

ANNALES DE L'INSTITUT FOURIER

Tomokazu Kashio
Note on Coleman's formula for the absolute Frobenius on Fermat curves
Article à paraître, mis en ligne le 17 mai 2024, 22 p.

Article mis à disposition par son auteur selon les termes de la licence Creative Commons attribution - pas de modification 3.o France (c) Br-ND http://creativecommons.org/licenses/by-nd/3.0/fr/

MERSENNE

NOTE ON COLEMAN'S FORMULA FOR THE ABSOLUTE FROBENIUS ON FERMAT CURVES

by Tomokazu KASHIO

Abstract

Coleman calculated the absolute Frobenius on Fermat curves explicitly. In this paper we show that a kind of p-adic continuity implies a large part of his formula. To do this, we study a relation between functional equations of the gamma function, monomial relations on CM-periods, and their p-adic analogues.

RÉsumé. - Coleman a calculé explicitement le Frobenius absolu sur les courbes de Fermat. Dans cet article, nous montrons qu'une sorte de continuité p-adique implique une grande partie de sa formule. Pour ce faire, nous étudions une relation entre les équations fonctionnelles de la fonction gamma, les relations monomiales sur CM-périodes, et leurs analogues p-adiques.

1. Introduction

We modify Euler's gamma function $\Gamma(z)$ into

$$
\Gamma_{\infty}(z):=\frac{\Gamma(z)}{\sqrt{2 \pi}}=\exp \left(\zeta^{\prime}(0, z)\right) \quad(z>0)
$$

and focus on its special values at rational numbers. Here we put $\zeta(s, z):=$ $\sum_{k=0}^{\infty}(z+k)^{-s}$ to be the Hurwitz zeta function. The last equation is due to Lerch. One has a"simple proof" in [14, p. 17]. The gamma function enjoys some functional equations:
(1.1) Euler's Reflection formula: $\Gamma_{\infty}(z) \Gamma_{\infty}(1-z)=\frac{1}{2 \sin \pi z}$,
(1.2) Gauss' Multiplication formula:

$$
\prod_{k=0}^{d-1} \Gamma_{\infty}\left(z+\frac{k}{d}\right)=d^{\frac{1}{2}-d z} \Gamma_{\infty}(d z) \quad(d \in \mathbb{N})
$$

Keywords: Absolute Frobenius, Fermat curves, Gross-Koblitz formula, p-adic gamma function, CM-periods, p-adic periods.
2020 Mathematics Subject Classification: 11M35, 11S80, 14F30, 14H45, 14K20, 14K22, 33B15.

For proofs, see $[1, \S 3,4]$. The main topic of this paper is a relation between such functional equations and monomial relations of CM-periods, and its p-adic analogue. We introduce some notations.

Definition 1.1. - Let K be a CM-field. We denote by I_{K} the \mathbb{Q}-vector space formally generated by all complex embeddings of K :

$$
I_{K}:=\bigoplus_{\sigma \in \operatorname{Hom}(K, \mathbb{C})} \mathbb{Q} \cdot \sigma
$$

We identify a subset $S \subset \operatorname{Hom}(K, \mathbb{C})$ as an element $\sum_{\sigma \in S} \sigma \in I_{K}$. Shimura's period symbol is the bilinear map

$$
p_{K}: I_{K} \times I_{K} \rightarrow \mathbb{C}^{\times} / \overline{\mathbb{Q}}^{\times}
$$

characterized by the following properties (P1), (P2).
(P1) Let A be an abelian variety defined over $\overline{\mathbb{Q}}$, having CM of type (K, Ξ). Namely, for each $\sigma \in \operatorname{Hom}(K, \mathbb{C})$, there exists a non-zero "K-eigen" differential form ω_{σ} of the second kind satisfying

$$
k^{*}\left(\omega_{\sigma}\right)=\sigma(k) \omega_{\sigma} \quad(k \in K),
$$

where k^{*} denotes the action of $k \in K$ via $K \cong \operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{Q}$ on the de Rham cohomology $H_{\mathrm{d} R}^{1}(A, \mathbb{C})$. Then we have

$$
\begin{aligned}
& \Xi=\left\{\sigma \in \operatorname{Hom}(K, \mathbb{C}) \mid \omega_{\sigma} \text { is holomorphic }\right\}, \\
& p_{K}(\sigma, \Xi) \equiv\left\{\begin{array}{ll}
\pi^{-1} \int_{\gamma} \omega_{\sigma} & (\sigma \in \Xi) \\
\int_{\gamma} \omega_{\sigma} & (\sigma \in \operatorname{Hom}(K, \mathbb{C})-\Xi)
\end{array} \quad \bmod \overline{\mathbb{Q}}^{\times}\right.
\end{aligned}
$$

for an arbitrary closed path $\gamma \subset A(\mathbb{C})$ satisfying $\int_{\gamma} \omega_{\sigma} \neq 0$.
(P2) Let ρ be the complex conjugation. Then we have

$$
\begin{aligned}
p_{K}(\sigma, \tau) p_{K}(\rho \circ \sigma, \tau) \equiv p_{K}(\sigma, \tau) p_{K}(\sigma, \rho \circ \tau) \equiv 1 \quad & \bmod \overline{\mathbb{Q}}^{\times} \\
& (\sigma, \tau \in \operatorname{Hom}(K, \mathbb{C})) .
\end{aligned}
$$

We note that, strictly speaking, Shimura's p_{K} in [13, §32] is a bilinear map on $\bigoplus_{\sigma \in \operatorname{Hom}(K, \mathbb{C})} \mathbb{Z} \cdot \sigma$. The period symbol also enjoys the following relations:
(P3) Let $\iota: K^{\prime} \cong K$ be an isomorphism of CM-fields. Then we have

$$
p_{K}(\sigma, \tau) \equiv p_{K^{\prime}}(\sigma \circ \iota, \tau \circ \iota) \quad \bmod \overline{\mathbb{Q}}^{\times} \quad(\sigma, \tau \in \operatorname{Hom}(K, \mathbb{C}))
$$

(P4) Let $K \subset L$ be a field extension of CM-fields. We define two linear maps defined as

$$
\begin{aligned}
& \text { Res : } I_{L} \rightarrow I_{K},\left.\tilde{\sigma} \mapsto \tilde{\sigma}\right|_{K} \quad(\widetilde{\sigma} \in \operatorname{Hom}(L, \mathbb{C})) \text {, } \\
& \text { Inf: } I_{K} \rightarrow I_{L}, \sigma \mapsto \sum_{\substack{\left.\widetilde{\sigma} \in \operatorname{Hom}(L, \mathbb{C}) \\
\widetilde{\sigma}\right|_{K}=\sigma}} \tilde{\sigma}(\sigma \in \operatorname{Hom}(K, \mathbb{C})) .
\end{aligned}
$$

Then we have

$$
p_{K}(\operatorname{Res}(X), Y) \equiv p_{L}(X, \operatorname{Inf}(Y)) \quad \bmod \overline{\mathbb{Q}}^{\times} \quad\left(X \in I_{L}, Y \in I_{K}\right)
$$

The following results by Gross-Rohrlich and the above relations (P3), (P4) provide an explicit formula [14, Theorem 2.5, Chap. III] on p_{K} for $K=\mathbb{Q}\left(\zeta_{N}\right)\left(\zeta_{N}=\mathrm{e}^{\frac{2 \pi i}{N}}, N \geqslant 3\right)$. We can rewrite it in the form (1.5) by the arguments in $[8, \S 6]$. Let $\sigma_{b} \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}\right)((b, N)=1)$ be defined by $\sigma_{b}\left(\zeta_{N}\right):=\zeta_{N}^{b},\langle\alpha\rangle \in(0,1)$ denote the fraction part of $\alpha \in \mathbb{Q}-\mathbb{Z}$.

Theorem 1.2 ([5, Theorem in Appendix $]$). - Let $F_{N}: x^{N}+y^{N}=1$ be the N th Fermat curve, $\eta_{r, s}:=x^{r-1} y^{s-N} \mathrm{~d} x$ its differential forms of the second kind $(0<r, s<N, r+s \neq N)$. Then we have for any closed path γ on $F_{N}(\mathbb{C})$ with $\int_{\gamma} \eta_{r, s} \neq 0$

$$
\begin{equation*}
\int_{\gamma} \eta_{r, s} \equiv \frac{\Gamma\left(\frac{r}{N}\right) \Gamma\left(\frac{s}{N}\right)}{\Gamma\left(\frac{r+s}{N}\right)} \quad \bmod \mathbb{Q}\left(\zeta_{N}\right)^{\times} . \tag{1.3}
\end{equation*}
$$

Theorem 1.3 ([5, §2], [14, §2, Chap. III]). - The CM-type corresponding to $\eta_{r, s}$ is

$$
\Xi_{r, s}:=\left\{\sigma_{b} \left\lvert\, \begin{array}{l}
1 \leqslant b \leqslant N,(b, N)=1 \tag{1.4}\\
\left\langle\frac{b r}{N}\right\rangle+\left\langle\frac{b s}{N}\right\rangle+\left\langle\frac{b(N-r-s)}{N}\right\rangle=1
\end{array}\right.\right\}
$$

That is, we have

$$
p_{\mathbb{Q}\left(\zeta_{N}\right)}\left(\mathrm{id}, \Xi_{r, s}\right) \equiv\left\{\begin{array}{ll}
\pi^{-1} \int_{\gamma} \eta_{r, s} & (r+s<N) \\
\int_{\gamma} \eta_{r, s} & (r+s>N)
\end{array} \quad \bmod \overline{\mathbb{Q}}^{\times}\right.
$$

Corollary 1.4 ([8, Theorem 3]). - We have for any $\frac{a}{N} \in \mathbb{Q}-\mathbb{Z}$

$$
\begin{equation*}
\Gamma_{\infty}\left(\frac{a}{N}\right) \equiv \pi^{\frac{1}{2}-\left\langle\frac{a}{N}\right\rangle} p_{\mathbb{Q}\left(\zeta_{N}\right)}\left(\mathrm{id}, \sum_{(b, N)=1}\left(\frac{1}{2}-\left\langle\frac{a b}{N}\right\rangle\right) \cdot \sigma_{b}\right) \quad \bmod \overline{\mathbb{Q}}^{\times} \tag{1.5}
\end{equation*}
$$

Here the sum runs over all b satisfying $1 \leqslant b \leqslant N,(b, N)=1$.

Note that (1.5) holds true even if $(a, N)>1$, essentially due to (P4). Although the following is just a toy problem, we provide its proof by using the period symbol, in order to explain the theme of this paper: we may say that some functional equations of the gamma function "correspond" to some monomial relations of CM-periods.

Proposition 1.5 (A toy problem). - The explicit formula (1.5) implies the following "functional equations $\bmod \overline{\mathbb{Q}}^{\times}$" on $\Gamma\left(\frac{a}{N}\right)$:

$$
\begin{array}{ll}
\text { "Reflection formula": } & \Gamma_{\infty}\left(\frac{a}{N}\right) \Gamma_{\infty}\left(\frac{N-a}{N}\right) \equiv 1 \bmod \overline{\mathbb{Q}}^{\times}, \\
\text {"Multiplication formula": } & \prod_{k=0}^{d-1} \Gamma_{\infty}\left(\frac{a}{N}+\frac{k}{d}\right) \equiv \Gamma_{\infty}\left(\frac{d a}{N}\right) \quad \bmod \overline{\mathbb{Q}}^{\times} .
\end{array}
$$

Proof. - "Reflection formula" follows from (P2) immediately. Concerning "Multiplication formula", we may assume that $d \mid N$. Under the expression (1.5), "Multiplication formula" is equivalent to

$$
\begin{aligned}
& \pi^{\sum_{k=0}^{d-1} \frac{1}{2}-\left\langle\frac{a}{N}+\frac{k}{d}\right\rangle} p_{\mathbb{Q}\left(\zeta_{N}\right)}\left(\mathrm{id}, \sum_{(b, N)=1}\left(\sum_{k=0}^{d-1} \frac{1}{2}-\left\langle\frac{a b}{N}+\frac{k b}{d}\right\rangle\right) \cdot \sigma_{b}\right) \\
& \equiv \pi^{\frac{1}{2}-\left\langle\frac{a d}{N}\right\rangle} p_{\mathbb{Q}\left(\zeta_{N}\right)}\left(\operatorname{id}, \sum_{(b, N)=1}\left(\frac{1}{2}-\left\langle\frac{d a b}{N}\right\rangle\right) \cdot \sigma_{b}\right)
\end{aligned}
$$

This follows from the multiplication formula

$$
\begin{equation*}
\sum_{k=0}^{d-1} B_{1}\left(x+\frac{k}{d}\right)=B_{1}(d x) \tag{1.6}
\end{equation*}
$$

for the 1st Bernoulli polynomial $B_{1}(x)=x-\frac{1}{2}$.
The aim of this paper is to study a p-adic analogue of such "correspondence". More precisely, we shall characterize the p-adic gamma function by its functional equations and some special values. Then we show that the period symbol and its p-adic analogue satisfy the corresponding properties to such functional equations. As an application, we provide an alternative proof of a large part of Coleman's formula (Theorem 2.4(1)): originally, Coleman's formula was proved by calculating the absolute Frobenius on all Fermat curves. We shall see that it suffices to calculate it on only one curve (Remark 3.7).

Remark 1.6. - Yoshida and the author formulated conjectures in [8, 9, 10] which are generalizations of Coleman's formula, from cyclotomic fields
to arbitrary CM-fields: Coleman's formula implies "the reciprocity law on cyclotomic units" [7] and "the Gross-Koblitz formula on Gauss sums" $[3,6]$ simultaneously. The author conjectured a generalization [8, Conjecture 4] of Coleman's formula which implies a part of Stark's conjecture and a generalization of (the rank 1 abelian) Gross-Stark conjecture simultaneously. The results in this paper (in particular Remark 3.7) are very important toward this generalization, since we know only a finite number of algebraic curves (e.g., [2]) whose Jacobian varieties have CM by CM-fields which are not abelian over \mathbb{Q}.

The outline of this paper is as follows. First we introduce Coleman's formula [4] for the absolute Frobenius on Fermat curves in Section 2. The author rewrote it in the form of Theorem 2.4: roughly speaking, we write Morita's p-adic gamma function Γ_{p} in terms of Shimura's period symbol p_{K}, its p-adic analogue $p_{K, p}$, and modified Euler's gamma function Γ_{∞}. In Section 3, we show that some functional equations almost characterize Γ_{p} (Corollary 3.3), and the corresponding properties ((3.7), Theorem 3.5) hold for $p_{K}, p_{K, p}, \Gamma_{\infty}$. Then we see that a large part (Corollary 3.6) of Coleman's formula follows automatically, without explicit computation, under assuming certain p-adic continuity properties. Unfortunately, our results have a root of unity ambiguity although the original formula is a complete equation, since some definitions are well-defined only up to roots of unity. In Section 4, we confirm that we can show (at least, a part of) needed p-adic continuity properties relatively easily.

2. Coleman's formula in terms of period symbols

Coleman explicitly calculated the absolute Frobenius on Fermat curves [4]. The author rewrote his formula in $[7,8]$ as follows.

2.1. p-adic period symbol

Let p be a rational prime, \mathbb{C}_{p} the p-adic completion of the algebraic closure $\overline{\mathbb{Q}_{p}}$ of \mathbb{Q}_{p}, and μ_{∞} the group of all roots of unity. For simplicity, we fix embeddings $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}, \mathbb{C}_{p}$ and consider any number field as a subfield of each of them. Let $B_{\text {cris }} \subset B_{\mathrm{d} R}$ be Fontaine's p-adic period rings. We consider the composite ring $B_{\text {cris }} \overline{\mathbb{Q}_{p}} \subset B_{\mathrm{d} R}$. Let A be an abelian variety
with CM defined over $\overline{\mathbb{Q}}, \gamma$ a closed path on $\subset A(\mathbb{C})$, and ω a differential form of the second kind of A. Then the p-adic period integral

$$
\int_{p}: H_{1}^{\mathrm{B}}(A(\mathbb{C}), \mathbb{Q}) \times H_{\mathrm{d} R}^{1}(A, \overline{\mathbb{Q}}) \rightarrow B_{\text {cris }} \overline{\mathbb{Q}_{p}}, \quad(\gamma, \omega) \mapsto \int_{\gamma, p} \omega
$$

is defined by the comparison isomorphisms of p-adic Hodge theory, instead of the de Rham isomorphism (e.g., [8, §5.1], [7, §6]). Here H^{B} denotes the singular (Betti) homology. Then, in a similar manner to p_{K}, we can define the p-adic period symbol

$$
p_{K, p}: I_{K} \times I_{K} \rightarrow\left(B_{\text {cris }} \overline{\mathbb{Q}_{p}}-\{0\}\right)^{\mathbb{Q}} / \overline{\mathbb{Q}}^{\times}
$$

satisfying p-adic analogues of (P1), (P2), (P3), (P4). Here we put ($B_{\text {cris }} \overline{\mathbb{Q}_{p}}-$ $\{0\})^{\mathbb{Q}}:=\left\{x \in B_{\mathrm{d} R} \mid \exists n \in \mathbb{N}\right.$ s.t. $\left.x^{n} \in B_{\text {cris }} \overline{\mathbb{Q}_{p}}-\{0\}\right\}$. Moreover the "ratio"

$$
\left[\int_{\gamma} \omega_{\sigma}: \int_{\gamma, p} \omega_{\sigma}\right] \in\left(\mathbb{C}^{\times} \times\left(B_{\text {cris }} \overline{\mathbb{Q}_{p}}-\{0\}\right)\right) / \overline{\mathbb{Q}}^{\times}
$$

depends only on $\sigma \in \operatorname{Hom}(K, \mathbb{C})$ and the CM-type Ξ. That is, if we replace $A, \omega_{\sigma}, \gamma$ with $A^{\prime}, \omega_{\sigma}^{\prime}, \gamma^{\prime}$ for the same Ξ, σ, then we have

$$
\frac{\int_{\gamma^{\prime}} \omega_{\sigma}^{\prime}}{\int_{\gamma} \omega_{\sigma}}=\frac{\int_{\gamma^{\prime}, p} \omega_{\sigma}^{\prime}}{\int_{\gamma, p} \omega_{\sigma}} \in \overline{\mathbb{Q}}^{\times} .
$$

Therefore we may consider the following ratio of the symbols $\left[p_{K}: p_{K, p}\right.$], which is well-defined up to μ_{∞}.

Proposition 2.1 ([8, Proposition 4]). - There exists a bilinear map

$$
\left[p_{K}: p_{K, p}\right]: I_{K} \times I_{K} \rightarrow\left(\mathbb{C}^{\times} \times\left(B_{\text {cris }} \overline{\mathbb{Q}_{p}}-\{0\}\right)^{\mathbb{Q}}\right) /\left(\mu_{\infty} \times \mu_{\infty}\right) \overline{\mathbb{Q}}^{\times}
$$

satisfying the following.
(1) Let $A, \Xi, \sigma, \omega_{\sigma}, \gamma$ be as in (P1). Then

$$
\begin{aligned}
& {\left[p_{K}: p_{K, p}\right](\sigma, \Xi)} \\
& \qquad \begin{cases}{\left[(2 \pi \mathrm{i})^{-1} \int_{\gamma} \omega_{\sigma}:(2 \pi \mathrm{i})_{p}^{-1} \int_{\gamma, p} \omega_{\sigma}\right]} & (\sigma \in \Xi) \\
{\left[\int_{\gamma} \omega_{\sigma}: \int_{\gamma, p} \omega_{\sigma}\right]} & (\sigma \in \operatorname{Hom}(K, \mathbb{C})-\Xi)\end{cases} \\
& \quad \bmod \left(\mu_{\infty} \times \mu_{\infty}\right) \overline{\mathbb{Q}}^{\times} .
\end{aligned}
$$

Here $(2 \pi \mathrm{i})_{p} \in B_{\text {cris }}$ is the p-adic counterpart of $2 \pi \mathrm{i}$ defined in, e.g., [8, §5.1].
(2) We have for $\sigma, \tau \in \operatorname{Hom}(K, \mathbb{C})$ and for the complex conjugation ρ

$$
\begin{array}{ll}
{\left[p_{K}: p_{K, p}\right](\sigma, \tau) \cdot\left[p_{K}: p_{K, p}\right](\rho \circ \sigma, \tau) \equiv 1} & \bmod \left(\mu_{\infty} \times \mu_{\infty}\right) \overline{\mathbb{Q}}^{\times} \\
{\left[p_{K}: p_{K, p}\right](\sigma, \tau) \cdot\left[p_{K}: p_{K, p}\right](\sigma, \rho \circ \tau) \equiv 1} & \bmod \left(\mu_{\infty} \times \mu_{\infty}\right) \overline{\mathbb{Q}}^{\times}
\end{array}
$$

(3) Let $\iota: K^{\prime} \cong K$ be an isomorphism of CM-fields. Then we have for $\sigma, \tau \in \operatorname{Hom}(K, \mathbb{C})$

$$
\left[p_{K}: p_{K, p}\right](\sigma, \tau) \equiv\left[p_{K^{\prime}}: p_{K^{\prime}, p}\right](\sigma \circ \iota, \tau \circ \iota) \quad \bmod \left(\mu_{\infty} \times \mu_{\infty}\right) \overline{\mathbb{Q}}^{\times}
$$

(4) Let $K \subset L$ be a field extension of CM-fields. Then we have for $X \in I_{L}, Y \in I_{K}$
$\left[p_{K}: p_{K, p}\right](\operatorname{Res}(X), Y) \equiv\left[p_{L}: p_{L, p}\right](X, \operatorname{Inf}(Y)) \bmod \left(\mu_{\infty} \times \mu_{\infty}\right) \overline{\mathbb{Q}}^{\times}$.

2.2. Coleman's formula

Theorem 2.4 below is essentially due to Coleman [4, Theorems 1.7, 3.13]. Note that the original formula does not have a root of unity ambiguity. First we prepare some notations. We assume that p is an odd prime.

Definition 2.2.
(1) Let $\mathbb{C}_{p}^{1}:=\left\{\left.z \in \mathbb{C}_{p}^{\times}| | z\right|_{p}=1\right\}$. We fix a group homomorphism

$$
\exp _{p}: \mathbb{C}_{p} \rightarrow \mathbb{C}_{p}^{1}
$$

which coincides with the usual power series $\exp _{p}(z):=\sum_{k=0}^{\infty} \frac{z^{k}}{k!}$ on the convergence region. For $\alpha \in \mathbb{C}_{p}^{\times}, \beta \in \mathbb{C}_{p}$, we put

$$
\alpha^{\beta}:=\exp _{p}\left(\beta \log _{p} \alpha\right)
$$

with $\log _{p}$ Iwasawa's p-adic \log function.
(2) For $z \in \mathbb{C}_{p}^{\times}$, we put

$$
z^{*}:=\exp _{p}\left(\log _{p}(z)\right), \quad z^{b}:=p^{\operatorname{ord}_{p} z} z^{*}
$$

Here we define $\operatorname{ord}_{p} z \in \mathbb{Q}$ by $|z|_{p}=|p|_{p}^{\operatorname{ord}_{p} z}$. Note that $z \equiv z^{b} \bmod$ $\mu_{\infty}\left(z \in \mathbb{C}_{p}^{\times}\right)$.
(3) We define the p-adic gamma function on \mathbb{Q}_{p} as follows.
(a) On $\mathbb{Z}_{p}, \Gamma_{p}(z)$ denotes Morita's p-adic gamma function which is the unique continuous function $\Gamma_{p}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}^{\times}$satisfying

$$
\Gamma_{p}(n):=(-1)^{n} \prod_{1 \leqslant k \leqslant n-1, p \nmid k} k \quad(n \in \mathbb{N}) .
$$

(b) On $\mathbb{Q}_{p}-\mathbb{Z}_{p}$, we use $\Gamma_{p}: \mathbb{Q}_{p}-\mathbb{Z}_{p} \rightarrow \mathcal{O}_{\overline{\mathbb{Q}_{1}}}^{\times}$defined in [7, Lemma 4.2], which is a continuous function satisfying

$$
\Gamma_{p}(z+1)=z^{*} \Gamma_{p}(z), \Gamma_{p}(2 z)=2^{2 z-\frac{1}{2}} \Gamma_{p}(z) \Gamma_{p}\left(z+\frac{1}{2}\right)
$$

Such a continuous function on $\mathbb{Q}_{p}-\mathbb{Z}_{p}$ is unique up to multiplication by μ_{∞}.
(4) For $z \in \mathbb{Z}_{p}$, we define $z_{0} \in\{1,2, \ldots, p\}, z_{1} \in \mathbb{Z}_{p}$ by

$$
z=z_{0}+p z_{1}
$$

Note that when $p \mid z$, we put $z_{0}=p$, instead of 0 .
(5) Let W_{p} be the Weil group defined as

$$
W_{p}:=\left\{\tau \in \operatorname{Gal}\left(\overline{\mathbb{Q}_{p}} / \mathbb{Q}_{p}\right)|\tau|_{\mathbb{Q}_{p}^{u r}}=\sigma_{p}^{\operatorname{deg} \tau} \text { with } \operatorname{deg} \tau \in \mathbb{Z}\right\}
$$

Here $\mathbb{Q}_{p}^{u r}$ denotes the maximal unramified extension of $\mathbb{Q}_{p}, \sigma_{p}$ the Frobenius automorphism on $\mathbb{Q}_{p}^{u r}$.
(6) We define the action of W_{p} on $\mathbb{Q} \cap[0,1)$ by identifying $\mathbb{Q} \cap[0,1)=$ μ_{∞}. Namely

$$
\tau\left(\frac{a}{N}\right):=\frac{b}{N} \quad \text { if } \quad \tau\left(\zeta_{N}^{a}\right)=\zeta_{N}^{b} \quad\left(\tau \in W_{p}\right)
$$

(7) Let $\Phi_{\text {cris }}$ be the absolute Frobenius automorphism on $B_{\text {cris }}$. We consider the following action of W_{p} on $B_{\text {cris }} \overline{\mathbb{Q}_{p}} \cong B_{\text {cris }} \otimes_{\mathbb{Q}^{u r}} \overline{\mathbb{Q}_{1}}$:

$$
\Phi_{\tau}:=\Phi_{\mathrm{cris}}^{\operatorname{deg} \tau} \otimes \tau \quad\left(\tau \in W_{p}\right)
$$

(8) For $\frac{a}{N} \in \mathbb{Q} \cap(0,1)$ we put

$$
\begin{array}{r}
P\left(\frac{a}{N}\right):=\frac{\Gamma_{\infty}\left(\frac{a}{N}\right) \cdot(2 \pi \mathrm{i})_{p}^{\frac{1}{2}-\left\langle\frac{a}{N}\right\rangle} p_{\mathbb{Q}\left(\zeta_{N}\right), p}\left(\mathrm{id}, \sum_{(b, N)=1}\left(\frac{1}{2}-\left\langle\frac{a b}{N}\right\rangle\right) \sigma_{b}\right)}{(2 \pi \mathrm{i})^{\frac{1}{2}-\left\langle\frac{a}{N}\right\rangle} p_{\mathbb{Q}\left(\zeta_{N}\right)}\left(\mathrm{id}, \sum_{(b, N)=1}\left(\frac{1}{2}-\left\langle\frac{a b}{N}\right\rangle\right) \sigma_{b}\right)} \\
\in\left(B_{\text {cris }} \overline{\mathbb{Q}_{p}}-\{0\}\right)^{\mathbb{Q}} / \mu_{\infty}
\end{array}
$$

This definition makes sense since
$\frac{\Gamma_{\infty}\left(\frac{a}{N}\right)}{(2 \pi \mathrm{i})^{\frac{1}{2}-\left\langle\frac{a}{N}\right\rangle} p_{\mathbb{Q}\left(\zeta_{N}\right)}\left(\mathrm{id}, \sum_{(b, N)=1}\left(\frac{1}{2}-\left\langle\frac{a b}{N}\right\rangle\right) \sigma_{b}\right)} \in \overline{\mathbb{Q}} \subset B_{\text {cris }} \overline{\mathbb{Q}_{p}}$
by (1.5) and the ratio $\left[p_{K}: p_{K, p}\right]$ is well-defined up to μ_{∞} by Proposition 2.1.

Remarks 2.3.
(1) Let μ_{p-1} be the group of all $(p-1)$ st roots of unity, $p^{\mathbb{Z}}:=\left\{p^{n} \mid\right.$ $n \in \mathbb{Z}\}, 1+p \mathbb{Z}_{p}:=\left\{1+p z \mid z \in \mathbb{Z}_{p}\right\}$. Then we have the canonical decomposition

$$
\begin{array}{ccccccc}
\mathbb{Q}_{p}^{\times} & \rightarrow & \mu_{p-1} & \times & p^{\mathbb{Z}} & \times & 1+p \mathbb{Z}_{p} \\
z & \mapsto & \left(\omega\left(z p^{-\operatorname{ord}_{p} z}\right)\right. & , & p^{\operatorname{ord}_{p} z} & , & \left.z^{*}\right)
\end{array}
$$

where ω denotes the Teichmüller character. The maps $z \mapsto z^{*}, z^{b}$ provide a similar (but non-canonical) decomposition of \mathbb{C}_{p}^{\times}. Moreover, we note that the maps $z \mapsto \exp _{p}(z), z^{*}, z^{b}$ are continuous homomorphisms.
(2) We easily see that

$$
\tau(z)=\langle p z\rangle, \tau^{-1}(z)=z_{1}+1 \quad\left(z \in \mathbb{Z}_{(p)} \cap(0,1), \tau \in W_{p}, \operatorname{deg} \tau=1\right)
$$

Theorem 2.4 ([8, Theorem 3]). - Let p be an odd prime.
(1) Assume that $z \in \mathbb{Z}_{(p)} \cap(0,1)$. Then we have

$$
\Gamma_{p}(z) \equiv p^{\frac{1}{2}-\tau^{-1}(z)} \frac{P(z)}{\Phi_{\tau}\left(P\left(\tau^{-1}(z)\right)\right)} \bmod \mu_{\infty} \quad\left(\tau \in W_{p}, \operatorname{deg} \tau=1\right)
$$

(2) Assume that $z \in\left(\mathbb{Q}-\mathbb{Z}_{(p)}\right) \cap(0,1)$. Then we have

$$
\frac{\Gamma_{p}(\tau(z))}{\Gamma_{p}(z)} \equiv \frac{p^{(z-\tau(z)) \operatorname{ord}_{p} z} P(\tau(z))}{\Phi_{\tau}(P(z))} \quad \bmod \mu_{\infty} \quad\left(\tau \in W_{p}\right)
$$

Remark 2.5. - As a result, we see that the right-hand sides of Theorem $2.4(1)$, (2) are p-adic continuous on $z,(z, \tau(z))$ respectively, since the left-hand sides are so. We use only the p-adic continuity in the next section, in order to recover Theorem 2.4(1).

3. Main results

Morita's p-adic gamma function $\Gamma_{p}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}^{\times}$is the unique continuous function satisfying

$$
\Gamma_{p}(0)=1, \frac{\Gamma_{p}(z+1)}{\Gamma_{p}(z)}= \begin{cases}-z & \left(z \in \mathbb{Z}_{p}^{\times}\right) \tag{3.1}\\ -1 & \left(z \in p \mathbb{Z}_{p}\right)\end{cases}
$$

In this section, we study other functional equations characterizing Γ_{p} and provide an alternative proof of Coleman's formula in the case $z \in \mathbb{Z}_{(p)}$. Strictly speaking, we only "assume" that the right-hand sides of Theorem 2.4(1), (2) are continuous on $z,(z, \tau(z))$ respectively (of course, this is correct). Then we can recover a "large part" (Corollary 3.6) of Theorem 2.4(1). We assume that p is an odd prime.

3.1. A characterization of Morita's p-adic gamma function

$\Gamma_{p}(z)$ satisfies the following p-adic analogues of multiplication formulas, which we consider only up to roots of unity in this paper. For the detailed formulation and its proof, see [11, "Basic properties of Γ_{p} " in Section 2 of Chapter IV].

Proposition 3.1. - Let $d \in \mathbb{N}$ with $p \nmid d$. Then we have for $z \in \mathbb{Z}_{p}$

$$
\begin{equation*}
\prod_{k=0}^{d-1} \Gamma_{p}\left(z+\frac{k}{d}\right) \equiv d^{1-d z+(d z)_{1}} \Gamma_{p}(d z) \quad \bmod \mu_{\infty} \tag{3.2}
\end{equation*}
$$

Note that if $p \mid d$, then $z+\frac{k}{d}$ is not in the domain of definition of Morita's Γ_{p}. In the rest of this subsection, we show that multiplication formulas (3.2) and some conditions characterize Morita's p-adic gamma function (at least up to μ_{∞}).

Proposition 3.2. - Assume a continuous function $f(z): \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}^{\times}$ satisfies

$$
\begin{equation*}
\prod_{k=0}^{d-1} f\left(z+\frac{k}{d}\right) \equiv f(d z) \quad \bmod \mu_{\infty} \quad(p \nmid d) . \tag{3.3}
\end{equation*}
$$

Then the following holds.
(1) $\frac{f(z+1)}{f(z)} \bmod \mu_{\infty}$ depends only on $\operatorname{ord}_{p} z$.
(2) The values

$$
c_{k}:=\left(\frac{f\left(p^{k}+1\right)}{f\left(p^{k}\right)}\right)^{b}
$$

characterize the function $f(z)$ up to μ_{∞}. More precisely, for $z \in \mathbb{Z}_{p}$, we write the p-adic expansion of $z-1$ as

$$
z-1=\sum_{k=0}^{\infty} x_{k} p^{k} \quad\left(x_{k} \in\{0,1, \ldots, p-1\}\right)
$$

Then we have

$$
f(z) \equiv \prod_{k=0}^{\infty} \alpha_{k}^{x_{k}-\frac{p-1}{2}} \quad \bmod \mu_{\infty} \quad \text { with } \quad \alpha_{k}:=c_{k} \prod_{i=0}^{k-1} c_{i}^{p^{k-1-i}(p-1)}
$$

Conversely, assume that

$$
\begin{equation*}
f\left(1+\sum_{k=0}^{\infty} x_{k} p^{k}\right) \equiv \prod_{k=0}^{\infty} \alpha_{k}^{x_{k}-\frac{p-1}{2}} \bmod \mu_{\infty} \quad\left(x_{k} \in\{0,1, \ldots, p-1\}\right) \tag{3.4}
\end{equation*}
$$

for constants $\alpha_{k} \in \mathbb{C}_{p}^{\times}$satisfying $\alpha_{k} \rightarrow 1(k \rightarrow \infty)$. Then $f(z)$ satisfies the functional equations (3.3).

Proof. - We suppress $\bmod \mu_{\infty}$. Assume (3.3). Replacing z with $z+\frac{1}{d}$, we obtain $\prod_{k=1}^{d} f\left(z+\frac{k}{d}\right) \equiv f(d z+1)$. It follows that $\frac{f(z+1)}{f(z)} \equiv \frac{f(d z+1)}{f(d z)}$. That is,

$$
g(z):=\frac{f(z+1)}{f(z)} \equiv g(d z) \quad(p \nmid d \in \mathbb{N})
$$

Then the assertion (1) is clear. Let $c_{k}:=\left(g\left(p^{k}\right)\right)^{b}, a_{n}:=x_{0}+x_{1} p+\cdots+x_{n} p^{n}$ $\left(0 \leqslant x_{i} \leqslant p-1\right)$. We easily see that

$$
\#\left\{y=1,2, \ldots, a_{n} \mid \operatorname{ord}_{p} y=k\right\}=x_{k}+\sum_{i=k+1}^{n} x_{i} p^{i-k-1}(p-1) \quad(0 \leqslant k \leqslant n)
$$

Then we can write

$$
f\left(a_{n}+1\right)^{b}=\left(f(1) g(1) g(2) \cdots g\left(a_{n}\right)\right)^{b}=f(1)^{b} \alpha_{0}^{x_{0}} \alpha_{1}^{x_{1}} \cdots \alpha_{n}^{x_{n}}
$$

with $\alpha_{k}=c_{k} \prod_{i=0}^{k-1} c_{i}^{p^{k-1-i}(p-1)}$. Since $\lim _{n \rightarrow \infty} f\left(a_{n}+1\right)$ converges, so do $\lim _{n \rightarrow \infty} f\left(a_{n}+1\right)^{b}$ and $\prod_{k=0}^{\infty} \alpha_{k}^{x_{k}}$. Moreover we can write

$$
f(z) \equiv f(1) \prod_{k=0}^{\infty} \alpha_{k}^{x_{k}}
$$

Consider the case of $d=2, z=\frac{1}{2}$ of (3.3): $f\left(\frac{1}{2}\right) f(1) \equiv f(1)$. Therefore, noting that $-\frac{1}{2}=\sum_{k=0}^{\infty} \frac{p-1}{2} p^{k}$, we obtain

$$
1 \equiv f\left(\frac{1}{2}\right) \equiv f(1) \prod_{k=0}^{\infty} \alpha_{k}^{\frac{p-1}{2}}, \quad \text { that is, } \quad f(1) \equiv \prod_{k=0}^{\infty} \alpha_{k}^{-\frac{p-1}{2}}
$$

Then the assertion (2) is also clear.
Next, assume (3.4). When $\operatorname{ord}_{p} z=k$, we see that $\frac{f(z+1)}{f(z)} \equiv \frac{\alpha_{k}}{\alpha_{k-1}^{p-1}}$ (resp. α_{0}) if $k>0$ (resp. $k=0$). In particular, $g(z):=\frac{f(z+1)}{f(z)} \bmod \mu_{\infty}$ depends only on $\operatorname{ord}_{p} z$. When $z+z^{\prime}=1$, the p-adic expansions $z-1=\sum_{k=0}^{\infty} x_{k} p^{k}$, $z^{\prime}-1=\sum_{k=0}^{\infty} x_{k}^{\prime} p^{k}$ satisfy $x_{k}+x_{k}^{\prime}=p-1$ for any k. Then we have

$$
f(z) f\left(z^{\prime}\right) \equiv \prod_{k=0}^{\infty} \alpha_{k}^{0}=1
$$

Therefore the case $z=0$ of (3.3) holds true since we have $\left(\prod_{k=1}^{d-1} f\left(\frac{k}{d}\right)\right)^{2}=$ $\prod_{k=1}^{d-1} f\left(\frac{k}{d}\right) f\left(1-\frac{k}{d}\right) \equiv 1$. Then (3.3) for $z \in \mathbb{N}$ follows by mathematical
induction on z noting that

$$
\begin{aligned}
\prod_{k=0}^{d-1} f\left(z+1+\frac{k}{d}\right) & \equiv \prod_{k=0}^{d-1} f\left(z+\frac{k}{d}\right) g\left(z+\frac{k}{d}\right) \\
f(d z+d) & \equiv f(d z) g(d z) \cdots g(d z+d-1) \\
\operatorname{ord}_{p}(d z+k) & =\operatorname{ord}_{p}\left(z+\frac{k}{d}\right)
\end{aligned}
$$

Since \mathbb{N} is dense in \mathbb{Z}_{p}, we see that (3.3) holds for any $z \in \mathbb{Z}_{p}$.
The following corollary provides a nice characterization of $\Gamma_{p}(z) \bmod \mu_{\infty}$ in terms of functional equations and one or two special values.

Corollary 3.3. - Assume a continuous function $f(z): \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}^{\times}$satisfies

$$
\prod_{k=0}^{d-1} f\left(z+\frac{k}{d}\right) \equiv f(d z) \quad \bmod \mu_{\infty} \quad(p \nmid d)
$$

and put

$$
c_{n}:=\left(\frac{f\left(p^{n}+1\right)}{f\left(p^{n}\right)}\right)^{b} .
$$

Then the following equivalences hold:
(1) $c_{0}=c_{1}=\cdots \Leftrightarrow f(z) \equiv c_{0}^{z-\frac{1}{2}} \bmod \mu_{\infty}$.
(2) $c_{1}=c_{2}=\cdots \Leftrightarrow f(z) \equiv c_{0}^{z-\frac{1}{2}}\left(c_{1} / c_{0}\right)^{z_{1}+\frac{1}{2}} \bmod \mu_{\infty}$.

Proof. - We suppress $\bmod \mu_{\infty}$. For (1), assume that $c_{0}=c_{1}=\cdots$. Then

$$
\alpha_{k}:=c_{k} \prod_{i=0}^{k-1} c_{i}^{p^{k-1-i}(p-1)}=c_{0}^{p^{k}}
$$

Hence we have by Proposition 3.2

$$
f\left(1+\sum_{k=0}^{\infty} x_{k} p^{k}\right) \equiv \prod_{k=0}^{\infty} \alpha_{k}^{x_{k}-\frac{p-1}{2}}=c_{0}^{\sum_{k=0}^{\infty} x_{k} p^{k}-\frac{p-1}{2} p^{k}}=c_{0}^{z-1+\frac{1}{2}}=c_{0}^{z-\frac{1}{2}}
$$

The opposite direction is trivial by definition $c_{n}:=\left(\frac{f\left(p^{n}+1\right)}{f\left(p^{n}\right)}\right)^{b}$. For (2), the assumption $c_{1}=c_{2}=\cdots$ implies $\alpha_{0}=c_{0}, \alpha_{k}=c_{0}^{p^{k}}\left(c_{1} / c_{0}\right)^{p^{k-1}}(k \geqslant 1)$. In this case we have

$$
\begin{aligned}
f\left(1+\sum_{k=0}^{\infty} x_{k} p^{k}\right) & \equiv c_{0}^{\sum_{k=0}^{\infty} x_{k} p^{k}-\frac{p-1}{2} p^{k}}\left(c_{1} / c_{0}\right)^{\sum_{k=1}^{\infty} x_{k} p^{k-1}-\frac{p-1}{2} p^{k-1}} \\
& =c_{0}^{z-\frac{1}{2}}\left(c_{1} / c_{0}\right)^{z_{1}+\frac{1}{2}}
\end{aligned}
$$

since $\sum_{k=1}^{\infty} x_{k} p^{k-1}=\frac{z-1-x_{0}}{p}=z_{1}$.

3.2. Alternative proof of a part of Coleman's formula

We fix $\tau \in W_{p}$ with $\operatorname{deg} \tau=1$ and put

$$
\begin{align*}
& G_{1}(z):=\left(p^{\frac{1}{2}-\tau^{-1}(z)} \frac{P(z)}{\Phi_{\tau}\left(P\left(\tau^{-1}(z)\right)\right)}\right)^{b} \quad\left(z \in \mathbb{Z}_{(p)} \cap(0,1)\right) \tag{3.5}\\
& G_{2}(z):=\left(\frac{p^{\left(\tau^{-1}(z)-z\right) \operatorname{ord}_{p} z} P(z)}{\Phi_{\tau}\left(P\left(\tau^{-1}(z)\right)\right)}\right)^{b} \quad\left(z \in\left(\mathbb{Q}-\mathbb{Z}_{(p)}\right) \cap(0,1)\right) .
\end{align*}
$$

Here we added () to the right-hand sides of Coleman's formulas (Theorem 2.4), in order to resolve a root of unity ambiguity, only superficially. Note that G_{2} corresponds to Theorem 2.4(2) replaced z with $\tau^{-1}(z)$.

By Theorem 2.4(1), we see that G_{1} is continuous for the p-adic topology. G_{2} is not p-adically continuous in the usual sense, on the whole of $(\mathbb{Q}-$ $\left.\mathbb{Z}_{(p)}\right) \cap(0,1)$ (for details, see Remark 3.8). Theorem 2.4(1) only implies the following "continuity":
$G_{1}(z)$ is continuous for the relative topology
induced by $z \in\left(\mathbb{Q}-\mathbb{Z}_{(p)}\right) \cap(0,1) \hookrightarrow \mathbb{Q}_{p} \times \mathbb{Q}_{p}, z \mapsto\left(z, \tau^{-1}(z)\right)$.
In Corollary 3.6, oppositely, we show that the p-adic continuity of G_{1}, G_{2} implies a "large part"

$$
G_{1}(z) \equiv a^{z-\frac{1}{2}} b^{z_{1}+\frac{1}{2}} \Gamma_{p}(z) \quad \bmod \mu_{\infty} \quad\left(a, b \in \mathbb{C}_{p}^{\times}\right)
$$

of Theorem 2.4(1):

$$
G_{1}(z) \equiv \Gamma_{p}(z) \quad \bmod \mu_{\infty}
$$

Besides we shall show the continuity of $G_{1}(z)$ in Section 4, independently of Theorem 2.4.

Hereinafter in this section, we forget Theorem 2.4. We assume the following Assumption instead.

AsSumption 3.4. - $G_{1}(z)$ is p-adically continuous and $G_{2}(z)$ is continuous in the sense of (3.6). In particular, we regard G_{1} as a p-adic continuous function:

$$
G_{1}(z): \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}
$$

First we derive "multiplication formula":

$$
\begin{equation*}
\prod_{k=0}^{d-1} G_{1}\left(z+\frac{k}{d}\right) \equiv d^{1-d z+(d z)_{1}} G_{1}(d z) \quad \bmod \mu_{\infty} \quad(p \nmid d \in \mathbb{N}) \tag{3.7}
\end{equation*}
$$

independently of Theorem 2.4.

Proof of (3.7). - We suppress $\bmod \mu_{\infty}$. Let $z \in \mathbb{Z}_{(p)} \cap\left(0, \frac{1}{d}\right)$. By Definition 2.2(8) and (3.5) we can write

$$
\begin{aligned}
& \frac{\prod_{k=0}^{d-1} G_{1}\left(z+\frac{k}{d}\right)}{G_{1}(d z)} \\
& \equiv \frac{\prod_{k=0}^{d-1} \Gamma_{\infty}\left(z+\frac{k}{d}\right)}{\Gamma_{\infty}(d z)} \Phi_{\tau}\left(\frac{\Gamma_{\infty}\left(\tau^{-1}(d z)\right)}{\prod_{k=0}^{d-1} \Gamma_{\infty}\left(\tau^{-1}\left(z+\frac{k}{d}\right)\right)}\right) \frac{\prod_{k=0}^{d-1} p^{\frac{1}{2}-\tau^{-1}\left(z+\frac{k}{d}\right)}}{p^{\frac{1}{2}-\tau^{-1}(d z)}}
\end{aligned}
$$

\times "products of classical or p-adic periods",
where the "products of classical or p-adic periods" become trivial by (1.6), as we saw in the proof of Proposition 1.5. Besides we see that

$$
\left\{\left.\tau^{-1}\left(z+\frac{k}{d}\right) \right\rvert\, k=0, \ldots, d-1\right\}=\left\{\left.\frac{\tau^{-1}(d z)}{d}+\frac{k}{d} \right\rvert\, k=0, \ldots, d-1\right\}
$$

To see this, it suffices to show that $\left\{\tau^{-1}\left(\zeta_{N}^{a} \zeta_{d}^{k}\right) \mid k=0, \ldots, d-1\right\}$ and $\left\{\left.\tau^{-1}\left(\zeta_{N}^{d a}\right)^{\frac{1}{d}} \zeta_{d}^{k} \right\rvert\, k=0, \ldots, d-1\right\}$ coincide with each other. We easily see that both of them are the inverse image of $\tau^{-1}\left(\zeta_{N}^{d a}\right)$ under the d th power map $\mu_{\infty} \rightarrow \mu_{\infty}, x \mapsto x^{d}$. Hence we obtain

$$
\begin{aligned}
& \frac{\prod_{k=0}^{d-1} G_{1}\left(z+\frac{k}{d}\right)}{G_{1}(d z)} \\
& \equiv \frac{\prod_{k=0}^{d-1} \Gamma_{\infty}\left(z+\frac{k}{d}\right)}{\Gamma_{\infty}(d z)} \cdot \Phi_{\tau}\left(\frac{\Gamma_{\infty}\left(\tau^{-1}(d z)\right)}{\prod_{k=0}^{d-1} \Gamma_{\infty}\left(\frac{\tau^{-1}(d z)}{d}+\frac{k}{d}\right)}\right) \cdot \frac{\prod_{k=0}^{d-1} p^{\frac{1}{2}-\left(\frac{\tau^{-1}(d z)}{d}+\frac{k}{d}\right)}}{p^{\frac{1}{2}-\tau^{-1}(d z)}} \\
& =d^{\frac{1}{2}-d z} \cdot \Phi_{\tau}\left(d^{\tau^{-1}(d z)-\frac{1}{2}}\right) \cdot 1 \equiv d^{\frac{1}{2}-d z} \cdot d^{\tau^{-1}(d z)-\frac{1}{2}}
\end{aligned}
$$

by (1.2), (1.6). For the last "三", we note that Φ_{τ} acts on $\overline{\mathbb{Q}_{1}} \ni d^{\tau^{-1}(d z)-\frac{1}{2}}$ as τ. By Remark $2.3(2)$, we have $\tau^{-1}(d z)=(d z)_{1}+1$. Then the assertion is clear.

Furthermore we can show that $c_{n}=\left(\frac{f\left(p^{n}+1\right)}{f\left(p^{n}\right)}\right)^{b}$ for $f(z):=\frac{G_{1}(z)}{\Gamma_{p}(z)}$ is constant, at least for $n \geqslant 1$.

Theorem 3.5. - We assume Assumption 3.4 and put $f(z):=\frac{G_{1}(z)}{\Gamma_{p}(z)}$.
(1) The following functional equations hold.

$$
\prod_{k=0}^{d-1} f\left(z+\frac{k}{d}\right) \equiv f(d z) \quad \bmod \mu_{\infty} \quad(p \nmid d) .
$$

(2) We have $c_{1}=c_{2}=\cdots$ for $c_{n}:=\left(\frac{f\left(p^{n}+1\right)}{f\left(p^{n}\right)}\right)^{b}$.

Proof. - We suppress $\bmod \mu_{\infty}$. (1) follows from (3.2), (3.7). For (2), we need for $z \in p \mathbb{Z}_{p}$

$$
\frac{G_{1}(p z) G_{1}(z+1)}{G_{1}(p z+1) G_{1}(z)} \equiv \frac{\Gamma_{p}(p z) \Gamma_{p}(z+1)}{\Gamma_{p}(p z+1) \Gamma_{p}(z)}
$$

Since the right-hand side is equal to $\left\{\begin{array}{ll}l & (p \mid z) \\ z & (p \nmid z)\end{array}\right.$ by (3.1), it suffices to show that

$$
\frac{G_{1}(p z) G_{1}(z+1)}{G_{1}(p z+1) G_{1}(z)} \equiv 1 \quad\left(z \in p \mathbb{Z}_{p}\right)
$$

Note that we can not use the definition (3.5) directly since $z, z+1, p z, p z+1$ are not contained in $(0,1)$ simultaneously. Therefore a little complicated argument is needed as follows. Let $z \in \mathbb{Z}_{(p)} \cap\left(0, \frac{1}{p}\right)$. By Remark 2.3(2), we have

$$
\tau(z)=\langle p z\rangle=p z, \text { hence } \tau^{-1}(p z)=z
$$

We can write

$$
\begin{aligned}
H_{1}(z):= & \frac{G_{1}(z) G_{2}\left(z+\frac{1}{p}\right) \cdots G_{2}\left(z+\frac{p-1}{p}\right)}{G_{1}(p z)} \\
\equiv & p^{z+\left(z+\frac{1}{p}\right)+\cdots+\left(z+\frac{p-1}{p}\right)-\tau^{-1}(z)-\tau^{-1}\left(z+\frac{1}{p}\right)-\cdots-\tau^{-1}\left(z+\frac{p-1}{p}\right)} \\
& \quad \times \frac{P(z) P\left(z+\frac{1}{p}\right) \cdots P\left(z+\frac{p-1}{p}\right)}{P(p z)} \\
& \quad \times \Phi_{\tau}\left(\frac{P(z)}{P\left(\tau^{-1}(z)\right) P\left(\tau^{-1}\left(z+\frac{1}{p}\right)\right) \cdots P\left(\tau^{-1}\left(z+\frac{p-1}{p}\right)\right)}\right)
\end{aligned}
$$

Here we note that $\operatorname{ord}_{p}\left(z+\frac{k}{p}\right)=-1$ for $k=1, \ldots, p-1$. We have

$$
\begin{equation*}
\left\{\left.\tau^{-1}\left(z+\frac{k}{p}\right) \right\rvert\, k=0, \ldots, p-1\right\}=\left\{\left.\frac{z+k}{p} \right\rvert\, k=0, \ldots, p-1\right\} \tag{3.8}
\end{equation*}
$$

since both of $\left\{\tau^{-1}\left(\zeta_{N}^{a} \zeta_{p}^{k}\right) \mid k=0, \ldots, p-1\right\},\left\{\zeta_{p N}^{a+N k} \mid k=0, \ldots, p-1\right\}$ are the set of the p th roots of ζ_{N}^{a} when $z=\frac{a}{N}$. Therefore the p-power parts of H_{1} become

$$
p^{z+\left(z+\frac{1}{p}\right)+\cdots+\left(z+\frac{p-1}{p}\right)-\frac{z}{p}-\frac{z+1}{p}-\cdots-\frac{z+p-1}{p}}=p^{(p-1) z} .
$$

Moreover the "period parts" of H_{1} become trivial by (1.6), (3.8). Namely we can write

$$
\begin{aligned}
& H_{1}(z) \equiv p^{(p-1) z} \frac{\Gamma_{\infty}(z) \Gamma_{\infty}\left(z+\frac{1}{p}\right) \cdots \Gamma_{\infty}\left(z+\frac{p-1}{p}\right)}{\Gamma_{\infty}(p z)} \\
& \quad \times \Phi_{\tau}\left(\frac{\Gamma_{\infty}(z)}{\Gamma_{\infty}\left(\frac{z}{p}\right) \Gamma_{\infty}\left(\frac{z+1}{p}\right) \cdots \Gamma_{\infty}\left(\frac{z+p-1}{p}\right)}\right) .
\end{aligned}
$$

By using the original Multiplication formula (1.2) for Γ_{∞}, we obtain

$$
H_{1}(z) \equiv p^{(p-1) z} p^{\frac{1}{2}-p z} p^{z-\frac{1}{2}}=1
$$

Next, let $z=\frac{a}{N} \in \mathbb{Z}_{(p)} \cap\left(-\frac{1}{p}, 0\right)$. Then we have

- $\tau(z+1)=p z+1$. Hence $\tau^{-1}(p z+1)=z+1$.
- $\left\{\tau^{-1}\left(\zeta_{N}^{a} \zeta_{p}^{k}\right) \mid k=1, \ldots, p\right\}=\left\{\zeta \mid \zeta^{p}=\zeta_{N}^{a}\right\}=\left\{\zeta_{p N}^{a+N k} \mid k=\right.$ $1, \ldots, p\}$. Hence $\left\{\left.\tau^{-1}\left(z+\frac{k}{p}\right) \right\rvert\, k=1, \ldots, p\right\}=\left\{\left.\frac{z+k}{p} \right\rvert\, k=1, \ldots, p\right\}$.
Then we can prove similarly that

$$
\begin{aligned}
H_{2}(z): & \frac{G_{2}\left(z+\frac{1}{p}\right) \cdots G_{2}\left(z+\frac{p-1}{p}\right) G_{1}(z+1)}{G_{1}(p z+1)} \\
\equiv & p^{\left(z+\frac{1}{p}\right)+\cdots+\left(z+\frac{p-1}{p}\right)+(z+1)-\tau^{-1}\left(z+\frac{1}{p}\right)-\cdots-\tau^{-1}\left(z+\frac{p-1}{p}\right)-\tau^{-1}(z+1)} \\
& \times \frac{P\left(z+\frac{1}{p}\right) \cdots P\left(z+\frac{p-1}{p}\right) P(z+1)}{P(p z+1)} \\
& \times \Phi_{\tau}\left(\frac{P(z+1)}{P\left(\tau^{-1}\left(z+\frac{1}{p}\right)\right) \cdots P\left(\tau^{-1}\left(z+\frac{p-1}{p}\right)\right) P\left(\tau^{-1}(z+1)\right)}\right) \\
\equiv & p^{\left(z+\frac{1}{p}\right)+\cdots+\left(z+\frac{p-1}{p}\right)+(z+1)-\frac{z+1}{p}-\cdots-\frac{z+p-1}{p}-\frac{z+p}{p}} p^{\frac{1}{2}-(p z+1)} p^{z+1-\frac{1}{2}}=1 .
\end{aligned}
$$

Here $H_{i}(z) \equiv 1 \bmod \mu_{\infty}$ implies $H_{i}(z)=1(i=1,2)$ since we have $x^{b}=\exp _{p}\left(\log _{p} x\right)=\exp _{p}(0)=1$ for $x \in \mu_{\infty} .\left(G_{1}(z), G_{2}(z)\right.$ are in the image under ($)^{b}$ by definition, so are $H_{i}(z)$.) In particular, we have

$$
\begin{aligned}
\frac{G_{1}(p z)}{G_{1}(z)}=G_{2}\left(z+\frac{1}{p}\right) \cdots G_{2}\left(z+\frac{p-1}{p}\right) & \left(z \in \mathbb{Z}_{(p)} \cap\left(0, \frac{1}{p}\right)\right), \\
\frac{G_{1}(p z+1)}{G_{1}(z+1)} & =G_{2}\left(z+\frac{1}{p}\right) \cdots G_{2}\left(z+\frac{p-1}{p}\right)
\end{aligned} \quad\left(z \in \mathbb{Z}_{(p)} \cap\left(-\frac{1}{p}, 0\right)\right) .
$$

Let $z \in p \mathbb{Z}_{(p)}$. Then there exist $z_{n}^{+} \in p \mathbb{Z}_{(p)} \cap\left(0, \frac{1}{p}\right), z_{n}^{-} \in p \mathbb{Z}_{(p)} \cap\left(-\frac{1}{p}, 0\right)$ which converge to z when $n \rightarrow \infty$ respectively. Then we can write

$$
\begin{aligned}
\frac{G_{1}(p z)}{G_{1}(z)} & =\lim _{n \rightarrow \infty} \frac{G_{1}\left(p z_{n}^{+}\right)}{G_{1}\left(z_{n}^{+}\right)}=\lim _{n \rightarrow \infty} G_{2}\left(z_{n}^{+}+\frac{1}{p}\right) \cdots G_{2}\left(z_{n}^{+}+\frac{p-1}{p}\right) \\
\frac{G_{1}(p z+1)}{G_{1}(z+1)} & =\lim _{n \rightarrow \infty} \frac{G_{1}\left(p z_{n}^{-}+1\right)}{G_{1}\left(z_{n}^{-}+1\right)}=\lim _{n \rightarrow \infty} G_{2}\left(z_{n}^{-}+\frac{1}{p}\right) \cdots G_{2}\left(z_{n}^{-}+\frac{p-1}{p}\right) .
\end{aligned}
$$

Recall that $G_{2}(z)$ is continuous in the sense of (3.6). Clearly we have for $k=1, \ldots, p-1$

$$
z_{n}^{ \pm}+\frac{k}{p} \rightarrow z+\frac{k}{p} \quad(n \rightarrow \infty)
$$

Additionally we see that

$$
\tau^{-1}\left(z_{n}^{ \pm}+\frac{k}{p}\right)=\frac{z_{n}^{ \pm}}{p}+\tau^{-1}\left(\frac{k}{p}\right) \rightarrow \frac{z}{p}+\tau^{-1}\left(\frac{k}{p}\right) \quad(n \rightarrow \infty)
$$

by noting that $\tau^{-1}\left(z+z^{\prime}\right) \equiv \tau^{-1}(z)+\tau^{-1}\left(z^{\prime}\right) \bmod \mathbb{Z}\left(\forall z, z^{\prime}\right), \tau^{-1}(z) \equiv$ $\frac{z}{p} \bmod \mathbb{Z}$ if $p \mid z, \frac{z_{n}^{ \pm}}{p} \in\left(-\frac{1}{p}, \frac{1}{p}\right), \tau^{-1}\left(\frac{k}{p}\right) \in\left[\frac{1}{p}, \frac{p-1}{p}\right]$. It follows that

$$
\lim _{n \rightarrow \infty} G_{2}\left(z_{n}^{+}+\frac{k}{p}\right)=\lim _{n \rightarrow \infty} G_{2}\left(z_{n}^{-}+\frac{k}{p}\right)
$$

Then the assertion is clear.
By Corollary 3.3, we obtain the following.
Corollary 3.6. - Assume Assumption 3.4. Then there exist constants a, b satisfying

$$
G_{1}(z) \equiv a^{z-\frac{1}{2}} b^{z_{1}+\frac{1}{2}} \Gamma_{p}(z) \quad \bmod \mu_{\infty}
$$

Remark 3.7. - In addition to the above results, by computing the absolute Frobenius on only one Fermat curve, we obtain Coleman's formula $G_{1}(z) \equiv \Gamma_{p}(z) \bmod \mu_{\infty}$. For example, when $p=3$, we obtain it for $z=\frac{1}{5}, \frac{2}{5}$ by the computation on F_{5}. It follows that $a^{\frac{-3}{10}} b^{\frac{-1}{10}} \equiv a^{\frac{-1}{10}} b^{\frac{3}{10}} \equiv 1$, hence $a \equiv b \equiv 1$.

Remark 3.8. - We used the assumption $p \mid z$ only in the last paragraph of the proof for Theorem 3.5 because G_{2} is not p-adically continuous on the whole of $\left(\mathbb{Q}-\mathbb{Z}_{(p)}\right) \cap(0,1)$. For example, we put

$$
z_{n}:=\frac{1}{p^{2}}+\frac{p^{n+1}}{p^{n+2}+(1-p)^{n}} \in\left(\mathbb{Q}-\mathbb{Z}_{(p)}\right) \cap(0,1) \quad(n \in \mathbb{N})
$$

and take $\tau \in W_{p}$ with $\operatorname{deg} \tau=1$ so that

$$
\tau\left(\zeta_{p^{2}}\right)=\zeta_{p^{2}}^{-1}
$$

In particular we see that

$$
z_{n} \rightarrow \frac{1}{p^{2}} \text { for the } p \text {-adic topology. }
$$

On the other hand we see that

$$
\begin{aligned}
\tau^{-1}\left(z_{n}\right) & \equiv \tau^{-1}\left(\frac{1}{p^{2}}\right)+\tau^{-1}\left(\frac{p^{n+1}}{p^{n+2}+(1-p)^{n}}\right) \quad \bmod \mathbb{Z} \\
& =\frac{p^{2}-1}{p^{2}}+\frac{p^{n}}{p^{n+2}+(1-p)^{n}}=1-\frac{(1-p)^{n}}{p^{2}\left(p^{n+2}+(1-p)^{n}\right)} \\
& 1-\frac{(1-p)^{n}}{p^{2}\left(p^{n+2}+(1-p)^{n}\right)} \in \begin{cases}(1,2) & \text { if } n \text { is odd }, \\
(0,1) & \text { if } n \text { is even. }\end{cases}
\end{aligned}
$$

Hence we have

$$
\tau^{-1}\left(z_{n}\right)= \begin{cases}-\frac{(1-p)^{n}}{p^{2}\left(p^{n+2}+(1-p)^{n}\right)} \rightarrow-\frac{1}{p^{2}} & \text { if } n=2 k+1, k \rightarrow \infty, \\ 1-\frac{(1-p)^{n}}{p^{2}\left(p^{n+2}+(1-p)^{n}\right)} \rightarrow 1-\frac{1}{p^{2}} & \text { if } n=2 k, k \rightarrow \infty\end{cases}
$$

Then, by Theorem $2.4(2)$, we see that $G_{2}\left(z_{n}\right)=\left(\Gamma_{p}\left(z_{n}\right) / \Gamma_{p}\left(\tau^{-1}\left(z_{n}\right)\right)\right)^{b}$ does not converge p-adically although z_{n} does.

4. On the p-adic continuity

In the previous section, we showed that the p-adic continuity of the righthand sides of Theorem 2.4(1), (2) implies a large part of Theorem 2.4(1) itself. In this section, we see that it is relatively easy to show such p adic continuity properties, without explicit computation. For simplicity, we consider only the case $z \in \mathbb{Z}_{p}$. Assume that $p \nmid N$.

Lemma $4.1([3, \S V I])$. - Let $1 \leqslant r, s<N$ with $r+s \neq N$. We consider the formal expansion of the differential form $\eta_{r, s}=x^{r} y^{s-N} \frac{d x}{x}$ on $F_{N}: x^{N}+$ $y^{N}=1$ at $(x, y)=(0,1)$:

$$
\begin{aligned}
\eta_{r, s} & =\sum_{n=0}^{\infty} b_{r, s}(n) x^{n} \frac{d x}{x} \\
b_{r, s}(n) & :=\left\{\begin{array}{lll}
(-1)^{\frac{n-r}{N}}\binom{\frac{s}{N}-1}{\frac{n-r}{N}} & (n \equiv r & \bmod N) \\
0 & (n \not \equiv r & \bmod N)
\end{array}\right.
\end{aligned}
$$

Let Φ be the absolute Frobenius on $H_{\mathrm{d} R}^{1}\left(F_{N}, \mathbb{Q}_{p}\right)$. Then there exists $\alpha_{r^{\prime}, s^{\prime}} \in$ \mathbb{Q}_{p} satisfying

$$
\begin{aligned}
& \Phi\left(\eta_{r, s}\right)=\alpha_{r^{\prime}, s^{\prime}} \eta_{r^{\prime}, s^{\prime}} \\
& \quad \text { for } r^{\prime}, s^{\prime} \text { with } 1 \leqslant r^{\prime}, s^{\prime}<N, p r \equiv r^{\prime} \bmod N, p s \equiv s^{\prime} \bmod N .
\end{aligned}
$$

Then we have

$$
\alpha_{r^{\prime}, s^{\prime}}=\lim _{\substack{\mathbb{N} \ni n \leftrightarrow 0 \\ n \equiv r \bmod N}} \frac{p b_{r, s}(n)}{b_{r^{\prime}, s^{\prime}}(p n)}
$$

$$
\begin{equation*}
=\lim _{\mathbb{N} \ni k \rightarrow-\frac{r}{N}}(-1)^{(p-1) k+\frac{p r-r^{\prime}}{N}} \frac{p\binom{\frac{s}{N}-1}{k}}{\binom{\frac{s^{\prime}}{N}-1}{p k+\frac{p r-r^{\prime}}{N}}} \tag{4.1}
\end{equation*}
$$

We note that $\alpha_{r^{\prime}, s^{\prime}}$ depends only on $\left(\frac{r^{\prime}}{N}, \frac{s^{\prime}}{N}\right)$. That is $\alpha_{r^{\prime}, s^{\prime}}$ with $N=N_{1}$ is equal to $\alpha_{t r^{\prime}, t s^{\prime}}$ with $N=t N_{1}$.

Proposition 4.2. - $\alpha_{r^{\prime}, s^{\prime}}$ is p-adically continuous on $\left(\frac{r^{\prime}}{N}, \frac{s^{\prime}}{N}\right) \in\left(\mathbb{Z}_{(p)} \cap\right.$ $(0,1))^{2}$.

Proof. - It suffices to show that $\alpha_{r_{1}^{\prime}, s_{1}^{\prime}}$ with $N=N_{1}$ is close to $\alpha_{r_{2}^{\prime}, s_{2}^{\prime}}$ with $N=N_{2}$ when $\frac{r_{1}^{\prime}}{N_{1}}$ is close to $\frac{r_{2}^{\prime}}{N_{2}}$ and $\frac{s_{1}^{\prime}}{N_{1}}$ is close to $\frac{s_{2}^{\prime}}{N_{2}}$. We may assume $N:=N_{1}=N_{2}$ by considering $N=N_{1} N_{2}$. First we fix $r^{\prime}:=r_{1}^{\prime}=r_{2}^{\prime}$ and assume that s_{1}^{\prime} is close to s_{2}^{\prime}. Then we can take the same k for the limit expressions (4.1) of $\alpha_{r^{\prime}, s_{1}^{\prime}}, \alpha_{r^{\prime}, s_{2}^{\prime}}$. We easily see that if $p^{l} \mid\left(s_{1}^{\prime}-s_{2}^{\prime}\right)$, then $p^{l-1} \mid\left(s_{1}-s_{2}\right)$. In fact, we can write $s_{i}^{\prime}=p s_{i}-l_{i} N$ with $l_{i}=0,1, \ldots, p-1$ since $0<s_{i}, s_{i}^{\prime}<N$ for $i=1,2$. If $p \mid\left(s_{1}^{\prime}-s_{2}^{\prime}\right)$, then we have $p \mid\left(l_{1}-l_{2}\right)$, so $l_{1}=l_{2}$. Therefore we obtain $s_{1}-s_{2}=\frac{s_{1}^{\prime}-s_{2}^{\prime}}{p}$. It follows that s_{1} also is close to s_{2}. Hence the continuity on $\frac{s^{\prime}}{N}$ is clear since the numerator (resp. the denominator) of the expression (4.1) is a polynomial on $\frac{s}{N}$ (resp. $\frac{s^{\prime}}{N}$).

For the variable $\frac{r^{\prime}}{N}$, we replace x with y. In other words, replace the point $(x, y)=(0,1)$ for the expansion with $(1,0)$. Then the continuity on $\frac{r^{\prime}}{N}$ also follows from the same argument.

Corollary 4.3. - $G_{1}(z)$ defined in (3.5) is p-adically continuous on $z \in \mathbb{Z}_{(p)} \cap(0,1)$. In particular, we may regard $G_{1}(z)$ as a continuous function on \mathbb{Z}_{p}.

Proof. - CM-types $\Xi_{r, s}$ of (1.4), corresponding to $\eta_{r, s}$, generate the \mathbb{Q} vector space $\left\{\sum_{\sigma} c_{\sigma} \cdot \sigma \mid c_{\sigma}+c_{\rho \circ \sigma}\right.$ is a constant $\}$. More explicitly, we claim
that

$$
\sum_{(b, N)=1}\left(\frac{1}{2}-\left\langle\frac{a b}{N}\right\rangle\right) \sigma_{b}=\frac{1}{N} \sum_{1 \leqslant s<N, a+s \neq N} \Xi_{a, s}-\frac{N-2}{2 N} \sum_{(b, N)=1} \sigma_{b},
$$

where s runs over $1 \leqslant s<N$ with $a+s \neq N$ in the first sum of the righthand side. By the definition (1.4), $\sigma_{b} \in \Xi_{a, s}$ if and only if $\left\langle\frac{a b}{N}\right\rangle+\left\langle\frac{s b}{N}\right\rangle<1$. Namely $\left\langle\frac{s b}{N}\right\rangle=\frac{1}{N}, \frac{2}{N}, \ldots, 1-\frac{1}{N}-\left\langle\frac{a b}{N}\right\rangle$. The number of such b is congruent to $-1-a b \bmod N$. Hence we have

$$
\frac{1}{N} \sum_{\substack{1 \leqslant s<N, a+s \neq N}} \Xi_{a, s}=\sum_{(b, N)=1}\left\langle\frac{-1-a b}{N}\right\rangle \sigma_{b}=\sum_{(b, N)=1}\left(1-\frac{1}{N}-\left\langle\frac{a b}{N}\right\rangle\right) \sigma_{b}
$$

Here we note that $a b \not \equiv 0 \bmod N$ since $(b, N)=1, a \not \equiv 0 \bmod N$. Then the above claim follows. By substituting this into Definition 2.2(8), we can write
$P\left(\frac{a}{N}\right) \equiv \frac{\Gamma_{\infty}\left(\frac{a}{N}\right)(2 \pi \mathrm{i})_{p}^{\frac{1}{2}-\frac{a}{N}} \prod_{1 \leqslant s<N, a+s \neq N}\left((2 \pi \mathrm{i})_{p}^{e_{s}} \int_{\gamma, p} \eta_{a, s}\right)^{\frac{1}{N}}}{(2 \pi \mathrm{i})^{\frac{1}{2}-\frac{a}{N}} \prod_{1 \leqslant s<N, a+s \neq N}\left((2 \pi \mathrm{i})^{e_{s}} \int_{\gamma} \eta_{a, s}\right)^{\frac{1}{N}}} \bmod \mu_{\infty}$,
$e_{s}:= \begin{cases}-1 & (a+s<N) \\ 0 & (a+s>N)\end{cases}$
since the part $\sum_{(b, N)=1} \sigma_{b}$ becomes trivial by Proposition 2.1(2). We can strengthen the congruence relation \equiv of the formula (1.3) into an equality $=$, by selecting a specific closed path γ_{0} (e.g., $\gamma_{0}=N \gamma_{N}$ with γ_{N} in [12, Proposition 4.9]). Then we have

$$
\left.P\left(\frac{a}{N}\right) \equiv c \cdot(2 \pi \mathrm{i})\right)^{\frac{-1}{2}+\frac{1}{N}} \prod_{1 \leqslant s<N, a+s \neq N}\left(\int_{\gamma_{0}, p} \eta_{a, s}\right)^{\frac{1}{N}} \bmod \mu_{\infty}
$$

where we put

$$
c:=\frac{\Gamma\left(\frac{a}{N}\right)}{(2 \pi)^{\frac{1}{N}}}\left(\prod_{1 \leqslant s<N, a+s \neq N} \frac{\Gamma\left(\frac{a+s}{N}\right)}{\Gamma\left(\frac{a}{N}\right) \Gamma\left(\frac{s}{N}\right)}\right)^{\frac{1}{N}} .
$$

Since (1.2) implies that

$$
\prod_{1 \leqslant s \leqslant N} \frac{\Gamma\left(\frac{a+s}{N}\right)}{\Gamma\left(\frac{a}{N}\right) \Gamma\left(\frac{s}{N}\right)}=\frac{N^{-a} a!}{\Gamma\left(\frac{a}{N}\right)^{N}}
$$

we obtain

$$
c=\frac{\Gamma\left(\frac{a}{N}\right)}{(2 \pi)^{\frac{1}{N}}}\left(\frac{\Gamma\left(\frac{a}{N}\right) \Gamma\left(\frac{N-a}{N}\right)}{\Gamma(1)} \frac{\Gamma\left(\frac{a}{N}\right) \Gamma\left(\frac{N}{N}\right)}{\Gamma\left(\frac{a+N}{N}\right)} \frac{N^{-a} a!}{\Gamma\left(\frac{a}{N}\right)^{N}}\right)^{\frac{1}{N}}=\left(\frac{N^{1-a}(a-1)!}{2 \sin \left(\frac{a}{N} \pi\right)}\right)^{\frac{1}{N}}
$$

For the last equality we used (1.1) and the difference equation $\Gamma(z+1)=$ $z \Gamma(z)$. Take $\tau \in W_{p}$ with $\operatorname{deg} \tau=1$. Then we have

$$
\begin{aligned}
G_{1}\left(\frac{a^{\prime}}{N}\right) & \equiv p^{\frac{1}{2}-\frac{a}{N}} \frac{P\left(\frac{a^{\prime}}{N}\right)}{\Phi_{\tau}\left(P\left(\frac{a}{N}\right)\right)} \\
& \equiv\left(\frac{N^{a-a^{\prime}}\left(a^{\prime}-1\right)!}{p^{a-N-1}(a-1)!} \prod_{1 \leqslant s<N, a+s \neq N} \alpha_{a^{\prime}, s^{\prime}}^{-1}\right)^{\frac{1}{N}} \bmod \mu_{\infty}
\end{aligned}
$$

by noting that $\Phi_{\tau}\left((2 \pi \mathrm{i})_{p}\right)=p(2 \pi \mathrm{i})_{p}$ and $\Phi_{\tau}\left(\sin \left(\frac{a}{N} \pi\right)\right)=\tau\left(\sin \left(\frac{a}{N} \pi\right)\right)=$ $\pm \sin \left(\frac{a^{\prime}}{N} \pi\right)$. Here a^{\prime}, s^{\prime} denote integers satisfying $1 \leqslant a^{\prime}, s^{\prime}<N, p a \equiv$ $a^{\prime} \bmod N, p s \equiv s^{\prime} \bmod N$ as above. By Proposition 4.2, $\alpha_{a^{\prime}, s^{\prime}}$ are continuous for a^{\prime}. When a is in a small open ball, as we saw in the proof of Proposition 4.2, we may write $a^{\prime}=p a-M$ for a fixed M (M is $l N$ in the proof of Proposition 4.2). Then the remaining part becomes

$$
\frac{N^{a-a^{\prime}}\left(a^{\prime}-1\right)!}{p^{a-N-1}(a-1)!}= \pm \Gamma_{p}\left(a^{\prime}+M+1\right) \frac{p^{N} N^{\frac{(1-p) a^{\prime}+M}{p}}\left(a^{\prime}+M\right)}{a^{\prime}\left(a^{\prime}+1\right)\left(a^{\prime}+2\right) \cdots\left(a^{\prime}+M\right)}
$$

which is also continuous as desired.

BIBLIOGRAPHY

[1] E. Artin, The gamma function, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York-Toronto-London, 1964, translated by Michael Butler, vii +39 pages.
[2] F. Bouyer \& M. Streng, "Examples of CM curves of genus two defined over the reflex field", LMS J. Comput. Math. 18 (2015), no. 1, p. 507-538.
[3] R. F. Coleman, "The Gross-(Koblitz formula", in Galois representations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986), Advanced Studies in Pure Mathematics, vol. 12, North-Holland, 1987, p. 21-52.
[4] -, "On the Frobenius matrices of Fermat curves", in p-adic analysis (Trento, 1989), Lecture Notes in Mathematics, vol. 1454, Springer, 1990, p. 173-193.
[5] B. H. Gross, "On the periods of abelian integrals and a formula of Chowla and Selberg", Invent. Math. 45 (1978), no. 2, p. 193-211, with an appendix by David E. Rohrlich.
[6] B. H. Gross \& N. Koblitz, "Gauss sums and the p-adic Γ-function", Ann. Math. 109 (1979), no. 3, p. 569-581.
[7] T. KASHio, "Fermat curves and a refinement of the reciprocity law on cyclotomic units", J. Reine Angew. Math. 741 (2018), p. 255-273.
[8] , "On a common refinement of Stark units and Gross-Stark units", https: //arxiv.org/abs/1706.03198, 2018.
[9] T. Kashio \& H. Yoshida, "On p-adic absolute CM-periods. I", Am. J. Math. 130 (2008), no. 6, p. 1629-1685.
[10] , "On p-adic absolute CM-periods. II", Publ. Res. Inst. Math. Sci. 45 (2009), no. 1, p. 187-225.
[11] N. Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, second ed., Graduate Texts in Mathematics, vol. 58, Springer, 1984, xii +150 pages.
[12] N. Otsubo, "On the regulator of Fermat motives and generalized hypergeometric functions", J. Reine Angew. Math. 660 (2011), p. 27-82.
[13] G. Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Mathematical Series, vol. 46, Princeton University Press, 1998, xvi+218 pages.
[14] H. Yoshida, Absolute CM-periods, Mathematical Surveys and Monographs, vol. 106, American Mathematical Society, 2003, x+282 pages.

Manuscrit reçu le 5 avril 2019,
révisé le 21 septembre 2022,
accepté le 28 novembre 2022 .

Tomokazu KASHIO
Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510 (Japan)
tomokazu_kashio@rs.tus.ac.jp

