑∞

k=0
zk

k! on
the convergence region. For α ∈ C×

p , β ∈ Cp, we put

αβ := expp(β logp α)

with logp Iwasawa’s p-adic log function.
(2) For z ∈ C×

p , we put

z∗ := expp(logp(z)), z♭ := pordp zz∗.

Here we define ordp z ∈ Q by |z|p = |p|ordp z
p . Note that z ≡ z♭ mod

µ∞ (z ∈ C×
p ).

(3) We define the p-adic gamma function on Qp as follows.
(a) On Zp, Γp(z) denotes Morita’s p-adic gamma function which

is the unique continuous function Γp : Zp → Z×
p satisfying

Γp(n) := (−1)n
∏

1⩽k⩽n−1, p∤k

k (n ∈ N).

TOME 0 (0), FASCICULE 0



8 Tomokazu KASHIO

(b) On Qp − Zp, we use Γp : Qp − Zp → O×
Qp

defined
in [7, Lemma 4.2], which is a continuous function satisfying

Γp(z + 1) = z∗Γp(z), Γp(2z) = 22z− 1
2 Γp(z)Γp

(
z + 1

2

)
.

Such a continuous function on Qp − Zp is unique up to multi-
plication by µ∞.

(4) For z ∈ Zp, we define z0 ∈ {1, 2, . . . , p}, z1 ∈ Zp by

z = z0 + pz1.

Note that when p | z, we put z0 = p, instead of 0.
(5) Let Wp be the Weil group defined as

Wp := {τ ∈ Gal(Qp/Qp) | τ |Qur
p

= σdeg τ
p with deg τ ∈ Z}.

Here Qur
p denotes the maximal unramified extension of Qp, σp the

Frobenius automorphism on Qur
p .

(6) We define the action of Wp on Q ∩ [0, 1) by identifying Q ∩ [0, 1) =
µ∞. Namely

τ
( a

N

)
:= b

N
if τ(ζa

N ) = ζb
N (τ ∈ Wp).

(7) Let Φcris be the absolute Frobenius automorphism on Bcris. We
consider the following action of Wp on BcrisQp

∼= Bcris ⊗Qur Qp:

Φτ := Φdeg τ
cris ⊗ τ (τ ∈ Wp).

(8) For a
N ∈ Q ∩ (0, 1) we put

P
( a

N

)
:=

Γ∞( a
N ) · (2πi)

1
2 −⟨ a

N ⟩
p pQ(ζN ),p

(
id,
∑

(b,N)=1
( 1

2 − ⟨ ab
N ⟩
)

σb

)
(2πi) 1

2 −⟨ a
N ⟩pQ(ζN )

(
id,
∑

(b,N)=1
( 1

2 − ⟨ ab
N ⟩
)

σb

)
∈ (BcrisQp − {0})Q/µ∞.

This definition makes sense since
Γ∞( a

N )

(2πi) 1
2 −⟨ a

N ⟩pQ(ζN )

(
id,
∑

(b,N)=1
( 1

2 − ⟨ ab
N ⟩
)

σb

) ∈ Q ⊂ BcrisQp

by (1.5) and the ratio [pK : pK,p] is well-defined up to µ∞ by
Proposition 2.1.

ANNALES DE L’INSTITUT FOURIER
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Remarks 2.3.
(1) Let µp−1 be the group of all (p − 1)st roots of unity, pZ := {pn |

n ∈ Z}, 1 + pZp := {1 + pz | z ∈ Zp}. Then we have the canonical
decomposition

Q×
p → µp−1 × pZ × 1 + pZp,

z 7→ (ω(zp−ordp z) , pordp z , z∗),

where ω denotes the Teichmüller character. The maps z 7→ z∗, z♭

provide a similar (but non-canonical) decomposition of C×
p . More-

over, we note that the maps z 7→ expp(z), z∗, z♭ are continuous
homomorphisms.

(2) We easily see that

τ(z) = ⟨pz⟩, τ−1(z) = z1 + 1 (z ∈ Z(p) ∩ (0, 1), τ ∈ Wp, deg τ = 1).
Theorem 2.4 ([8, Theorem 3]). — Let p be an odd prime.
(1) Assume that z ∈ Z(p) ∩ (0, 1). Then we have

Γp(z) ≡ p
1
2 −τ−1(z) P (z)

Φτ (P (τ−1(z))) mod µ∞ (τ ∈ Wp, deg τ = 1).

(2) Assume that z ∈ (Q − Z(p)) ∩ (0, 1). Then we have

Γp(τ(z))
Γp(z) ≡ p(z−τ(z))ordp zP (τ(z))

Φτ (P (z)) mod µ∞ (τ ∈ Wp).

Remark 2.5. — As a result, we see that the right-hand sides of Theo-
rem 2.4(1), (2) are p-adic continuous on z, (z, τ(z)) respectively, since the
left-hand sides are so. We use only the p-adic continuity in the next section,
in order to recover Theorem 2.4(1).

3. Main results

Morita’s p-adic gamma function Γp : Zp → Z×
p is the unique continuous

function satisfying

(3.1) Γp(0) = 1,
Γp(z + 1)

Γp(z) =
{

−z (z ∈ Z×
p ),

−1 (z ∈ pZp).
In this section, we study other functional equations characterizing Γp and
provide an alternative proof of Coleman’s formula in the case z ∈ Z(p).
Strictly speaking, we only “assume” that the right-hand sides of Theo-
rem 2.4(1), (2) are continuous on z, (z, τ(z)) respectively (of course, this
is correct). Then we can recover a “large part” (Corollary 3.6) of Theo-
rem 2.4(1). We assume that p is an odd prime.

TOME 0 (0), FASCICULE 0



10 Tomokazu KASHIO

3.1. A characterization of Morita’s p-adic gamma function

Γp(z) satisfies the following p-adic analogues of multiplication formulas,
which we consider only up to roots of unity in this paper. For the detailed
formulation and its proof, see [11, “Basic properties of Γp” in Section 2 of
Chapter IV].

Proposition 3.1. — Let d ∈ N with p ∤ d. Then we have for z ∈ Zp

(3.2)
d−1∏
k=0

Γp

(
z + k

d

)
≡ d1−dz+(dz)1Γp(dz) mod µ∞.

Note that if p | d, then z+ k
d is not in the domain of definition of Morita’s

Γp. In the rest of this subsection, we show that multiplication formulas (3.2)
and some conditions characterize Morita’s p-adic gamma function (at least
up to µ∞).

Proposition 3.2. — Assume a continuous function f(z) : Zp → C×
p

satisfies

(3.3)
d−1∏
k=0

f

(
z + k

d

)
≡ f(dz) mod µ∞ (p ∤ d).

Then the following holds.
(1) f(z+1)

f(z) mod µ∞ depends only on ordp z.
(2) The values

ck :=
(

f(pk + 1)
f(pk)

)♭

characterize the function f(z) up to µ∞. More precisely, for z ∈ Zp,
we write the p-adic expansion of z − 1 as

z − 1 =
∞∑

k=0
xkpk (xk ∈ {0, 1, . . . , p − 1}).

Then we have

f(z) ≡
∞∏

k=0
α

xk− p−1
2

k mod µ∞ with αk := ck

k−1∏
i=0

c
pk−1−i(p−1)
i .

Conversely, assume that

(3.4) f

(
1+

∞∑
k=0

xkpk

)
≡

∞∏
k=0

α
xk− p−1

2
k mod µ∞ (xk ∈ {0, 1, . . . , p − 1})

for constants αk ∈ C×
p satisfying αk → 1 (k → ∞). Then f(z) satisfies the

functional equations (3.3).

ANNALES DE L’INSTITUT FOURIER



NOTE ON COLEMAN’S FORMULA 11

Proof. — We suppress modµ∞. Assume (3.3). Replacing z with z + 1
d ,

we obtain
∏d

k=1 f(z + k
d ) ≡ f(dz + 1). It follows that f(z+1)

f(z) ≡ f(dz+1)
f(dz) .

That is,

g(z) := f(z + 1)
f(z) ≡ g(dz) (p ∤ d ∈ N).

Then the assertion (1) is clear. Let ck := (g(pk))♭, an := x0+x1p+· · ·+xnpn

(0 ⩽ xi ⩽ p − 1). We easily see that

#{y = 1, 2, . . . , an | ordp y = k} = xk +
n∑

i=k+1
xip

i−k−1(p−1) (0⩽ k ⩽n).

Then we can write

f(an + 1)♭ = (f(1)g(1)g(2) · · · g(an))♭ = f(1)♭αx0
0 αx1

1 · · · αxn
n

with αk = ck

∏k−1
i=0 c

pk−1−i(p−1)
i . Since limn→∞ f(an + 1) converges, so do

limn→∞ f(an + 1)♭ and
∏∞

k=0 αxk

k . Moreover we can write

f(z) ≡ f(1)
∞∏

k=0
αxk

k .

Consider the case of d = 2, z = 1
2 of (3.3): f( 1

2 )f(1) ≡ f(1). Therefore,
noting that − 1

2 =
∑∞

k=0
p−1

2 pk, we obtain

1 ≡ f

(
1
2

)
≡ f(1)

∞∏
k=0

α
p−1

2
k , that is, f(1) ≡

∞∏
k=0

α
− p−1

2
k .

Then the assertion (2) is also clear.
Next, assume (3.4). When ordp z = k, we see that f(z+1)

f(z) ≡ αk

αp−1
k−1

(resp.

α0) if k > 0 (resp. k = 0). In particular, g(z) := f(z+1)
f(z) mod µ∞ depends

only on ordp z. When z + z′ = 1, the p-adic expansions z − 1 =
∑∞

k=0 xkpk,
z′ − 1 =

∑∞
k=0 x′

kpk satisfy xk + x′
k = p − 1 for any k. Then we have

f(z)f(z′) ≡
∞∏

k=0
α0

k = 1.

Therefore the case z = 0 of (3.3) holds true since we have
(∏d−1

k=1 f( k
d )
)2

=∏d−1
k=1 f( k

d )f(1 − k
d ) ≡ 1. Then (3.3) for z ∈ N follows by mathematical
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12 Tomokazu KASHIO

induction on z noting that
d−1∏
k=0

f

(
z + 1 + k

d

)
≡

d−1∏
k=0

f

(
z + k

d

)
g

(
z + k

d

)
,

f(dz + d) ≡ f(dz)g(dz) · · · g(dz + d − 1),

ordp (dz + k) = ordp

(
z + k

d

)
.

Since N is dense in Zp, we see that (3.3) holds for any z ∈ Zp. □

The following corollary provides a nice characterization of Γp(z) mod µ∞
in terms of functional equations and one or two special values.

Corollary 3.3. — Assume a continuous function f(z) : Zp → C×
p sat-

isfies
d−1∏
k=0

f

(
z + k

d

)
≡ f(dz) mod µ∞ (p ∤ d)

and put

cn :=
(

f(pn + 1)
f(pn)

)♭

.

Then the following equivalences hold:
(1) c0 = c1 = · · · ⇔ f(z) ≡ c

z− 1
2

0 mod µ∞.
(2) c1 = c2 = · · · ⇔ f(z) ≡ c

z− 1
2

0 (c1/c0)z1+ 1
2 mod µ∞.

Proof. — We suppress modµ∞. For (1), assume that c0 = c1 = · · · .
Then

αk := ck

k−1∏
i=0

c
pk−1−i(p−1)
i = cpk

0 .

Hence we have by Proposition 3.2

f

(
1 +

∞∑
k=0

xkpk

)
≡

∞∏
k=0

α
xk− p−1

2
k = c

∑∞
k=0

xkpk− p−1
2 pk

0 = c
z−1+ 1

2
0 = c

z− 1
2

0 .

The opposite direction is trivial by definition cn := ( f(pn+1)
f(pn) )♭. For (2), the

assumption c1 = c2 = · · · implies α0 = c0, αk = cpk

0 (c1/c0)pk−1 (k ⩾ 1). In
this case we have

f

(
1 +

∞∑
k=0

xkpk

)
≡ c

∑∞
k=0

xkpk− p−1
2 pk

0 (c1/c0)
∑∞

k=1
xkpk−1− p−1

2 pk−1

= c
z− 1

2
0 (c1/c0)z1+ 1

2

since
∑∞

k=1 xkpk−1 = z−1−x0
p = z1. □
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NOTE ON COLEMAN’S FORMULA 13

3.2. Alternative proof of a part of Coleman’s formula

We fix τ ∈ Wp with deg τ = 1 and put

G1(z) :=
(

p
1
2 −τ−1(z) P (z)

Φτ (P (τ−1(z)))

)♭

(z ∈ Z(p) ∩ (0, 1)),(3.5)

G2(z) :=
(

p(τ−1(z)−z)ordp zP (z)
Φτ (P (τ−1(z)))

)♭

(z ∈ (Q − Z(p)) ∩ (0, 1)).

Here we added ( )♭ to the right-hand sides of Coleman’s formulas (Theo-
rem 2.4), in order to resolve a root of unity ambiguity, only superficially.
Note that G2 corresponds to Theorem 2.4(2) replaced z with τ−1(z).

By Theorem 2.4(1), we see that G1 is continuous for the p-adic topology.
G2 is not p-adically continuous in the usual sense, on the whole of (Q −
Z(p)) ∩ (0, 1) (for details, see Remark 3.8). Theorem 2.4(1) only implies the
following “continuity”:

G1(z) is continuous for the relative topology(3.6)

induced by z ∈ (Q − Z(p)) ∩ (0, 1) ↪→ Qp × Qp, z 7→ (z, τ−1(z)).

In Corollary 3.6, oppositely, we show that the p-adic continuity of G1, G2
implies a “large part”

G1(z) ≡ az− 1
2 bz1+ 1

2 Γp(z) mod µ∞ (a, b ∈ C×
p )

of Theorem 2.4(1):
G1(z) ≡ Γp(z) mod µ∞.

Besides we shall show the continuity of G1(z) in Section 4, independently
of Theorem 2.4.

Hereinafter in this section, we forget Theorem 2.4. We assume the fol-
lowing Assumption instead.

Assumption 3.4. — G1(z) is p-adically continuous and G2(z) is contin-
uous in the sense of (3.6). In particular, we regard G1 as a p-adic continuous
function:

G1(z) : Zp → Cp.

First we derive “multiplication formula”:

(3.7)
d−1∏
k=0

G1

(
z + k

d

)
≡ d1−dz+(dz)1G1(dz) mod µ∞ (p ∤ d ∈ N)

independently of Theorem 2.4.
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14 Tomokazu KASHIO

Proof of (3.7). — We suppress modµ∞. Let z ∈ Z(p) ∩ (0, 1
d ). By Defi-

nition 2.2(8) and (3.5) we can write∏d−1
k=0 G1(z + k

d )
G1(dz)

≡
∏d−1

k=0 Γ∞(z + k
d )

Γ∞(dz) Φτ

(
Γ∞(τ−1(dz))∏d−1

k=0 Γ∞(τ−1(z + k
d ))

) ∏d−1
k=0 p

1
2 −τ−1(z+ k

d )

p
1
2 −τ−1(dz)

× “products of classical or p-adic periods”,

where the “products of classical or p-adic periods” become trivial by (1.6),
as we saw in the proof of Proposition 1.5. Besides we see that{

τ−1
(

z + k

d

) ∣∣∣∣ k = 0, . . . , d − 1
}

=
{

τ−1(dz)
d

+ k

d

∣∣∣∣ k = 0, . . . , d − 1
}

.

To see this, it suffices to show that {τ−1(ζa
N ζk

d ) | k = 0, . . . , d − 1} and
{τ−1(ζda

N ) 1
d ζk

d | k = 0, . . . , d − 1} coincide with each other. We easily see
that both of them are the inverse image of τ−1(ζda

N ) under the dth power
map µ∞ → µ∞, x 7→ xd. Hence we obtain∏d−1

k=0 G1(z + k
d )

G1(dz)

≡
∏d−1

k=0 Γ∞(z + k
d )

Γ∞(dz) ·Φτ

(
Γ∞(τ−1(dz))∏d−1

k=0 Γ∞( τ−1(dz)
d + k

d )

)
·
∏d−1

k=0 p
1
2 −( τ−1(dz)

d + k
d )

p
1
2 −τ−1(dz)

= d
1
2 −dz · Φτ (dτ−1(dz)− 1

2 ) · 1 ≡ d
1
2 −dz · dτ−1(dz)− 1

2

by (1.2), (1.6). For the last “≡”, we note that Φτ acts on Qp ∋ dτ−1(dz)− 1
2

as τ . By Remark 2.3(2), we have τ−1(dz) = (dz)1 + 1. Then the assertion
is clear. □

Furthermore we can show that cn =
(

f(pn+1)
f(pn)

)♭

for f(z) := G1(z)
Γp(z) is

constant, at least for n ⩾ 1.

Theorem 3.5. — We assume Assumption 3.4 and put f(z) := G1(z)
Γp(z) .

(1) The following functional equations hold.

d−1∏
k=0

f

(
z + k

d

)
≡ f(dz) mod µ∞ (p ∤ d).

(2) We have c1 = c2 = · · · for cn :=
(

f(pn+1)
f(pn)

)♭

.
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NOTE ON COLEMAN’S FORMULA 15

Proof. — We suppress modµ∞. (1) follows from (3.2), (3.7). For (2), we
need for z ∈ pZp

G1(pz)G1(z + 1)
G1(pz + 1)G1(z) ≡ Γp(pz)Γp(z + 1)

Γp(pz + 1)Γp(z) .

Since the right-hand side is equal to
{

l
z

(p|z)
(p∤z) by (3.1), it suffices to show

that

G1(pz)G1(z + 1)
G1(pz + 1)G1(z) ≡ 1 (z ∈ pZp).

Note that we can not use the definition (3.5) directly since z, z+1, pz, pz+1
are not contained in (0, 1) simultaneously. Therefore a little complicated
argument is needed as follows. Let z ∈ Z(p) ∩ (0, 1

p ). By Remark 2.3(2), we
have

τ(z) = ⟨pz⟩ = pz, hence τ−1(pz) = z.

We can write

H1(z) :=
G1(z)G2(z + 1

p ) · · · G2(z + p−1
p )

G1(pz)

≡ pz+(z+ 1
p )+···+(z+ p−1

p )−τ−1(z)−τ−1(z+ 1
p )−···−τ−1(z+ p−1

p )

×
P (z)P (z + 1

p ) · · · P (z + p−1
p )

P (pz)

× Φτ

(
P (z)

P (τ−1(z))P (τ−1(z + 1
p )) · · · P (τ−1(z + p−1

p ))

)
.

Here we note that ordp(z + k
p ) = −1 for k = 1, . . . , p − 1. We have

(3.8)
{

τ−1
(

z + k

p

) ∣∣∣∣ k = 0, . . . , p − 1
}

=
{

z + k

p

∣∣∣∣ k = 0, . . . , p − 1
}

since both of {τ−1(ζa
N ζk

p ) | k = 0, . . . , p − 1}, {ζa+Nk
pN | k = 0, . . . , p − 1} are

the set of the pth roots of ζa
N when z = a

N . Therefore the p-power parts of
H1 become

pz+(z+ 1
p )+···+(z+ p−1

p )− z
p − z+1

p −···− z+p−1
p = p(p−1)z.
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16 Tomokazu KASHIO

Moreover the “period parts” of H1 become trivial by (1.6), (3.8). Namely
we can write

H1(z) ≡ p(p−1)z
Γ∞(z)Γ∞(z + 1

p ) · · · Γ∞(z + p−1
p )

Γ∞(pz)

× Φτ

(
Γ∞(z)

Γ∞( z
p )Γ∞( z+1

p ) · · · Γ∞( z+p−1
p )

)
.

By using the original Multiplication formula (1.2) for Γ∞, we obtain

H1(z) ≡ p(p−1)zp
1
2 −pzpz− 1

2 = 1.

Next, let z = a
N ∈ Z(p) ∩ (− 1

p , 0). Then we have

• τ(z + 1) = pz + 1. Hence τ−1(pz + 1) = z + 1.
• {τ−1(ζa

N ζk
p ) | k = 1, . . . , p} = {ζ | ζp = ζa

N } = {ζa+Nk
pN | k =

1, . . . , p}. Hence {τ−1(z + k
p ) | k = 1, . . . , p} = { z+k

p | k = 1, . . . , p}.

Then we can prove similarly that

H2(z) :=
G2(z + 1

p ) · · · G2(z + p−1
p )G1(z + 1)

G1(pz + 1)

≡ p(z+ 1
p )+···+(z+ p−1

p )+(z+1)−τ−1(z+ 1
p )−···−τ−1(z+ p−1

p )−τ−1(z+1)

×
P (z + 1

p ) · · · P (z + p−1
p )P (z + 1)

P (pz + 1)

× Φτ

(
P (z + 1)

P (τ−1(z + 1
p )) · · · P (τ−1(z + p−1

p ))P (τ−1(z + 1))

)
≡ p(z+ 1

p )+···+(z+ p−1
p )+(z+1)− z+1

p −···− z+p−1
p − z+p

p p
1
2 −(pz+1)pz+1− 1

2 = 1.

Here Hi(z) ≡ 1 mod µ∞ implies Hi(z) = 1 (i = 1, 2) since we have
x♭ = expp(logp x) = expp(0) = 1 for x ∈ µ∞. (G1(z), G2(z) are in the
image under ( )♭ by definition, so are Hi(z).) In particular, we have

G1(pz)
G1(z) = G2

(
z + 1

p

)
· · · G2

(
z + p − 1

p

) (
z ∈ Z(p) ∩

(
0,

1
p

))
,

G1(pz + 1)
G1(z + 1) = G2

(
z + 1

p

)
· · · G2

(
z + p − 1

p

) (
z ∈ Z(p) ∩

(
−1

p
, 0
))

.
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NOTE ON COLEMAN’S FORMULA 17

Let z ∈ pZ(p). Then there exist z+
n ∈ pZ(p) ∩ (0, 1

p ), z−
n ∈ pZ(p) ∩ (− 1

p , 0)
which converge to z when n → ∞ respectively. Then we can write

G1(pz)
G1(z) = lim

n→∞

G1(pz+
n )

G1(z+
n )

= lim
n→∞

G2

(
z+

n + 1
p

)
· · · G2

(
z+

n + p − 1
p

)
,

G1(pz +1)
G1(z +1) = lim

n→∞

G1(pz−
n +1)

G1(z−
n +1)

= lim
n→∞

G2

(
z−

n + 1
p

)
· · · G2

(
z−

n + p−1
p

)
.

Recall that G2(z) is continuous in the sense of (3.6). Clearly we have for
k = 1, . . . , p − 1

z±
n + k

p
→ z + k

p
(n → ∞).

Additionally we see that

τ−1
(

z±
n + k

p

)
= z±

n

p
+ τ−1

(
k

p

)
→ z

p
+ τ−1

(
k

p

)
(n → ∞)

by noting that τ−1(z + z′) ≡ τ−1(z) + τ−1(z′) mod Z (∀z, z′), τ−1(z) ≡
z
p mod Z if p | z, z±

n

p ∈ (− 1
p , 1

p ), τ−1( k
p ) ∈ [ 1

p , p−1
p ]. It follows that

lim
n→∞

G2

(
z+

n + k

p

)
= lim

n→∞
G2

(
z−

n + k

p

)
.

Then the assertion is clear. □

By Corollary 3.3, we obtain the following.

Corollary 3.6. — Assume Assumption 3.4. Then there exist con-
stants a, b satisfying

G1(z) ≡ az− 1
2 bz1+ 1

2 Γp(z) mod µ∞.

Remark 3.7. — In addition to the above results, by computing the ab-
solute Frobenius on only one Fermat curve, we obtain Coleman’s formula
G1(z) ≡ Γp(z) mod µ∞. For example, when p = 3, we obtain it for z = 1

5 , 2
5

by the computation on F5. It follows that a
−3
10 b

−1
10 ≡ a

−1
10 b

3
10 ≡ 1, hence

a ≡ b ≡ 1.

Remark 3.8. — We used the assumption p | z only in the last paragraph
of the proof for Theorem 3.5 because G2 is not p-adically continuous on
the whole of (Q − Z(p)) ∩ (0, 1). For example, we put

zn := 1
p2 + pn+1

pn+2 + (1 − p)n
∈ (Q − Z(p)) ∩ (0, 1) (n ∈ N)

and take τ ∈ Wp with deg τ = 1 so that

τ(ζp2) = ζ−1
p2 .
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18 Tomokazu KASHIO

In particular we see that

zn → 1
p2 for the p-adic topology.

On the other hand we see that

τ−1(zn) ≡ τ−1
(

1
p2

)
+ τ−1

(
pn+1

pn+2 + (1 − p)n

)
mod Z

= p2 − 1
p2 + pn

pn+2 + (1 − p)n
= 1 − (1 − p)n

p2(pn+2 + (1 − p)n) ,

1 − (1 − p)n

p2(pn+2 + (1 − p)n) ∈

{
(1, 2) if n is odd,

(0, 1) if n is even.

Hence we have

τ−1(zn) =
{

− (1−p)n

p2(pn+2+(1−p)n) → − 1
p2 if n = 2k + 1, k → ∞,

1 − (1−p)n

p2(pn+2+(1−p)n) → 1 − 1
p2 if n = 2k, k → ∞.

Then, by Theorem 2.4(2), we see that G2(zn) = (Γp(zn)/Γp(τ−1(zn)))♭

does not converge p-adically although zn does.

4. On the p-adic continuity

In the previous section, we showed that the p-adic continuity of the right-
hand sides of Theorem 2.4(1), (2) implies a large part of Theorem 2.4(1)
itself. In this section, we see that it is relatively easy to show such p-
adic continuity properties, without explicit computation. For simplicity,
we consider only the case z ∈ Zp. Assume that p ∤ N .

Lemma 4.1 ([3, §VI]). — Let 1 ⩽ r, s < N with r +s ̸= N . We consider
the formal expansion of the differential form ηr,s = xrys−N dx

x on FN : xN +
yN = 1 at (x, y) = (0, 1):

ηr,s =
∞∑

n=0
br,s(n)xn dx

x
,

br,s(n) :=

(−1) n−r
N

( s
N − 1

n−r
N

)
(n ≡ r mod N),

0 (n ̸≡ r mod N).
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NOTE ON COLEMAN’S FORMULA 19

Let Φ be the absolute Frobenius on H1
dR(FN ,Qp). Then there exists αr′,s′ ∈

Qp satisfying

Φ(ηr,s) = αr′,s′ηr′,s′

for r′, s′ with 1 ⩽ r′, s′ < N, pr ≡ r′ mod N, ps ≡ s′ mod N.

Then we have

(4.1)

αr′,s′ = lim
N∋n 7→0

n≡r mod N

pbr,s(n)
br′,s′(pn)

= lim
N∋k→− r

N

(−1)(p−1)k+ pr−r′
N

p

( s
N − 1

k

)
( s′

N − 1
pk + pr−r′

N

) .

We note that αr′,s′ depends only on ( r′

N , s′

N ). That is αr′,s′ with N = N1
is equal to αtr′,ts′ with N = tN1.

Proposition 4.2. — αr′,s′ is p-adically continuous on ( r′

N , s′

N ) ∈ (Z(p) ∩
(0, 1))2.

Proof. — It suffices to show that αr′
1,s′

1
with N = N1 is close to αr′

2,s′
2

with N = N2 when r′
1

N1
is close to r′

2
N2

and s′
1

N1
is close to s′

2
N2

. We may assume
N := N1 = N2 by considering N = N1N2. First we fix r′ := r′

1 = r′
2 and

assume that s′
1 is close to s′

2. Then we can take the same k for the limit
expressions (4.1) of αr′,s′

1
, αr′,s′

2
. We easily see that if pl | (s′

1 − s′
2), then

pl−1 | (s1 − s2). In fact, we can write s′
i = psi − liN with li = 0, 1, . . . , p − 1

since 0 < si, s′
i < N for i = 1, 2. If p | (s′

1 − s′
2), then we have p | (l1 − l2),

so l1 = l2. Therefore we obtain s1 − s2 = s′
1−s′

2
p . It follows that s1 also is

close to s2. Hence the continuity on s′

N is clear since the numerator (resp.
the denominator) of the expression (4.1) is a polynomial on s

N (resp. s′

N ).
For the variable r′

N , we replace x with y. In other words, replace the point
(x, y) = (0, 1) for the expansion with (1, 0). Then the continuity on r′

N also
follows from the same argument. □

Corollary 4.3. — G1(z) defined in (3.5) is p-adically continuous on
z ∈ Z(p)∩(0, 1). In particular, we may regard G1(z) as a continuous function
on Zp.

Proof. — CM-types Ξr,s of (1.4), corresponding to ηr,s, generate the Q-
vector space {

∑
σ cσ · σ | cσ + cρ◦σ is a constant}. More explicitly, we claim
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that ∑
(b,N)=1

(
1
2 −

〈
ab

N

〉)
σb = 1

N

∑
1⩽s<N, a+s ̸=N

Ξa,s − N − 2
2N

∑
(b,N)=1

σb,

where s runs over 1 ⩽ s < N with a + s ̸= N in the first sum of the right-
hand side. By the definition (1.4), σb ∈ Ξa,s if and only if ⟨ ab

N ⟩ + ⟨ sb
N ⟩ < 1.

Namely ⟨ sb
N ⟩ = 1

N , 2
N , . . . , 1 − 1

N − ⟨ ab
N ⟩. The number of such b is congruent

to −1 − ab mod N . Hence we have
1
N

∑
1⩽s<N,
a+s ̸=N

Ξa,s =
∑

(b,N)=1

〈
−1 − ab

N

〉
σb =

∑
(b,N)=1

(
1 − 1

N
−
〈

ab

N

〉)
σb.

Here we note that ab ̸≡ 0 mod N since (b, N) = 1, a ̸≡ 0 mod N . Then
the above claim follows. By substituting this into Definition 2.2(8), we can
write

P
( a

N

)
≡

Γ∞( a
N )(2πi)

1
2 − a

N
p

∏
1⩽s<N, a+s̸=N

(
(2πi)es

p

∫
γ,p

ηa,s

) 1
N

(2πi) 1
2 − a

N

∏
1⩽s<N, a+s ̸=N

(
(2πi)es

∫
γ

ηa,s

) 1
N

mod µ∞,

es :=
{

−1 (a + s < N)
0 (a + s > N)

since the part
∑

(b,N)=1 σb becomes trivial by Proposition 2.1(2). We can
strengthen the congruence relation ≡ of the formula (1.3) into an equality
=, by selecting a specific closed path γ0 (e.g., γ0 = NγN with γN in [12,
Proposition 4.9]). Then we have

P
( a

N

)
≡ c · (2πi)

−1
2 + 1

N
p

∏
1⩽s<N, a+s ̸=N

(∫
γ0,p

ηa,s

) 1
N

mod µ∞,

where we put

c :=
Γ( a

N )
(2π) 1

N

 ∏
1⩽s<N, a+s̸=N

Γ( a+s
N )

Γ( a
N )Γ( s

N )

 1
N

.

Since (1.2) implies that ∏
1⩽s⩽N

Γ( a+s
N )

Γ( a
N )Γ( s

N ) = N−aa!
Γ( a

N )N
,

we obtain

c =
Γ( a

N )
(2π) 1

N

(
Γ( a

N )Γ( N−a
N )

Γ(1)
Γ( a

N )Γ( N
N )

Γ( a+N
N )

N−aa!
Γ( a

N )N

) 1
N

=
(

N1−a(a − 1)!
2 sin( a

N π)

) 1
N

.
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For the last equality we used (1.1) and the difference equation Γ(z + 1) =
zΓ(z). Take τ ∈ Wp with deg τ = 1. Then we have

G1

(
a′

N

)
≡ p

1
2 − a

N
P ( a′

N )
Φτ (P ( a

N ))

≡

 Na−a′(a′ − 1)!
pa−N−1(a − 1)!

∏
1⩽s<N, a+s ̸=N

α−1
a′,s′

 1
N

mod µ∞,

by noting that Φτ ((2πi)p) = p(2πi)p and Φτ (sin( a
N π)) = τ(sin( a

N π)) =
± sin( a′

N π). Here a′, s′ denote integers satisfying 1 ⩽ a′, s′ < N , pa ≡
a′ mod N , ps ≡ s′ mod N as above. By Proposition 4.2, αa′,s′ are con-
tinuous for a′. When a is in a small open ball, as we saw in the proof of
Proposition 4.2, we may write a′ = pa − M for a fixed M (M is lN in the
proof of Proposition 4.2). Then the remaining part becomes

Na−a′(a′ − 1)!
pa−N−1(a − 1)! = ±Γp(a′ + M + 1) pN N

(1−p)a′+M
p (a′ + M)

a′(a′ + 1)(a′ + 2) · · · (a′ + M) ,

which is also continuous as desired. □
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