[Décomposition infinitésimale pour des espaces munis de familles de courbes épaisses et plongements euclidiens]
On étudie des espaces métriques mesurés qui possèdent des familles “épaisses” de courbes rectifiables ou de fragments de courbes, sous la forme de représentations d’Alberti ou de familles de courbes de module strictement positif. On montre que de tels espaces ne possèdent pas de plongement bi-lipschitzien dans un espace euclidien, sauf s’ils admettent une “décomposition infinitésimale” : leurs espaces tangents sont bi-lipschitz équivalents à des produits d’espaces de la forme pour un certain . On donne aussi des applications à la dimension conforme et de nouvelles preuves de certains résultats de non plongement déjà connus.
We study metric measure spaces that admit “thick” families of rectifiable curves or curve fragments, in the form of Alberti representations or curve families of positive modulus. We show that such spaces cannot be bi-Lipschitz embedded into any Euclidean space unless they admit some “infinitesimal splitting”: their tangent spaces are bi-Lipschitz equivalent to product spaces of the form for some . We also provide applications to conformal dimension and give new proofs of some previously known non-embedding results.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: bi-Lipschitz embedding, modulus, conformal dimension, Alberti representation
Mot clés : plongement bi-lipschitz, module, dimension conforme, représentation d’Alberti
David, Guy C. 1 ; Eriksson-Bique, Sylvester 2
@article{AIF_2024__74_3_973_0, author = {David, Guy C. and Eriksson-Bique, Sylvester}, title = {Infinitesimal splitting for spaces with thick curve families and {Euclidean} embeddings}, journal = {Annales de l'Institut Fourier}, pages = {973--1016}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {3}, year = {2024}, doi = {10.5802/aif.3606}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3606/} }
TY - JOUR AU - David, Guy C. AU - Eriksson-Bique, Sylvester TI - Infinitesimal splitting for spaces with thick curve families and Euclidean embeddings JO - Annales de l'Institut Fourier PY - 2024 SP - 973 EP - 1016 VL - 74 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3606/ DO - 10.5802/aif.3606 LA - en ID - AIF_2024__74_3_973_0 ER -
%0 Journal Article %A David, Guy C. %A Eriksson-Bique, Sylvester %T Infinitesimal splitting for spaces with thick curve families and Euclidean embeddings %J Annales de l'Institut Fourier %D 2024 %P 973-1016 %V 74 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3606/ %R 10.5802/aif.3606 %G en %F AIF_2024__74_3_973_0
David, Guy C.; Eriksson-Bique, Sylvester. Infinitesimal splitting for spaces with thick curve families and Euclidean embeddings. Annales de l'Institut Fourier, Tome 74 (2024) no. 3, pp. 973-1016. doi : 10.5802/aif.3606. https://aif.centre-mersenne.org/articles/10.5802/aif.3606/
[1] Rank one property for derivatives of functions with bounded variation, Proc. R. Soc. Edinb., Sect. A, Math., Volume 123 (1993) no. 2, pp. 239-274 | DOI | MR | Zbl
[2] Structure of null sets in the plane and applications, European Congress of Mathematics, European Mathematical Society, 2005, pp. 3-22 | MR | Zbl
[3] On the differentiability of Lipschitz functions with respect to measures in the Euclidean space, Geom. Funct. Anal., Volume 26 (2016) no. 1, pp. 1-66 | DOI | MR | Zbl
[4] On the duality between -modulus and probability measures, J. Eur. Math. Soc., Volume 17 (2015) no. 8, pp. 1817-1853 | DOI | MR | Zbl
[5] Rectifiable sets in metric and Banach spaces, Math. Ann., Volume 318 (2000) no. 3, pp. 527-555 | DOI | MR | Zbl
[6] Rectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplane, J. Geom. Anal., Volume 19 (2009) no. 3, pp. 509-540 | DOI | MR | Zbl
[7] Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, 25, Oxford University Press, 2004, viii+133 pages | MR
[8] Structure of measures in Lipschitz differentiability spaces, J. Am. Math. Soc., Volume 28 (2015) no. 2, pp. 421-482 | DOI | MR | Zbl
[9] Fractals in probability and analysis, Cambridge Studies in Advanced Mathematics, 162, Cambridge University Press, 2017, ix+402 pages | DOI | MR
[10] Quasiconformal geometry of fractals, International Congress of Mathematicians. Vol. II, European Mathematical Society, 2006, pp. 1349-1373 | MR | Zbl
[11] Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol., Volume 9 (2005), pp. 219-246 | DOI | MR | Zbl
[12] Quasisymmetric rigidity of square Sierpiński carpets, Ann. Math., Volume 177 (2013) no. 2, pp. 591-643 | DOI | MR | Zbl
[13] Cohomologie et espaces de Besov, J. Reine Angew. Math., Volume 558 (2003), pp. 85-108 | DOI | MR | Zbl
[14] A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, 2001, xiv+415 pages | DOI | MR
[15] An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Progress in Mathematics, 259, Birkhäuser, 2007, xvi+223 pages | MR
[16] Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., Volume 9 (1999) no. 3, pp. 428-517 | DOI | MR | Zbl
[17] On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces, Inspired by S. S. Chern (Nankai Tracts in Mathematics), Volume 11, World Scientific, 2006, pp. 129-152 | DOI | MR | Zbl
[18] Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon-Nikodým property, Geom. Funct. Anal., Volume 19 (2009) no. 4, pp. 1017-1028 | DOI | MR | Zbl
[19] Infinitesimal structure of differentiability spaces, and metric differentiation, Anal. Geom. Metr. Spaces, Volume 4 (2016) no. 1, pp. 104-159 | DOI | MR | Zbl
[20] Fractured fractals and broken dreams, Oxford Lecture Series in Mathematics and its Applications, 7, Clarendon Press, 1997, x+212 pages | DOI
[21] Tangents and rectifiability of Ahlfors regular Lipschitz differentiability spaces, Geom. Funct. Anal., Volume 25 (2015) no. 2, pp. 553-579 | DOI | MR | Zbl
[22] Regular mappings and non-existence of bi-Lipschitz embeddings for slit carpets, Adv. Math., Volume 364 (2020), 107047, 14 pages | DOI | MR | Zbl
[23] Rigidity for convex-cocompact actions on rank-one symmetric spaces, Geom. Topol., Volume 22 (2018) no. 5, pp. 2757-2790 | DOI | MR | Zbl
[24] Equivalence of two BV classes of functions in metric spaces, and existence of a Semmes family of curves under a 1-Poincaré inequality, Adv. Calc. Var., Volume 14 (2021) no. 2, pp. 231-245 | DOI | MR | Zbl
[25] Non embedding of the Heisenberg group MathOverflow, https://mathoverflow.net/q/297806 (version: 2018-04-16)
[26] Lectures on analysis on metric spaces, Universitext, Springer, 2001, x+140 pages | DOI
[27] Nonsmooth calculus, Bull. Am. Math. Soc., Volume 44 (2007) no. 2, pp. 163-232 | DOI | MR | Zbl
[28] Quasiconformal maps in metric spaces with controlled geometry, Acta Math., Volume 181 (1998) no. 1, pp. 1-61 | DOI | MR | Zbl
[29] Sobolev spaces on metric measure spaces. An approach based on upper gradients, New Mathematical Monographs, 27, Cambridge University Press, 2015, xii+434 pages | DOI | MR
[30] Thirty-three yes or no questions about mappings, measures, and metrics, Conform. Geom. Dyn., Volume 1 (1997), pp. 1-12 | DOI | MR | Zbl
[31] Plans on measures and AM-modulus, J. Funct. Anal., Volume 281 (2021) no. 10, 109205, 35 pages | MR | Zbl
[32] Measurability of equivalence classes and -property in metric spaces, Rev. Mat. Iberoam., Volume 23 (2007) no. 3, pp. 811-830 | DOI | MR | Zbl
[33] Modulus and the Poincaré inequality on metric measure spaces, Math. Z., Volume 245 (2003) no. 2, pp. 255-292 | DOI | MR | Zbl
[34] A differentiable structure for metric measure spaces, Adv. Math., Volume 183 (2004) no. 2, pp. 271-315 | DOI | MR | Zbl
[35] Conformal Assouad dimension and modulus, Geom. Funct. Anal., Volume 14 (2004) no. 6, pp. 1278-1321 | DOI | MR | Zbl
[36] Conformal dimension and boundaries of planar domains, Trans. Am. Math. Soc., Volume 369 (2017) no. 9, pp. 6511-6536 | DOI | MR | Zbl
[37] Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. Am. Math. Soc., Volume 121 (1994) no. 1, pp. 113-123 | DOI | MR | Zbl
[38] Conformal dimension via p-resistance: Sierpiński carpet, Ann. Acad. Sci. Fenn., Math., Volume 45 (2020) no. 1, pp. 3-51 | DOI | MR | Zbl
[39] Ahlfors -regular spaces with arbitrary admitting weak Poincaré inequality, Geom. Funct. Anal., Volume 10 (2000) no. 1, pp. 111-123 | DOI | MR | Zbl
[40] Metric spaces with unique tangents, Ann. Acad. Sci. Fenn., Math., Volume 36 (2011) no. 2, pp. 683-694 | DOI | MR | Zbl
[41] A primer on Carnot groups: homogenous groups, Carnot–Carathéodory spaces, and regularity of their isometries, Anal. Geom. Metr. Spaces, Volume 5 (2017) no. 1, pp. 116-137 | DOI | MR | Zbl
[42] Conformal dimension. Theory and application, University Lecture Series, 54, American Mathematical Society, 2010, xiv+143 pages | DOI | MR
[43] Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, 1995, xii+343 pages | DOI | MR
[44] Measures with unique tangent measures in metric groups, Math. Scand., Volume 97 (2005) no. 2, pp. 298-308 | DOI | MR | Zbl
[45] A Sierpiński carpet with the co-Hopfian property, Invent. Math., Volume 180 (2010) no. 2, pp. 361-388 | DOI | MR | Zbl
[46] Modern dimension theory, Sigma Series in Pure Mathematics, 2, Heldermann Verlag, 1983, ix+284 pages | MR | Zbl
[47] On metric characterizations of the Radon–Nikodým and related properties of Banach spaces, J. Topol. Anal., Volume 6 (2014) no. 3, pp. 441-464 | DOI | MR | Zbl
[48] Radon–Nikodým property and thick families of geodesics, J. Math. Anal. Appl., Volume 409 (2014) no. 2, pp. 906-910 | DOI | MR | Zbl
[49] Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn., Math., Volume 14 (1989) no. 2, pp. 177-212 | DOI | MR | Zbl
[50] Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math., Volume 129 (1989) no. 1, pp. 1-60 | DOI | MR | Zbl
[51] Geometry of measures in : distribution, rectifiability, and densities, Ann. Math., Volume 125 (1987) no. 3, pp. 537-643 | DOI | MR | Zbl
[52] Function theory in the unit ball of , Classics in Mathematics, Springer, 2008, xiv+436 pages (reprint of the 1980 edition) | MR
[53] Derivations and Alberti representations, Adv. Math., Volume 293 (2016), pp. 436-528 | DOI | MR | Zbl
[54] On the nonexistence of bi-Lipschitz parameterizations and geometric problems about -weights, Rev. Mat. Iberoam., Volume 12 (1996) no. 2, pp. 337-410 | DOI | MR | Zbl
[55] On general minimax theorems, Pac. J. Math., Volume 8 (1958) no. 1, pp. 171-176 | DOI | MR | Zbl
[56] Sets of minimal Hausdorff dimension for quasiconformal maps, Proc. Am. Math. Soc., Volume 128 (2000) no. 11, pp. 3361-3367 | DOI | MR | Zbl
[57] Uniform Convergence and Graph Convergence, Am. Math. Mon., Volume 83 (1976) no. 8, pp. 641-643 | DOI | MR | Zbl
[58] Lipschitz algebras and derivations. II. Exterior differentiation, J. Funct. Anal., Volume 178 (2000) no. 1, pp. 64-112 | DOI | MR | Zbl
[59] Extremal length and p-capacity, Mich. Math. J., Volume 16 (1969), pp. 43-51 | MR | Zbl
Cité par Sources :