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INFINITESIMAL SPLITTING FOR SPACES WITH
THICK CURVE FAMILIES AND EUCLIDEAN

EMBEDDINGS

by Guy C. DAVID & Sylvester ERIKSSON-BIQUE (*)

Abstract. — We study metric measure spaces that admit “thick” families of
rectifiable curves or curve fragments, in the form of Alberti representations or curve
families of positive modulus. We show that such spaces cannot be bi-Lipschitz em-
bedded into any Euclidean space unless they admit some “infinitesimal splitting”:
their tangent spaces are bi-Lipschitz equivalent to product spaces of the form Z×Rk

for some k ⩾ 1. We also provide applications to conformal dimension and give new
proofs of some previously known non-embedding results.

Résumé. — On étudie des espaces métriques mesurés qui possèdent des familles
“épaisses” de courbes rectifiables ou de fragments de courbes, sous la forme de
représentations d’Alberti ou de familles de courbes de module strictement positif.
On montre que de tels espaces ne possèdent pas de plongement bi-lipschitzien dans
un espace euclidien, sauf s’ils admettent une “décomposition infinitésimale”: leurs
espaces tangents sont bi-lipschitz équivalents à des produits d’espaces de la forme
Z × Rk pour un certain k ⩾ 1. On donne aussi des applications à la dimension
conforme et de nouvelles preuves de certains résultats de non plongement déjà
connus.

1. Introduction

Many natural problems in analysis on metric spaces involve studying
spaces that support “thick” families of rectifiable curves (or curve frag-
ments), in one sense or another. In this paper, we show that such spaces
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cannot be bi-Lipschitz embedded into any Euclidean space unless they
admit some “infinitesimal splitting”: their tangent spaces are bi-Lipschitz
equivalent to product spaces of the form Z × Rk for some k ⩾ 1. Our
methods are relatively direct and admit a number of consequences.

1.1. Background

In 1999, Cheeger [16] proved a deep extension of Rademacher’s theorem
(Lipschitz functions are differentiable almost everywhere) to certain ab-
stract metric measure spaces. These are the so-called PI spaces, those that
are doubling and support a Poincaré inequality in the sense of [28]. As one
of many consequences, he showed that if a PI space admits a bi-Lipschitz
embedding into some Euclidean space, then its tangent spaces must be
bi-Lipschitz equivalent to Euclidean spaces almost everywhere:

Theorem 1.1 (Cheeger [16, Theorem 14.1]). — Let (X,µ) be a PI
space. Suppose that X admits a bi-Lipschitz embedding into some Rn.
Then for µ-almost-every x ∈ X, there is an integer k ⩾ 1 such that every
tangent space (Y, y) ∈ Tan(X,x) is bi-Lipschitz equivalent to Rk.

(Here, the notion of “tangent” is in the pointed Gromov–Hausdorff sense;
see Section 2.2.)

In other words, to admit a bi-Lipschitz embedding into a Euclidean space,
a PI space must itself be infinitesimally Euclidean. (Extensions of this are
known, see [16, Theorem 14.2] and more recent results in [17, 18, 19, 21,
23, 53].)

Since we know of many abstract PI spaces that are not infinitesimally
Euclidean, this consequence of Cheeger’s result can be viewed as a gener-
alized non-bi-Lipschitz embedding theorem, i.e., a checkable criterion for a
space to admit no bi-Lipschitz embedding into any Euclidean space.

A Poincaré inequality is sufficient but not necessary to prove a type of
Rademacher theorem in metric spaces, and hence a non-embeddability cri-
terion like Theorem 1.1. Indeed, a number of weaker sufficient conditions
implying Cheeger’s Rademacher theorem have been found since its discov-
ery [8, 34, 53]. Most importantly for our purposes, Bate [8], building on
work of Alberti [1] and Alberti–Csörnyei–Preiss [2], showed that Cheeger’s
differentiable structure is equivalent to the presence of a universal fam-
ily of Alberti representations. An Alberti representation of a measure is a
decomposition into 1-rectifiable measures supported on fragments of rectifi-
able curves (see Definition 2.6). For example, Fubini’s theorem gives simple
Alberti representations of Lebesgue measure on [0, 1]2.
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INFINITESIMAL SPLITTING 3

Essentially, Bate shows that if a space supports a “large enough” fam-
ily of independent Alberti representations, then it supports a Rademacher
theorem for Lipschitz functions, from which one can deduce an analog of
the non-embeddability criterion Theorem 1.1.

Given the above, it is natural to ask whether there are conditions, weaker
than any of those studied above, that are not strong enough to yield a
Rademacher-type theorem but that still prevent bi-Lipschitz embeddings.

In this paper, we answer this question by studying spaces that support
a single Alberti representation (or more generally k independent Alberti
representations), but not necessarily enough to form a “universal” family
in Bate’s sense, and thus not necessarily enough to yield a differentiable
structure for Lipschitz functions.

Nonetheless, we show that such smaller families of Alberti representa-
tions still strongly constrain the ability of the space to bi-Lipschitz embed
into any Euclidean space. The following is our main theorem.

Theorem 1.2. — Let X ⊆ Rn be a closed set supporting a doubling
Radon measure µ0. Suppose that a non-trivial Radon measure µ ≪ µ0
supports k independent Alberti representations, for some k ⩾ 1.

Then for µ-almost-every x ∈ X, there is a k-dimensional vector subspace
V ⊆ Rn with the following property:

Every intrinsic tangent Y ∈ TanRn(X,x) of X at x is a product Z × V ,
for some closed set Z ⊆ V ⊥ ⊆ Rn.

For a vector subspace V ⊂ Rn, its orthogonal complement is denoted
by V ⊥. An “intrinsic tangent” of a subset X ⊆ Rn is simply a limit of
rescalings of X centered at a fixed basepoint. For a precise definition, see
Section 2.2 below.

It is easy to recast Theorem 1.2 as a result that constrains bi-Lipschitz
embeddings of metric spaces:

Corollary 1.3. — Let X be a complete metric space supporting a
doubling Radon measure µ0. Suppose that a non-trivial Radon measure
µ≪ µ0 supports k independent Alberti representations, for some k ⩾ 1.

If X admits a bi-Lipschitz embedding into some Euclidean space, then
for µ-almost-every x ∈ X and every tangent (Y, y) ∈ Tan(X,x), Y is bi-
Lipschitz equivalent to a product Z×Rk, for some complete metric space Z.

Corollary 1.3 gives a simple non-bi-Lipschitz embedding criterion that
applies to a wider class of examples than Theorem 1.1.

Theorem 1.2 and Corollary 1.3 are proven without recourse to any more
general metric measure Rademacher theorem. Rather, their proofs rely only
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on one of the preliminary results of Bate’s paper [8] (that Alberti rep-
resentations induce “partial derivatives” almost everywhere, see Proposi-
tion 2.13) and an adaptation of a principle of Preiss [51] about the structure
of the space of tangent objects, Proposition 2.5.

Remark 1.4. — We note that there are many other conditions, inde-
pendent from any of those discussed above, that prevent or constrain bi-
Lipschitz embeddability. In particular, the results of [39] and [47] rest also,
remarkably, on studying a single family of curves that is “thick” in some
quantitative sense (although different than the senses used here). This is
part of a larger program to characterize metric spaces embedding into the
so-called RNP Banach spaces, and conversely to characterize RNP-Banach
spaces by the spaces embedding into them; see [48].

1.2. Corollaries of the main results

We view Corollary 1.3 as a generalized non-embedding result. Since
“thick” families of curves arise in many settings, it has a number of specific
consequences.

1.2.1. Modulus

From our perspective, the most important consequences of Corollary 1.3
involve its relationship with a well-known way of measuring the “thickness”
of a family of curves Γ in a metric measure space (X,µ). This is the p-
modulus of the family (p ⩾ 1), which we denote Modp(Γ, µ). This notion
plays a central role in the modern theory of analysis on metric spaces [26,
29]. (We give a precise definition in Section 4.)

In Proposition 4.5 and Corollary 4.9 below, we show that path families
of positive modulus induce non-trivial Alberti representations. This idea is
essentially already contained in work of the second-named author and his
collaborators [24] and the proof below reworks that argument in a slightly
different context. This is also closely related to the results of [4] and [31].
The formulation in Proposition 4.5 is slightly different and applies more
directly to our setting. (To link modulus and Alberti representations, we
also use ideas of Keith [33] and Bate [8, Corollary 5.8].)

As a consequence of Proposition 4.5 and Corollary 1.3, we obtain the
following result for spaces that contain curve families of positive modulus.

ANNALES DE L’INSTITUT FOURIER
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Corollary 1.5. — Let X be a complete metric space admitting a
Radon measure µ that is absolutely continuous with respect to a dou-
bling measure µ0. Suppose that X contains a family Γ ⊆ Curv(X) of
non-constant curves with Modp(Γ, µ) > 0 for some p ∈ [1,∞).

If X admits a bi-Lipschitz embedding into some Euclidean space, then
there exists a non-trivial Radon measure µ′ ≪ µ, such that, for µ′-almost
every x ∈ X, every tangent Y of X at x is bi-Lipschitz to a product Z×R,
for some complete metric space Z.

For many metric measure spaces, it is known, or not difficult to check,
that they contain a path family of positive modulus and do not have tan-
gents that split as Z×R. Therefore such metric spaces cannot bi-Lipschitz
embed into any Euclidean space. We give some applications of this argu-
ment below.

1.2.2. Conformal dimension

An important problem in metric geometry is to understand the conformal
dimension of a metric space, a quasisymmetric invariant first introduced
by Pansu [49], and much used since [42]. There are a number of variations
of this quantity, but we focus on the Ahlfors regular conformal dimension.
This is a variant first named by Bonk–Kleiner in [11], where they attribute
the idea to Bourdon–Pajot [13].

We recall that a metric space X is Ahlfors Q-regular if there is a constant
C ⩾ 1 such that

C−1rQ ⩽ HQ(B(x, r)) ⩽ CrQ for all x ∈ X and r ⩽ diam(X),

where HQ denotes the Q-dimensional Hausdorff measure.
The Ahlfors regular conformal dimension of X measures the infimal di-

mension Q of all Ahlfors regular quasisymmetric deformations of X:

Definition 1.6. — The Ahlfors regular conformal dimension of a met-
ric space X is

(1.1) cdimAR(X)
= inf{Q : Y is Ahlfors Q-regular and quasisymmetric to X}.

We refer the reader to [26, Chapter 10] for a precise definition of qua-
sisymmetric mappings, and to [11, 42] for more background on the Ahlfors
regular conformal dimension, which we now discuss briefly.

By definition, the Ahlfors regular conformal dimension and its variations
are quasisymmetric invariants. They have thus played an important role in
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6 Guy C. DAVID & Sylvester ERIKSSON-BIQUE

geometric group theory and quasiconformal geometry, and their properties
are connected to many deep questions. We refer to [42] for a book-length
account of many of these connections.

In particular, it is a difficult problem to understand for which metric
spaces the conformal dimension is actually achieved as a minimum. This
problem is closely related to an approach to Cannon’s conjecture initiated
by Bonk and Kleiner [10, 11].

As an example, it is known that cdimAR(S) is strictly less than the Haus-
dorff dimension of the standard Sierpiński carpet S [35], but not whether
the infimum in (1.1) is achieved by some Ahlfors regular space Y when
X = S. See [11, 42] for additional details. (Finding the exact value of
cdimAR(S) is also a well-known open problem; see, e.g., [38] for recent
progress.)

Complicating the problem further, even if the conformal dimension of a
subset X ⊆ RN is achieved by a space Y quasisymmetric to X, there is no
reason that Y should be a subset of Euclidean space. Below, we show that
this non-embedding phenomenon should be expected quite generally.

We need the following important result of Keith and Laakso.

Theorem 1.7 (Keith–Laakso [35, Corollary 1.0.2]). — Let Q ⩾ 1 and
let X be a complete, Ahlfors Q-regular metric space.

Then cdimAR(X) = Q if and only if there is a weak tangent of X that
contains a family of non-constant curves with positive p-modulus, for some
p ⩾ 1.

(As remarked on [35, p. 1279], this version follows from the version stated
there. The notion of a “weak tangent” is defined in Section 2.2.)

As a consequence of Corollary 1.5 and Theorem 1.7, we obtain:

Corollary 1.8. — Let Q ⩾ 1 and let X be a complete, Ahlfors Q-
regular metric space, where Q = cdimAR(X). If X admits a bi-Lipschitz
embedding into some Euclidean space RN , then there is a complete metric
space Z and a weak tangent of X that is bi-Lipschitz equivalent to Z ×R.

Corollary 1.8 shows that we should not expect minimizers for conformal
dimension to appear within Euclidean space except under quite special
circumstances, i.e., in the presence of some form of splitting. We illustrate
a more concrete special case here.

For this we introduce the terminology of linear connectedness: A metric
space X is linearly connected (with constant C ⩾ 1) if every pair of points
x, y ∈ X can be joined by a compact, connected subset E ⊆ X with
diam(E) ⩽ Cd(x, y). In particular, quasiconvex spaces (in which every pair
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INFINITESIMAL SPLITTING 7

of points can be joined by a curve with length comparable to the distance
between the points) are linearly connected.

Corollary 1.9. — Let X be a linearly connected metric space. Sup-
pose that 1 < cdimAR(X) < 2 and that cdimAR(X) is achieved by a space
Y . (In other words, Y is quasisymmetric to X and Ahlfors Q-regular with
Q = cdimAR(X) = cdimAR(Y ).)

Then Y admits no bi-Lipschitz embedding into any Euclidean space.

As an example, consider the classical Sierpiński carpets Sp for odd in-
tegers p > 1 (the most famous example being S = S3). These are plane
fractals formed by dividing the unit square into p−1 × p−1 squares and re-
moving the middle square, then iterating this construction on the remaining
squares. See [12] for details on this notation.

The spaces Sp are all linearly connected and have cdimAR(Sp) ∈ (1, 2)
(see [12, p. 595]). It is an open question whether the Ahlfors regular confor-
mal dimensions of these spaces are actually achieved. Corollary 1.9 shows
that they cannot be achieved by subsets of any Euclidean space.

We note that the linear connectedness condition cannot be removed from
Corollary 1.9: The product C × [0, 1] ⊆ R2 of the standard Cantor set with
the unit interval is Ahlfors Q-regular (for Q = 1 + log(2)

log(3) ∈ (1, 2)) and
known to be minimal for conformal dimension (by a theorem of Tyson [56]).
However, it sits isometrically in R2.

One may even make this example connected by taking its union with
[0, 1]×{0}, showing that “linearly connected” cannot be replaced by “con-
nected” in Corollary 1.9. This example is also easily seen to have a weak
tangent that is bi-Lipschitz equivalent to a product Z × R.

1.2.3. The slit carpet

The slit carpet M is a metric space homeomorphic to the standard Sier-
piński carpet with a number of interesting properties. It was first proposed
by Bonk and Kleiner and first studied in print by Merenkov [45]. Follow-
ing [45], we define the space as follows, mostly using notation from [22].
We will be rather brief here, referring the reader to [22] or [45] for more
details.

Let Q0 = [0, 1]2 denote the unit square in R2. For each dyadic subsquare
Q ⊆ Q0, let sQ denote a central vertical “slit” in Q of half the side length.
More specifically, if

Q = [a2−k, (a+ 1)2−k]× [b2−k, (b+ 1)2−k],

TOME 0 (0), FASCICULE 0
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(a) M1 (b) M2 (c) M3

Figure 1.1. The first three Mi.

then we define sQ ⊆ Q as

sQ =
[
((2a+ 1)2−k−1, (4b+ 1)2−k−2), ((2a+ 1)2−n−1, (4b+ 3)2−k−2)

]
.

Define now M0 = Q0 = [0, 1]2, and inductively set

Mk+1 = Mk \
⋃

Q dyadic, side(Q)=2−(k+1)

sQ.

(See Figure 1.1, borrowed from [22].)
We then define Mk as the completion of Mk with respect to the shortest

path metric dk on Mk, continuing to call this new complete metric on Mk

by dk. In other words, we “cut along” each slit in a square of scale k or
lower. Note that the dk-diameter of each Mk is bounded by 3.

Merenkov observes in [45] that for each k ⩽ j, there is a 1-Lipschitz
mapping πj,k : Mj → Mk obtained by identifying opposing points on slits
of levels greater than j corresponding to the same point in Mk. These maps
compose in the obvious way. We then define the Merenkov slit carpet M as
the inverse limit of the system

M0
π1,0←−−M1

π2,1←−−M2
π3,2←−− . . . ,

equipped with the metric

d(x, y) = lim
k→∞

dk(xk, yk)

for x = (xk) and y = (yk) such that πk(xk) = xk−1, and similarly for yk.
Note that this is the limit of a bounded, increasing sequence.

In [22], the present authors answered a 1997 question of Heinonen and
Semmes [30, Question 8] by proving the following.

Corollary 1.10 (Originally proven in [22, Theorem 1.2]). — The slit
carpet M does not admit a bi-Lipschitz embedding into any Euclidean
space.

(Actually, the result in [22] is more general, but the above corollary
already answers [30, Question 8].)

ANNALES DE L’INSTITUT FOURIER
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We give an alternative proof of this fact below, based on Corollary 1.5.
This proof is based on the idea that the vertical lines in Figure 1.1 form a
positive modulus family of curves, while at the same time the slit carpet
admits no infitesimal splitting. As in Corollaries 1.9 above and 1.11 below,
the main work is to verify the latter claim.

1.2.4. The Heisenberg group

The most well-known example of a doubling metric space that does not
bi-Lipschitz embed into any Euclidean space is the first Heisenberg group
H. This was first observed by Semmes [54] as a consequence of Pansu’s
version of Rademacher’s theorem in Carnot groups [50]. There are also a
number of other proofs that H admits no bi-Lipschitz embedding into any
Euclidean space [25].

We give a new short proof of this non-embedding. Our proof is indepen-
dent of Pansu’s theorem (or the general metric measure space Rademacher
theorem of Cheeger [16]), and relies only on Theorem 1.2 and some basic
properties of the Heisenberg group. (Our proof does involve a “blowup” ar-
gument via Theorem 1.2, so it has that in common with the Pansu–Semmes
approach.)

Corollary 1.11 (Originally proven by Semmes and Pansu). — The
Heisenberg group H (with its Korányi or Carnot–Carathéodory metric)
admits no bi-Lipschitz embedding into any Euclidean space.

1.3. Final introductory remarks and outline

A few more remarks are in order concerning our main results.
First of all, Theorem 1.2, Corollary 1.3, Corollary 1.5, and Corollary 1.8

are all completely false if one does not assume that the space X lies in-
side, or admits a bi-Lipschitz embedding into, some Euclidean space. To
be concrete, the Heisenberg group H supports a doubling (even Ahlfors
4-regular) measure supporting two independent Alberti representations, it
supports curve families of positive modulus, and it is minimal for conformal
dimension. (See [26, Theorems 9.6, 9.27, 15.10] and Section 5.3.) However,
no weak tangent of H is bi-Lipschitz to some Z × R; this is not difficult
to prove given [5, Theorem 7.2]. (One could actually prove Corollary 1.11
along these lines, but we give a different argument that avoids the tools
of [5, 50].)
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We note that Theorem 1.2 is related to the main result of [3], which
gives a “partial differentiable structure” for measures on Euclidean space
that support independent Alberti representations. Here our focus is on
the geometric tangent structure of subsets, rather than on differentiability
properties of mappings, and our methods are different.

There are certainly further questions one could ask in our setting about
the tangents of the measure µ in Theorem 1.2, rather than the tangents of
the support X. Related results for abstract metric measure spaces appear
in [19]. One could also ask about embeddings into infinite-dimensional Ba-
nach spaces. In the interest of keeping the present paper reasonably direct,
we defer these questions to future work.

Using results of Schioppa [53, Theorem 3.24 and Corollary 3.93], The-
orem 1.2 and Corollary 1.3 can be directly recast in terms of so-called
Weaver derivations. In other words, if X, µ0, and µ are as in Theorem 1.2,
but we assume that µ supports k independent Weaver derivations rather
than k independent Alberti representations, the conclusion still holds. We
refer the reader to [58] or [27, Section 13] for more on Weaver derivations,
and [53] for more on the connection between Weaver derivations and Alberti
representations.

1.3.1. Outline of the paper

In Section 2, we give basic definitions and preliminary results. Within
that section, Section 2.2 defines the different notions of tangents and our
version of Preiss’s principle, Proposition 2.5, is stated, though its proof is
deferred to the appendix (Section A). Section 2.5 defines Alberti represen-
tations and states the result of Bate, Proposition 2.13, that we will need,
in addition to some other preliminary facts.

Theorem 1.2 is then proven in Section 3. Section 4 contains Proposi-
tion 4.5 and Corollary 4.9, which relate the notions of modulus and Alberti
representations. All the corollaries listed in Section 1.2 are then proven in
Section 5.

2. Notation and preliminaries

2.1. Metric spaces and measures

We write (X, d) for a metric space, or just X if the metric is understood.
We use standard notation; in particular B(x, r) and B(x, r) denote the

ANNALES DE L’INSTITUT FOURIER
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open and closed balls, respectively, of radius r centered at x ∈ X. If c > 0
and X = (X, d) is a metric space, then cX denotes the metric space (X, cd).
We write (X,µ) for a metric measure space with a given Radon measure µ
that is finite and positive on all balls, and where the metric d is implied.

As usual, a map f : X → Y between two metric spaces is Lipschitz if
there is a constant L ⩾ 0 such that

d(f(x), f(y)) ⩽ Ld(x, y) for all x, y ∈ X.

In this case, we may also call f L-Lipschitz to emphasize the constant. The
infimum of all L such that f is L-Lipschitz is denoted LIP(f).

A map f : X → Y between two metric spaces is bi-Lipschitz (or L-bi-
Lipschitz) if there is a constant L ⩾ 1 such that

L−1d(x, y) ⩽ d(f(x), f(y)) ⩽ Ld(x, y) for all x, y ∈ X.

Two metric spaces are bi-Lipschitz equivalent if there is a bi-Lipschitz sur-
jection from one onto the other.

A pointed metric space is a pair (X,x), where X is a metric space and
x ∈ X is a point (the “basepoint”). Two pointed metric spaces are pointedly
isometric if there is an isometry between them that preserves basepoints.

Corollary 1.3 uses the notion of a product X × Y of two metric spaces
(X, dX) and (Y, dY ). There are many equivalent ways to metrize this prod-
uct. For concreteness, we take

dX×Y ((x, y), (x′, y′)) = (dX(x, x′)2 + dY (y, y′)2)1/2.

Any other natural choice would yield a bi-Lipschitz equivalent metric on
X × Y .

For a metric space X, we let M(X) be the space of finite Borel measures
on X. A non-trivial measure µ ∈ M(X) is doubling if there is a constant
C ⩾ 0 such that

µ(B(x, 2r)) ⩽ Cµ(B(x, r)) for all x ∈ X, r > 0.

A metric space that supports a doubling measure must be a doubling metric
space: every ball of radius r can be covered by N balls of radius r/2, where
N is a fixed constant. (See [26] for more on doubling metrics and measures.)

A complete doubling metric space is proper: every closed ball is compact.
Lastly, we writeHQ for the Q-dimensional Hausdorff measure on a metric

spaceX (withX understood from context), and dimH(X) for the Hausdorff
dimension of X. See [26, Section 8.3] for definitions.

TOME 0 (0), FASCICULE 0
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2.2. Tangents of metric spaces and sets

The next few definitions will use the notion of pointed Gromov–Hausdorff
convergence of a sequence of pointed metric spaces. See [14, Section 8].
Versions are also given in [20, 21, 33, 35], among other places.

Definition 2.1. — Let X be a metric space, and let λi (i ∈ N) be a
sequence of positive real numbers.

• If x ∈ X, λi → 0, and the sequence of pointed metric spaces

(λ−1
i X,x),

converges in the pointed Gromov–Hausdorff sense to a complete
pointed metric space (Y, y), then (Y, y) is called a tangent of X at
x. The collection of all tangents of X at x is written Tan(X,x).

• If {xi} ⊆ X, 0 < λi < diam(X) for each i, and the sequence of
pointed metric spaces

(λ−1
i X,xi),

converges in the pointed Gromov–Hausdorff sense to a complete
pointed metric space (W,w), then (W,w) is called a weak tangent
of X. The collection of all weak tangents of X is written WTan(X).

Technically speaking, elements of Tan(X,x) are not pointed metric spaces
but rather pointed isometry classes, since the pointed Gromov–Hausdorff
topology does not distinguish between isometric metric spaces; similarly,
elements of WTan(X) are isometry classes. We tend to elide this dis-
tinction for notational convenience. Of course, if (Y, y) ∈ Tan(X,x) then
Y ∈WTan(X).

If a space already sits inside an ambient Euclidean space, then one can
more naturally take tangents by rescaling inside the Euclidean space and
taking a limit in the pointed Hausdorff sense: If {Aj} are subsets of Rn,
then we say that {Aj} converges to a closed set A ⊆ Rn in the pointed
Hausdorff sense if

lim
j→∞

dR(Aj , A) = 0 for all R > 0,

where

dR(A,B) = max{sup{dist(a,B) : a ∈ A ∩B(0, R)},
sup{dist(b, A) : b ∈ B ∩B(0, R)}}.

Of course, one could take a sum rather than a max above (as done in [20,
Chapter 8]) and this would only change the definition by at most a factor
of 2.
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Definition 2.2. — Let A be a subset of Rn and a ∈ A. An intrinsic
tangent of A at a is any closed set which is a pointed Hausdorff limit of
sets of the form

λ−1
j (A− a),

where {λj} is a sequence of positive real numbers tending to 0 as j →∞.
The collection of all intrinsic tangents of A at a is written TanRn(A, a).

An important difference between tangents and intrinsic tangents is that
TanRn(A, a) may contain distinct elements that are isometric.

If one has a Lipschitz function defined on a subset of Rn, there is also
a way to pass to a tangent (or “blowup”) of the function simultaneously
with the set. This is given in [20, Chapter 8].

Definition 2.3. — Let A be a subset of Rn and a ∈ A. Let f : A→ Rm

be a Lipschitz function.
Suppose that {λj} is a sequence of positive real numbers tending to 0 as

j →∞ and that

λ−1
j (A− a) converge to the closed set Â in the pointed Hausdorff sense.

Moreover, suppose that f̂ : Â→ Rm is such that, whenever xj ∈ A and

λ−1
j (xj − a)→ x ∈ Â,

we then have
λ−1

j (f(xj)− f(a))→ f̂(x).

We then call the pair (Â, f̂) an intrinsic tangent of (A, f) at a and write

(Â, f̂) ∈ TanRn(A, f, a).

The following facts are all standard, well-known consequences of the com-
pactness theorems for pointed Hausdorff and pointed Gromov–Hausdorff
convergence. See, e.g., [20, Lemmas 8.6 and 8.13]. We include this lemma
simply as a summary of the basic facts that we will use.

Lemma 2.4. — Let X be a complete doubling metric space and x ∈ X.
Let A be a closed subset of Rn and a ∈ A. Let f : A → B ⊆ Rm be
Lipschitz. Let {λj} be any sequence of positive real numbers tending to 0.

(1) There is a subsequence λjk
such that (λ−1

jk
X,x) converges in the

pointed Gromov–Hausdorff sense to a doubling pointed metric space
in Tan(X,x). In particular, Tan(X,x) ̸= ∅.

(2) There is a subsequence λjk
such that λ−1

jk
(A − a) converges in the

pointed Hausdorff sense to an element Â of TanRn(A, a). In partic-
ular, TanRn(A, a) ̸= ∅.
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14 Guy C. DAVID & Sylvester ERIKSSON-BIQUE

(3) In the subsequence from (2), we may also obtain that
• the functions λ−1

jk
(f( · )−f(a)) converge to a Lipschitz function

f̂ : Â→ Rm as above, to yield (Â, f̂) ∈ TanRn(A, f, a),
• the sequence λ−1

jk
(B−f(a)) converges in the pointed Hausdorff

sense to an element B̂ of TanRm(B, f(a)), and
• f̂(Â) ⊆ B̂.

(4) If f is L-bi-Lipschitz, then so is f̂ .
(5) If X and A are Ahlfors Q-regular, then so are every element of

WTan(X) and TanRn(A, a).
(6) If µ is a doubling measure on A and a is a point of density of a

subset A′ ⊆ A, then TanRn(A′, f, a) = Tan(A, f, a).
(7) If Y ∈WTan(X), then WTan(Y ) ⊆WTan(X).

Proof. — For (1), (2), and (3), see [20, Lemmas 8.6 and 8.13]. For (4),
see [20, Lemma 8.20]. For (5), see [20, Lemma 8.28]. For (6) concerning the
tangent spaces, see [20, Lemma 9.6] or [40, Proposition 3.1]; the extension
to the tangent mappings is simple, as remarked in [21]. For (7), see [20,
Lemma 9.5]. □

We will need one more fact about tangents, a principle that appears in
many different forms and goes back to Preiss [51]. Versions appear in, e.g.,
[6, 21, 40, 44]. Informally, this is the principle that “tangents with moved
basepoints are still tangents”.

Proposition 2.5. — Let A ⊆ Rn be a closed set supporting a doubling
measure µ. Let f : A→ Rm be a Lipschitz mapping. Then for µ-a.e. a ∈ A,
the following holds:

For all (Â, f̂) ∈ TanRn(A, f, a) and all b ∈ Â, we have

(Â− b, f̂( ·+ b)− f̂(b)) ∈ TanRn(A, f, a).

The proof of Proposition 2.5 is a minor modification of facts in the lit-
erature, and so postponed until the Appendix (Section A).

2.3. Curves and fragments

The key objects in this paper are families of curves (or curve fragments)
in metric spaces. We introduce some notation to discuss these objects. Our
definitions and notation follow those in [53] for the most part, with some
minor changes.
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Fix a separable, locally compact metric space X. A fragment in X is
a bi-Lipschitz map γ : C → X, where C ⊆ R is compact and the one-
dimensional Lebesgue measure L1(C) is positive. We write Frag(X) for the
collection of fragments in X. If γ ∈ Frag(X), then the domain C of γ is
denoted dom(γ) and the image in X is denoted im(γ).

If f : X → Rm is any function, then we define

(f ◦ γ)′(t) = lim
t′→t,t′∈C

f(γ(t′))− f(γ(t))
t′ − t

,

when the limit exists and t ∈ C = dom(γ) is a density point. If X ⊂
Rn, then we simply write γ′(t), when f = id is the identity map. (As
a reminder, a density point of a compact set C ⊂ R is a t ∈ C where
limh→0

L1(C∩(t−h,t+h))
2h = 1.)

In Section 4, we will also consider Curv(X), the collection of all non-
constant, Lipschitz maps γ : I → X, where I is a compact interval in R of
positive length. Thus, elements of Curv(X) represent honest curves in X.
We will also use the notation dom(γ) to denote the domain of an element
γ ∈ Curv(X).

Note that neither Curv(X) nor Frag(X) is a subspace of the other. We
now discuss the appropriate topologies on Frag(X) and Curv(X), borrow-
ing from [53, Section 2].

The spaces Frag(X) and Curv(X) both admit embeddings into the space
Haus(R×X) of non-empty compact subsets of R×X, by

γ 7→ {(t, γ(t)) : t ∈ dom(γ)}.

The space Haus(R × X) is given the Hausdorff metric and the induced
topology. If X is complete, then so is Haus(R×X).

Therefore, we topologize Frag(X) and Curv(X) as subspaces of Haus(R×
X). We note that these spaces are σ-compact if X is proper.

2.4. Line integrals and metric derivatives

Let X be a metric space and γ ∈ Curv(X). We denote by len(γ) the
length of γ, as in [26, Chapter 7]. If g : X → R is a Borel function, then∫

γ
g ds is defined as ∫ len(γ)

0
g(γ̃(t)) dt,

where γ̃ is the arc length parametrization of γ; see [26, Chapter 7].
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16 Guy C. DAVID & Sylvester ERIKSSON-BIQUE

Following [7, Definition 4.1.2], the metric derivative of γ at a point t ∈
dom(γ) is

dγ(t) := lim
h→0

d(γ(t+ h), γ(t))
|h|

,

whenever the limit exists. By [7, Theorem 4.1.6], dγ(t) does exist for a.e.
t ∈ dom(γ), and

len(γ) =
∫

dom(γ)
dγ(t) dt.

It follows that the arc length parametrization γ̃ satisfies dγ̃(t) = 1 for a.e.
t ∈ dom(γ̃).

2.5. Alberti representations

Fix a complete, locally compact, separable metric space X. Recall that
M(X) denotes the space of Radon measures on X. We equip M(X) with
the weak∗ topology arising from viewing M(X) as the dual space of Cc(X),
the space of compactly supported continuous functions on X. See [53, As-
sumption 2.3] for details. Inside M(X), we consider the subspace P (X)
consisting of probability measures. Note that elements of P (X) are Borel.

Fix a metric space X and a measure µ ∈M(X). The following definition
is due to Bate [8], based on earlier work of Alberti [1]. In [53], the definition
was clarified and modified slightly, and this is the definition we present
below.

Definition 2.6. — An Alberti representation A of µ is a pair (P, ν)
where

(1) P is a Radon probability measure on Frag(X),
(2) ν : Frag(X)→M(X) is a Borel map with νγ ≪H 1|im(γ) for each

γ ∈ Frag(X),
(3) the measure µ can be represented as

µ(A) =
∫

Frag(X)
νγ(A)dP (γ),

for each A ⊆ X Borel,
(4) and, for each Borel A ⊆ X and compact interval I ⊆ R, the map

γ 7→ νγ(A ∩ γ(dom(γ) ∩ I)) is Borel.

Note that, given the topologies defined above, the statement that the
map ν : Frag(X)→M(X) is Borel means that

γ 7→
∫

X

g(x)dνγ(x)
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is a Borel map from Frag(X) to R for each g ∈ Cc(X).
A cone in Rn is a set of the form

Cone(w, t) := {v ∈ Rn : v ̸= 0 and v · w ⩾ t|v|},

for some w ∈ Sn−1 and t ∈ R. Note that, for any w ∈ Sn−1 and t ⩽ −1,
Cone(w, t) = Rn \ {0}.

Remark 2.7. — Our definition of a cone departs slightly from those in [8]
and [53]. In particular, our cones may have opening angle larger than π. It
is clear that any cone of the types in [8] and [53] is a subset of a cone like
one above.

Definition 2.8. — Fix a metric space X, a Lipschitz map ϕ : X → Rn,
and a cone C ⊆ Rn.

A fragment γ ∈ Frag(X) is said to be in the ϕ-direction of C if (ϕ◦γ)′(t) ∈
C for a.e. t ∈ dom(γ).

An Alberti representation A = (P, ν) of a measure µ ∈M(X) is said to
be in the ϕ-direction of C if P -a.e. γ ∈ Frag(X) is in the ϕ-direction of C.

For an example, consider X = Rn and the identity map ϕ = id, as well as
the Lebesgue measure λ. Probably the simplest example of an Alberti rep-
resentation is given by the Fubini-representation of the Lebesgue measure
λ on Rn by integration on lines parallel to any direction. If these lines are
parallel to a given non-zero vector w ∈ Rn, then this Alberti-representation
is in the id-direction of Cone(w, t) for any t < 1. Slightly more complicated
examples are obtained by taking superpositions with different directions,
and by splitting the lines to segments.

Definition 2.9. — Cones C1, . . . , Ck in Rn are called independent if
each collection

{v1, . . . , vk : vi ∈ Ci}
is linearly independent.

A collection A1, . . . ,Ak of Alberti representations of a measure µ ∈
M(X) is called ϕ-independent, for a Lipschitz ϕ : X → Rm, if there are
independent cones C1, . . . , Ck in Rm such that each Ai is in the ϕ-direction
of Ci.

We call a collection A1, . . . ,Ak of Alberti representations independent if
they are ϕ-independent for some Lipschitz map ϕ as above.

A few remarks concerning this definition are in order.

Remark 2.10. — If X ⊆ Rn and µ ∈ M(X) supports k ϕ-independent
Alberti representations, for some ϕ : X → Rm, then the map ϕ may be
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18 Guy C. DAVID & Sylvester ERIKSSON-BIQUE

extended to a Lipschitz map ϕ : Rn → Rm without altering the notion of
ϕ-independence.

Remark 2.11. — Traditionally (i.e., in [8]), it is assumed that m = k in
Definition 2.9, but we see no need to assume this, and in fact it will be
occasionally convenient not to.

Remark 2.12. — In the case k = 1 of Definition 2.9, one may take all of
Rm\{0} as a single independent cone. Thus, a single Alberti representation
(P, ν) is independent if and only if there is a Lipschitz map ϕ : X → Rm

such that (ϕ ◦ γ)′(t) ̸= 0 for P -a.e. γ ∈ Frag(X) and a.e. t ∈ dom(γ).
In particular, if X ⊆ Rn, then a single non-trivial Alberti representation

is automatically independent. Indeed, take ϕ to be the identity map. Since
every γ ∈ Frag(X) is bi-Lipschitz, we have that

(ϕ ◦ γ)′(t) = γ′(t) ̸= 0

for all γ ∈ Frag(X) and a.e. t ∈ dom(γ).

A last key fact for us will be the following result from [8]. Essentially,
one would like to know that a phenomenon which happens at almost every
point along each curve in an Alberti representation actually happens almost
everywhere in X. This is what the following result provides. (See also the
more general [8, Proposition 2.9].)

Proposition 2.13 ([8, Corollary 2.13]). — Let X be a complete metric
space with a Radon measure µ. Let ϕ : X → Rm be Lipschitz such that µ
has k ϕ-independent Alberti representations. Let f : X → Rn be Lipschitz.

Then for µ-a.e. x ∈ X, the following hold:
(1) There are γ1, . . . , γk ∈ Frag(X) such that γi(0) = x and γ−1(x) is

a density point of dom(γ).
(2) The derivatives (ϕ ◦ γi)′(0) exist and form a linearly independent

set in Rm.
(3) The derivatives (f ◦ γi)′(0) exist.

We briefly note that Bate assumes that k = m and n = 1 in the cited
result, but the proof using [8, Lemma 2.8 and Proposition 2.9] works in
this generality.

2.6. Connecting to other measures defined on curve families

In Section 4, we will need to connect Alberti representations to a related
type of measure defined on Curv(X).
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Proposition 2.14. — Let X be a proper metric space, ϕ : X → Rn

bi-Lipschitz, and C ⊂ Rn a cone. Suppose that P is a Radon measure(1)

on Curv(X), so that for P -almost every γ, (ϕ ◦ γ)′(t) ∈ C or dγ(t) = 0 for
almost every t ∈ dom(γ).

If the Borel measure defined by

µ(A) =
∫

Curv(X)

∫
γ

1A dsdP

is locally finite (hence Radon), then it admits an Alberti representation in
the ϕ-direction of C.

Remark 2.15. — The literature is rife with different versions of Alberti
representations, see [3, 8, 19, 53] for some of them. Modifications of this
argument can be used to show that, roughly speaking, if one has a repre-
sentation in one of these senses, then one has also a representation in any
other sense.

We briefly remark that the cones considered in [8] are slightly different
from ours, but the proof applies for both notions of cone.

Proof. — By [8, Corollary 5.8] (see the “in particular. . . ” statement), we
can decompose X = A∪N , where µ|A admits an Alberti representation in
the ϕ-direction of C, and

H1(im(γ) ∩N) = 0

for every γ ∈ Frag(X) in the ϕ-direction of C.
If we can show that µ(N) = 0, then µ restricted to the full-measure

set A supports an Alberti representation in the ϕ-direction of C, and this
completes the proof. To establish this, we will show that for P -almost every
curve γ we have ∫

γ

1N ds = 0.

First, for P -almost every curve γ : I → X, and almost every t ∈ I we
have (ϕ ◦ γ)′(t) ∈ C or dγ(t) = 0. Let γ be any curve with such properties,
and let γ̃ : Ĩ → X be its arc length reparametrization. Then (ϕ◦ γ̃)′(t) ∈ C
for almost every t ∈ I.

By [37, Lemma 4], we can find compact sets Kj such that Ĩ =
⋃

j Kj∪S,
|S| = 0, and

γ̃j := γ̃|Kj is bi-Lipschitz.
It follows that γ̃j ∈ Frag(X) and in the ϕ-direction of C, and hence
H1(im(γ̃j) ∩N) = 0 for each j.

(1) While the notation may suggest so, this measure need not be a probability measure.
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Thus, ∫
γ

1N ds =
∫

Ĩ

1N (γ̃(t)) dt =
∑

j

∫
Kj

1N (γ̃(t)) dt = 0,

which completes the proof. □

3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. The proof requires a few lemmas.

Lemma 3.1. — Let a closed set X ⊆ Rn support a doubling measure
µ0. Let µ≪ µ0 support k ψ-independent Alberti representations, for some
Lipschitz ψ : Rn → Rm.

Then for µ-a.e. x ∈ X, there are linearly independent vectors v1, . . . , vk

such that the following holds: For every Y ∈ TanRn(X,x), every y ∈ Y ,
and every i ∈ {1, . . . , k}, there is a line through y in direction vi that is
contained in Y .

Proof. — We apply Proposition 2.13, in the case ϕ = ψ and f is the
inclusion X → Rn.

This tells us that, at µ-a.e. x ∈ X, there are γ1, . . . , γk ∈ Frag(X) such
that the following hold:

(1) For each 1 ⩽ i ⩽ k, we have γi(0) = x with 0 a density point of
dom(γ).

(2) The vectors (ψ ◦ γ1)′(0), . . . , (ψ ◦ γk)′(0) are linearly independent
in Rm.

(3) For each 1 ⩽ i ⩽ k, γ′
i(0) exists.

Fix an x ∈ X where the above hold and where the conclusion of Propo-
sition 2.5 holds. Let

wi = (ψ ◦ γi)′(0) ∈ Rk.

Let vi = γ′
i(0) ∈ Rn. Note that vi ̸= 0 as γi is bi-Lipschitz, and wi ̸= 0

by (ii).
Consider an arbitrary tangent

(Y, ψ̂) ∈ TanRn(X,ψ, x),

subject to the sequence of scales λk → 0.
By Lemma 2.4(2), (3) and (6), we may pass to a subsequence of {λj}

subject to which tangent mappings Li of each γi at 0 exist. More precisely,
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we have the following for each 1 ⩽ i ⩽ k:

(R, Li) ∈ TanR(dom(γi), γi, 0) with Li(R) ⊆ Y,

and (R, ψ̂ ◦ Li) ∈ TanR(dom(γi), ψ ◦ γi, 0).

Moreover, since γi and ψ ◦ γi are differentiable at 0, their tangent maps Li

and ψ̂◦Li are linear. In particular, recalling γ′
i(0) = vi and (ψ◦γi)′(0) = wi,

we have the following properties of Li:

(3.1) Li(t) = tvi ∈ Y and ψ(Li(t)) = twi for all t ∈ R.

By definition, we also have 0 ∈ Y and ψ̂(0) = 0.
To summarize, the above argument shows that for every element (Y, ψ̂) ∈

Tan(X,ψ, x), there is a line Li through 0 with the properties in (3.1).
Consider again an arbitrary (Y, ψ̂) ∈ Tan(X,ψ, x). Proposition 2.5 there-

fore says that for every y ∈ Y , the pair (Y − y, ψ̂(·+ y)− ψ̂(y)) is also an
element of TanRn(X,ψ, x).

This implies that for every y ∈ Y and i ∈ {1, . . . , k}, there is a function

Ly
i : R→ Y

such that

Ly
i (t) = y + tvi and ψ(Li(t)) = ψ̂(y) + twi for all t ∈ R.

In other words, Ly
i is the parametrization of a line through y in direction vi

(contained in Y ), whose composition with ψ̂ parametrizes a line through
ψ̂(y) in direction wi.

It remains to show that the vectors vi are linearly independent. Suppose
to the contrary that there was a non-trivial linear combination

k∑
i=1

aivi = 0.

Let y0 = 0 ∈ Y and p0 = 0. For i = 1, . . . , k + 1, inductively set

yi = L
yi−1
i (ai) = yi−1 + aivi

and
pi = ψ̂(yi).

Note that pi = pi−1+aiwi for each i= 1, ..., k by the properties of Ly
i above.

Then yk = 0. This implies that pk = ψ̂(yk) = 0. On the other hand

pk =
k∑

i=1
aiwi.

This contradicts the linear independence of the vectors wi. □
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Lemma 3.2. — Let Y ⊆ Rn be a closed set. Let v1, . . . , vk be linearly
independent in Rn. Suppose that, for each y ∈ Y , there are k lines

Li = {y + tvi : t ∈ R}

that pass through y and are contained in Y .
Then Y = Z × V , where V = span({v1, . . . , vk}) and Z ⊆ V ⊥ is a

closed set.

Proof. — Let V = span({v1, . . . , vk}), and let

Z = projV ⊥(Y ),

the projection of Y to the orthogonal complement of V .
We now claim that Y = Z × V . Certainly Y ⊆ Z × V , by definition of

orthogonal projection. For the other direction, suppose p ∈ Z × V . Then
projV ⊥(p) ∈ Z, so projV ⊥(p) = projV ⊥(y) for some y ∈ Y . It follows that

p = y + a1v1 + · · ·+ akvk,

where ai ∈ R.
Set y0 = y ∈ Y . For i = 1, . . . , k, we inductively set yi = yi−1 + aivi. By

assumption, each point yi is in Y . Note that the last point yk is equal to
p. Hence p ∈ Y , which proves that Z × V ⊆ Y .

Lastly, we argue that Z is closed. Indeed, if zn is a sequence in Z con-
verging to z ∈ Rn, then the points

(zn, 0) ∈ Y ⊆ V ⊥ × V = Rn

converge to (z, 0) ∈ Y , since Y is closed. It follows that z ∈ Z. □

Proof of Theorem 1.2. — Let X ⊆ Rn be a closed set admitting a
doubling Radon measure µ0. Let µ be a measure absolutely continuous to
µ0 that admits k ϕ-independent Alberti representations.

Let x be a point at which the conclusion of Lemma 3.1 holds (a set of
points that has full µ-measure). Let v1, . . . , vk be the associated linearly
independent vectors in Rn.

Let Y ∈ TanRn(X,x). Then each point y ∈ Y admits k lines L1, . . . , Lk

through y, in directions vi, that are contained in Y .
By Lemma 3.2, this implies that Y = Z×V for a k-dimensional subspace

V = span({v1, . . . , vk}) and some closed set Z ⊆ V ⊥ ⊆ Rn. This completes
the proof. □
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4. Modulus and Alberti representations

In this section, we relate Alberti representations to the more classical
notion of the modulus of a family of curves. The main result in this section
is Proposition 4.5, which may be of independent interest. (See Remark 4.6
for more on the provenance of this result.)

We first recall the definition of the modulus of a family of curves. It is
worth noting, that for us Curv(X) consists only of curves with Lipschitz
parametrizations, while traditionally Modulus is defined for an a priori
larger class of collections of γ : I → X, which are merely continuous. How-
ever generality is not lost, as the modulus of non-rectifiable curves vanishes
by convention, and rectifiable curves can be reparametrized as Lipschitz
curves without affecting the modulus.

Definition 4.1. — Let X be a metric space with a Radon measure µ,
let Γ ⊆ Curv(X), and let p ⩾ 1.

A Borel measurable function ρ : X → [0,∞] is called admissible for Γ
if
∫

γ
ρds ⩾ 1 for each γ ∈ Γ. We set A (Γ) to be the collection of all

admissible functions for Γ.
The p-modulus of Γ, with respect to the measure µ, is denoted

(4.1) Modp(Γ, µ) = inf
ρ∈A (Γ)

∫
X

ρp dµ.

For our duality argument, we will need to work with continuous func-
tions ρ. Thus, we define Modc

p(Γ, µ) by replacing the infimum in (4.1) with
the infimum over all admissible ρ : X → [0,∞) that are in addition con-
tinuous with compact support. In general, Modc

p(Γ, µ) may be larger that
Modp(Γ, µ), and our first goal is to identify an assumption under which
they are equal.

We will need the following basic continuity fact both for the equality of
Modp and Modc

p and for the duality argument below. It is a version of [33,
Proposition 4] in our topology.

Lemma 4.2. — Let ρn : X → R be an increasing sequence of lower semi-
continuous functions converging pointwise to ρ : X → R. If γn : [a, b]→ X

converge uniformly to γ : [a, b] → X, or if γn ∈ Curv(X) converge to
γ ∈ Curv(X), then

lim inf
n→∞

∫
γn

ρn ds ⩾
∫

γ

ρ ds.

Further, the map γ 7→
∫

γ
ρds is lower semi-continuous on Curv(X).
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Proof. — First, we reduce the case of γn ∈ Curv(X) to the case of uni-
form convergence with a common domain. Suppose that γn converge to γ in
Curv(X). Then their graphs Γ(γn) converge to Γ(γ) in the Hausdorff metric
on subsets X ×R. This claim still holds if we reparametrize each curve by
an increasing affine map to have domain [0, 1]. After such reparametriza-
tion, by [57, Theorem 1], we see that these reparametrizations converge
uniformly.

Without loss of generality, we thus assume that a = 0 and b = 1, and that
the parametrized curves converge uniformly. Note that for each fixed lower
semicontinuous g : X → R, the map γ 7→

∫
γ
g ds is lower semicontinuous on

the space of curves γ : [0, 1]→ X with the topology of uniform convergence.
See, for example, [32, Lemma 2.2].

Now, fix N ∈ N. Then, for n ⩾ N we get that∫
γn

ρn ds ⩾
∫

γn

ρN ds.

Taking a limit inferior on both sides and using the lower semi-continuity
noted above, we get

lim inf
n→∞

∫
γn

ρn ds ⩾
∫

γ

ρN ds.

Finally, sending N → ∞ and using dominated convergence completes the
claim.

The latter claim on lower semi-continuity is a restatement of the first
claim, by setting ρn = ρ and assuming that γn ∈ Curv(X) converge to
γ ∈ Curv(X). □

We will need the following Lemma. The proof is almost identical to the
ones in [28, 31, 33], however, for completeness and since there is significant
variation in the literature on terminology, we recall the main steps of the
argument. We will follow the scheme of the proof of [33, Proposition 6],
highlighting the main differences along the way, and the reader may consult
it for additional details.

Lemma 4.3. — If Γ ⊂ Curv(X) is compact, then

Modp(Γ, µ) = Modc
p(Γ, µ).

Proof. — Since continuous admissible functions are also Borel admis-
sible, then Modp(Γ, µ) ⩽ Modc

p(Γ, µ). We proceed to show the reverse
inequality by an approximation argument. If Modp(Γ, µ) = ∞, there is
nothing to prove. Otherwise, take any ρ admissible for Modp(Γ, µ) with
finite Lp-norm. Fix ϵ > 0. By the Vitali–Carathéodory theorem, we can
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approximate any Borel ρ from above by a lower semi-continuous function
ρ̃ with ∥ρ̃∥p

p ⩽ ∥ρ∥p
p + ϵ.

Since Γ is compact, we must have some bounded ball B(x,R) ⊂ X which
contains all of the curves. In contrast to [33, Proposition 6], we do not need
to adjust ρ̃ further.

Next, we approximate from below. Let ρ̃n ↗ ρ̃ be a sequence of continu-
ous functions with compact support forming an increasing sequence which
converges pointwise to ρ̃.

As in [33, Proposition 6], it suffices to prove that

(4.2) 1 ⩽ lim sup
n→∞

inf
γ∈Γ

∫
γ

ρ̃n ds.

Indeed, in this case the function (1− ϵ)−1ρ̃n would be admissible for Γ for
sufficiently large n, forcing

Modc
p(Γ, µ) ⩽ (1− ϵ)−p(∥ρ∥p

p + ϵ).

Since this holds for all Borel admissible ρ and ϵ > 0, the desired inequality
immediately follows.

Choose curves γn ∈ Γ so that

lim inf
n→∞

∫
γn

ρ̃n ds ⩽ lim sup
n→∞

inf
γ∈Γ

∫
γ

ρ̃n ds.

Since Γ is compact, there exists a subsequence of γn, which we continue to
label γn, that converges in Curv(X) to some γ. (Unlike [33, Proposition 6],
we do not need to reparametrize, or estimate lengths, as we are assuming
compactness.) By using Lemma 4.2, the fact that ρ ⩽ ρ̃, and admissibility,
we obtain (4.2):

1 ⩽
∫

γ

ρds ⩽
∫

γ

ρ̃ ds ⩽ lim inf
n→∞

∫
γn

ρ̃n ds ⩽ lim sup
n→∞

inf
γ∈Γ

∫
γ

ρ̃n ds. □

A few standard, well-known facts about modulus will be used repeatedly:
(See [26, Chapter 7].)

(4.3) If Γ′ ⊆ Γ then Modp(Γ′, µ) ⩽ Modp(Γ, µ).

(4.4) Modp

( ∞⋃
i=1

Γi, µ

)
⩽

∞∑
i=1

Modp(Γi, µ).

We will also need the following notion, that translates a measure on a
curve family into a measure on a space.
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Definition 4.4. — Let P be a Radon probability measure on Curv(X).
It then defines an induced Radon measure ηP on X by

ηP (E) =
∫

Curv(X)

∫
γ

1E dsdP (γ).

Our main result in this section is the following.

Proposition 4.5. — Let X be a proper metric space with a Radon
measure µ. Let p ∈ [1,∞), and let q ∈ (1,∞] be the dual exponent, so that
1
p + 1

q = 1. Let Γ ⊆ Curv(X) be compact.
If Modp(Γ, µ) ∈ (0,∞), then there is a Radon probability measure P on

Curv(X), so that
ηP = fµ,

with f ∈ Lq(µ) and

(4.5) ∥f∥Lq = Modp(Γ, µ)
−1
p .

Remark 4.6. — The proof of Proposition 4.5 that we give below is es-
sentially already contained in work of the second-named author and his
collaborators in [24, Section 3], though in a less general context.

This result can also be deduced from [4] if p > 1, where it was shown that
modulus is dual to probability measures in a much more general context
(for p > 1).

For completeness, and since the proof is short, we include an argument
for all p ⩾ 1 in the case where Γ is a compact family of curves.

Recall that Cc(X) denotes the space of continuous functions with com-
pact support, with the uniform topology.

The main technical method in the proof of Proposition 4.5 is to express
the Lagrangian in a given form and apply the following minimax principle
on it. See also [52, Section 9] for another version.

Theorem 4.7 (Sion’s minimax theorem, [55, Corollary 3.3](2) ). —
Suppose that

(1) G is a convex subset of some topological vector space,
(2) K is a compact convex subset of some topological vector space, and
(3) F : G×K → R satisfies

(a) F ( ·, y) is convex and lower semi-continuous on G for every
y ∈ K,

(b) F (x, · ) is concave and upper semi-continuous on K for every
x ∈ G.

(2) The formulation here is slightly simplified.
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Then we have the equality

sup
y∈K

inf
x∈G

F (x, y) = inf
x∈G

sup
y∈K

F (x, y).

Proof of Proposition 4.5. — Note that, since Γ is compact, all curves of
Γ must lie in a bounded subset of X, which must be compact and of finite
µ-measure. Thus, it suffices to assume that X is compact and µ(X) < ∞
in the proof.

Let K be the set of Radon probability measures on Γ. Then K is a com-
pact, convex subset of the space of Radon measures on Curv(X), equipped
with the topology of weak* convergence. Let G = {g : X → [0, 1]}∩Cc(X).

Consider the functional Φ: G×K → R

Φ(g, P ) = ∥g∥Lp(µ) −Modp(Γ, µ)
1
p

∫
X

g dηP .

Lemma 4.2 gives the upper semi-continuity of Φ(g, · ). The other conditions
for Φ = F in Theorem 4.7 are verified as in [24, Theorem 3.7].

Let g ∈ G be any fixed function not identically zero. Since g has compact
support, it has finite Lp(µ)-norm. Fix ϵ > 0. The function

gϵ = Modp(Γ, µ)
1
p g

(1 + ϵ)∥g∥Lp

cannot be admissible, and thus there is a curve γϵ ∈ Γ with∫
γϵ

gϵ ds ⩽ 1.

Then, ∫
γϵ

g ds ⩽ (1 + ϵ)∥g∥Lp Modp(Γ, µ)
−1
p .

Let Pγϵ
= δγϵ

, the Dirac measure supported on γϵ ∈ Curv(X). Then

Φ(g, Pγϵ
) ⩾ −ϵ∥g∥Lp(µ).

Therefore, sending ϵ→ 0, we obtain

inf
g∈G

sup
P ∈K

Φ(g, P ) ⩾ 0.

By Theorem 4.7, we get

sup
P ∈K

inf
g∈G

Φ(g, P ) ⩾ 0.

Thus, there is a sequence of measures Pϵ ∈ K so that

Φ(g, Pϵ) ⩾ −ϵ,
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for each g ∈ G. By upper semi-continuity in Pϵ, and weak compactness, we
can extract a weak limit P for which it holds that

Φ(g, P ) ⩾ 0,

for each g ∈ G. In particular

(4.6)
∫

X

g dηP ⩽ Modp(Γ, µ)
−1
p ∥g∥Lp(µ).

Thus, the functional
g →

∫
X

g dηP

extends to a Lp bounded linear functional. Then, by the Riesz representa-
tion theorem we have

ηP = fµ,

with the bound
∥f∥Lq ⩽ Modp(Γ, µ)

−1
p

following from Estimate (4.6).
On the other hand, by Lemma 4.3 we can find a sequence of continuous

admissible ρi so that

lim
i→∞

∫
ρp

i dµ = Modp(Γ, µ).

By a standard approximation argument of continuous functions by simple
functions, and the fact that ρi is admissible, we obtain that∫

X

ρi dηP =
∫

Curv(X)

∫
γ

ρi dsdP ⩾ 1.

Therefore, we get

1 ⩽
∫

X

ρi dηP ⩽ Modp(Γ, µ)
−1
p ∥ρi∥Lp .

Sending i→∞, we get

(4.7) 1 ⩽ lim
i→∞

∫
X

ρi dηP ⩽ Modp(Γ, µ)
−1
p Modp(Γ, µ)

1
p = 1.

Thus, since we get equality in the limit, Modp(Γ, µ)
−1
p equals the norm of

the functional g →
∫
g dηP , and thus ∥f∥Lq = Modp(Γ, µ)

−1
p . □

Remark 4.8. — Further details could be obtained. If p > 1, then the
sequence in the last paragraph Lp-converges ρi → ρ∗, where ρ∗ is an ad-
missible function for Γ \ Γ′ where Γ′ has modulus zero, see e.g. [59]. Then,
ρ∗ plugged into Estimate 4.7 (without the limit), yields

(4.8) (ρ∗)p = Modp(Γ, µ)
p+q

p fq

ANNALES DE L’INSTITUT FOURIER



INFINITESIMAL SPLITTING 29

almost everywhere. Further,
∫

γ
ρ∗ ds = 1 for P -almost every γ, where P is

the probability measure coming from the statement.

As an immediate corollary of Propositions 4.5 and 2.14, we explicitly
point out the connection between modulus and Alberti representations:

Corollary 4.9. — Let X be a proper metric space with a Radon mea-
sure µ. Suppose that x ∈ X admits a family Γ ⊆ Curv(X) with positive
modulus, that is

Modp(Γ, µ) > 0 for some p ⩾ 1.

Then there is a non-zero measure on X, absolutely continuous to µ, which
admits an Alberti representation. Furthermore, if ϕ : X → Rn is bi-
Lipschitz, then the Alberti representation can be chosen ϕ-independent
(i.e., in the ϕ-direction of some cone C).

As a reminder, Curv(X) by definition does not contain any constant
curves. Indeed, the purpose of this restriction is to prevent the following: A
family of curves containing a constant curve would allow for no admissible
functions and thus have modulus ∞. Such a family could not be used to
construct a non-trivial Alberti representation, e.g., if it contained no non-
constant curves.

Proof. — Fix x0 ∈ X. For each n ∈ N, define

Γn =

γ ∈ Γ :
im(γ) ⊆ B(x0, n), diam(im(γ)) ⩾ 1

n
,

LIP(γ) ⩽ n, dom(γ) ⊆ [−n, n]

 .

Since Γ ⊆
⋃∞

n=1 Γn, (4.4) tells us that Modp(Γn, µ) > 0 for some n, which
we now fix.

Consider the closure Γn ⊂ Curv(X), which is compact by Arzelà-Ascoli.
By (4.3),

Modp(Γn, µ) ⩾ Modp(Γn, µ) > 0.

Moreover, since each curve γ ∈ Γn has diam(im(γ)) ⩾ 1
n and is contained

in B(x0, n), we have

Modp(Γn, µ) ⩽ npµ(B(x0, n)) <∞.

By Proposition 4.5 we obtain a measure P on Curv(X), so that the
corresponding measure ηP is absolutely continuous with respect to µ. Then,
applying Proposition 2.14 with cone C = Rn \ {0}, we obtain a non-trivial
Alberti representation for µ that is ϕ-independent, i.e., in the ϕ-direction
of C. □
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5. Proofs of the corollaries

In this section, we prove all the corollaries of our main result stated in
the introduction.

Before beginning the proofs, the following basic lemma allows us to re-
duce problems of bi-Lipschitz embedding to Theorem 1.2.

Lemma 5.1. — Let X be a metric space with a doubling measure µ0.
Suppose that µ ≪ µ0 supports k ϕ-independent Alberti representations,
for some ϕ : X → Rm.

Let f : X → Y be a bi-Lipschitz homeomorphism.
Then

(1) µ̂0 := f∗(µ0) is a doubling measure supported on Y .
(2) µ̂ := f∗(µ)≪ µ̂0.
(3) µ̂ supports k ϕ ◦ f−1-independent Alberti representations.

Proof. — The first two statements are immediate from the definitions.
For the third statement, let Ai = (P i, νi) be independent Alberti repre-

sentations for µ, for i = 1, . . . , k.
Note that f : X → Y and f−1 : Y → X induce continuous maps

F : Frag(X)→ Frag(Y ) and F−1 : Frag(Y )→ Frag(X),

by post-composition.
For each Alberti representation Ai = (P i, νi), we may define a map

ν̂i : Frag(Y )→M(Y ) by

ν̂i
γ = f∗(νi

F −1(γ)) for each γ ∈ Frag(Y ).

It is immediate that

ν̂i
γ ≪ H1|im(γ) for each γ ∈ Frag(Y ),

since bi-Lipschitz maps preserve sets of zero H1-measure.
We therefore define the Alberti representations

Â i = (F∗(P i), ν̂i)

for i = 1, . . . , k.
It is easy to check that these satisfy conditions (1), (2), and (4) of Defini-

tion 2.6. For condition (3), observe that if A ⊆ Y is Borel and i ∈ {1, . . . , k},
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then

µ̂(A) = µ(f−1(A))

=
∫

Frag(X)
νi

γ(f−1(A)) dP i(γ)

=
∫

Frag(X)
νi

F (γ)(A) dP i(γ)

=
∫

Frag(Y )
ν̂i

α(A) dF∗(P i)(α),

as desired.
Lastly, we check the independence of the new Alberti representations on

Y . Let A = (P, ν) denote any one of the k original Alberti representations
Ai above. Then there is a cone C ⊆ Rk such that (ϕ ◦ γ)′(t) ∈ C for P -a.e.
γ ∈ Frag(X) and a.e. t ∈ dom(γ). Let G ⊆ Frag(X) be the full P -measure
set on which this holds.

Let Ĝ = F (G) ⊆ Frag(Y ), a set of full P̂ -measure in Frag(Y ). Consider
any α ∈ Ĝ ⊆ Frag(Y ). Then the fragment γ defined by

t 7→ f−1(α(t))

is in G. Therefore, for a.e. t ∈ dom(α) = dom(γ),

(ϕ ◦ f−1 ◦ α)′(t) = (ϕ ◦ γ)′(t)

is in C.
Thus, each new Albert representation Â i is in the (ϕ ◦ f−1)-direction of

the same cone of which Ai was in the ϕ-direction. Thus, the representations
Â i are (ϕ ◦ f−1)-independent. □

As a consequence, we can now prove Corollary 1.3.
Proof of Corollary 1.3. — Let X be a complete metric space admitting

a doubling Radon measure µ0. Suppose that a measure µ≪ µ0 supports k
independent Alberti representations, for some k ⩾ 1.

Suppose that f : X → Rn is a bi-Lipschitz embedding. Let X ′ = f(X),
µ′

0 = f∗(µ0), and µ′ = f∗(µ).
It follows from Lemma 5.1 that µ′ admits k independent Alberti rep-

resentations. Therefore, by Theorem 1.2, at µ′-a.e. point x′ ∈ X ′ every
tangent Y ′ ∈ TanRn(X ′, x′) is isometric to Z × Rk, for some closed set
Z ⊆ Rn−k.

The set of all preimages under f of such points x′ ∈ X ′ forms a set
of full µ-measure in X. At such a point x = f−1(x′) ∈ X, each tangent
(Y, y) ∈ Tan(X,x) is bi-Lipschitz equivalent to an element of TanRn(X ′, x′),
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with a bi-Lipschitz map given by a tangent map of f . Thus, any such
tangent Y is bi-Lipschitz equivalent to a product Z×Rk, for some complete
metric space Z. This proves the corollary. □

5.1. Modulus and conformal dimension

Here we prove Corollaries 1.5, 1.8, and 1.9.
Proof of Corollary 1.5. — Let X be a complete metric space admitting a

Radon measure µ that is absolutely continuous with respect to a doubling
measure µ0. Suppose that X contains a family of (non-constant) curves Γ so
that Modp(Γ, µ) > 0 for some p ∈ [1,∞), and that X admits a bi-Lipschitz
embedding ϕ into some Rn.

By Corollary 4.9, there is a non-trivial measure on X that is absolutely
continuous to µ, hence to µ0, and supports a ϕ-independent Alberti repre-
sentation. The corollary then follows from Corollary 1.3. □

Proof of Corollary 1.8. — Let X satisfy the assumptions of the corollary.
Thus, X is Ahlfors Q-regular with Q = cdimAR(X) and X admits a bi-
Lipschitz embedding into some Rn.

By the Keith–Laakso Theorem 1.7, there is a weak tangent W of X
that contains a family of non-constant curves with positive modulus. By
Lemma 2.4, the space W also admits a bi-Lipschitz embedding into Rn. By
Corollary 1.5, there is a tangent Y of W that is bi-Lipschitz equivalent to
Z × R for some complete metric space Z.

As Y is also a weak tangent of the original space X (see Lemma 2.4(7)),
this completes the proof. □

Proof of Corollary 1.9. — Let X be linearly connected and let Y be
quasisymmetric to X and Ahlfors Q-regular, where

Q = cdimAR(X) = cdimAR(Y ) ∈ (1, 2).

Suppose that Y did admit a bi-Lipschitz embedding into some Euclidean
space, RN .

By Corollary 1.8, Y would then admit a weak tangent W that is bi-
Lipschitz equivalent to a product Z × R, for some complete metric space
Z. Let ϕ : Z×R→W be bi-Lipschitz. Let π : Z×R→ Z be the projection
to the Z factor.

The linear connectedness condition is preserved under both quasisym-
metry and passage to weak tangents. (The former assertion is immediate
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from the definitions, and the latter is contained in the proof of [36, Propo-
sition 5.4].) Thus, W is linearly connected. By Lemma 2.4(5), W is also
Ahlfors Q-regular.

Next, we observe that Z must contain at least two points: if not, then
W would be bi-Lipschitz equivalent to Z ×R ∼= R, which would contradict
the fact that W is Ahlfors Q-regular for Q > 1.

We now observe that Z must contain a compact, connected set K with
at least two points. To see this, fix distinct points z, z′ ∈ Z. Since W is
linearly connected, there is a compact, connected set J in W that contains
ϕ(z, 0) and ϕ(z′, 0). The set K = π(ϕ−1(J)) is then a continuum containing
z and z′.

Thus, Z contains a non-trivial continuum K and so W contains a bi-
Lipschitz image of the space K × [0, 1]. We now argue that

(5.1) dimH(K × [0, 1]) ⩾ 2.

That the Hausdorff dimension of a product is at least the sum of the di-
mensions of the factors is standard for compact subsets of Euclidean space
(see, e.g., [9, Theorem 3.2.1]); we give a brief argument in our setting here:

Since K is compact and connected, H1(K) > 0. By Frostman’s Lemma
[43, Theorem 8.17], K supports a Radon measure µ satisfying

µ(B(x, r)) ⩽ r for all x ∈ K and 0 < r ⩽ diam(K).

If L1 denotes Lebesgue measure on [0, 1], then the measure µ × L1 on
K × [0, 1] satisfies

(µ× L1)(B(p, r)) ⩽ r2 for all p ∈ K × [0, 1] and 0 < r ⩽ diam(K × [0, 1]).

By the “mass distribution principle” (see [26, p. 61]), we obtain (5.1).
We therefore arrive at

2 > Q = dimH(W ) ⩾ dimH(K × [0, 1]) ⩾ 2,

a contradiction. □

5.2. Slit carpet

Here, we prove Corollary 1.10. This will follow from Corollary 1.5 and
some facts about the slit carpet.

We first summarize some results of Merenkov [45].
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Proposition 5.2 ([45, Lemma 2.1, Proposition 2.4, and Lemma 4.2]).
The slit carpet M has the following properties:

(1) It is homeomorphic to the standard Sierpiński carpet. In particular,
it is compact and has topological dimension 1.(3)

(2) It is geodesic and Ahlfors 2-regular.
(3) It admits a family of non-constant curves with positive 2-modulus

(with respect to the measure H2).

Proof of Corollary 1.10. — By Proposition 5.2, we may fix a point p ∈M
where the conclusion of Corollary 1.5 holds.

The self-similarity of M easily implies the following: There is a constant
c > 0 such that, for each r > 0, there is a point qr and a compact set
Kr ⊆ B(p, r) such that

B(qr, cr) ⊆ Kr ⊆ B(p, r),

and

Kr is isometric to tM for some t ∈ (2cr, 2r).

Let (Y, y) ∈ Tan(M, p) be obtained by rescaling along a sequence λi → 0.
Let qi = qλi

and Ki = Kλi
. Passing to a (subsequential) limit, the above

properties imply (see, e.g., [20, Lemma 8.31]) that there is a point q ∈ Y
and a compact set K ⊆ Y such that

B(q, c) ⊆ K ⊆ B(y, 1)

and

K is bi-Lipschitz equivalent to M.

By Corollary 1.5, Y is bi-Lipschitz equivalent to Z × R for some com-
plete (and necessarily doubling) metric space Z. As a tangent of M, Y is
quasiconvex and therefore so is Z.

It follows that Z contains a non-trivial topological arc through each
point. Hence, there is a homeomorphic image of [0, 1]2 contained in B(q, c).
This implies that B(q, c) ⊆ K must have topological dimension 2. However,
this contradicts the fact that K is bi-Lipschitz equivalent to M, which has
topological dimension 1. □

(3) Here, “topological dimension” can refer to Lebesgue covering dimension or (small)
inductive dimension, which are equivalent for compact metric spaces [46]. All we will
need to know is that M does not contain a topologically embedded copy of any open
subset of R2.
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5.3. Heisenberg group

Here we give a brief introduction to the Heisenberg group and prove
Corollary 1.11.

5.3.1. Preliminaries on the Heisenberg group

We now fix some notation and definitions. We will be very brief, referring
the reader to [15, 41] for details.

The group H is R3 endowed with the non-abelian group law

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + 1
2(x1y2 − y1x2)).

There are many standard, bi-Lipschitz equivalent ways to equip H with a
metric. For simplicity, we fix the so-called Korányi distance, though it will
make little difference below.

Definition 5.3. — The Korányi norm of (x, y, z) ∈ H is

∥(x, y, z)∥ = ((x2 + y2)2 + 16z2)1/4.

The Korányi distance between p, q ∈ H is

d(p, q) = ∥p−1q∥.

The Korányi distance on H induces the usual topology from R3 and has
the following features (see, e.g. [41, Example 1.3]):

(1) Left-invariance: d(p, q) = d(p′ · p, p′ · q) for all p, q, p′ ∈ H.
(2) Dilations: For each t > 0, the map

δt(x, y, z) = (tx, tx, t2z)

is a group homomorphism with the property that

d(δt(p), δt(q)) = td(p, q) for all p, q ∈ H

(3) Doubling: The Lebesgue measure L on R3 is doubling on (H, d).
In fact, it satisfies the Ahlfors 4-regularity property

L (B(p, r)) ≈ r4

for all p ∈ H, r > 0 and a fixed positive implied constant.
In particular, item (3) implies that every open set in H has Hausdorff
dimension 4.

The Korańyi distance is also bi-Lipschitz equivalent to the more well-
known Carnot–Carathéodory distance, which we do not define here, as
both satisfy properties (1)–(3) above [41].

From these properties, we first derive the following:
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Lemma 5.4. — There is an open set U in the Heisenberg group such
that L |U supports two independent Alberti representations.

This fact is well-known, and of course much more is true. We include a
brief proof only to show that no sophisticated tools are needed.

Proof. — Let ϕ : H → R2 be the canonical Lipschitz chart, given by
(x, y, z) 7→ (x, y). Fix any disjoint, independent cones, Cx, Cy in R2 con-
taining the x and y-axis respectively.

For each p = (a, b) ∈ R2, the curves

αp(t) =
(
t, a, b− 1

2at
)

and
βp(t) =

(
a, t, b+ 1

2at
)

are bi-infinite geodesics in H. Indeed,

α(a,b)(t) = (0, a, b) · (t, 0, 0) and β(a,b)(t) = (a, 0, b) · (0, t, 0),

and the curves (t, 0, 0) and (0, t, 0) are clearly geodesics.
Define the maps Φα and Φβ from

[
− 1

2 ,
1
2
]3 to R3 by (p, t) 7→ αp(t)

and (p, t) 7→ βp(t), respectively. One directly verifies that these maps are
injective and are open mappings on the interiors of their domains. Since
Φα(0) = Φβ(0) = (0, 0, 0), there is a non-empty open set U contained in

Φα

([
−1

2 ,
1
2

]3
)
∩ Φβ

([
−1

2 ,
1
2

]3
)
.

We will obtain two independent Alberti representations of the measure
µ = L |U on H.

Computing the Jacobians gives immediately that Φα and Φβ are vol-
ume preserving. Writing λ for Lebesgue measure on

[
− 1

2 ,
1
2
]2, we therefore

obtain by change of variables that

(5.2) µ(A) =
∫
R2

∫
R

1A(αp(t)) dtdλ(p)

and

(5.3) µ(A) =
∫
R2

∫
R

1A(βp(t)) dtdλ(p)

for any Borel set A ⊆ U .
Thus, define a probabilty measure P on Frag(H) by the pushforward of

λ|[− 1
2 , 1

2 ]2 under the map from
[
− 1

2 ,
1
2
]2 given by

p 7→ αp|[− 1
2 , 1

2 ] ∈ Frag(H).
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Note that this map is continuous on
[
− 1

2 ,
1
2
]2.

For γ ∈ Frag(X), define νγ = 0 if γ is not in the support of P . Otherwise,
γ = αp|[− 1

2 , 1
2 ] for some p, and we set

νγ = 1U · H1|im(γ).

The pair (P, ν) defines an Alberti representation of µ by (5.2), supported
on curves of the form αp|[− 1

2 , 1
2 ]. The exact same procedure applied to the

curves βp yields an Alberti representation of µ supported on curves of the
form βp|[− 1

2 , 1
2 ].

Since (ϕ ◦ αp)′(t) = (1, 0) ∈ Cx and (ϕ ◦ βp)′(t) = (0, 1) ∈ Cy for each
p ∈ R2 and t ∈ R, the two Alberti representations are independent. □

5.3.2. Proof of Corollary 1.11

There are a number of proofs of Corollary 1.11 in the literature. We give
a proof below that avoids Pansu’s differentiation theorem from [50]. It relies
only on Theorem 1.2, invariance of domain, and the basic properties of the
Heisenberg group stated in the previous subsection. Of course, we still use
a blowup argument, so the ideas are similar in spirit.

Proof of Corollary 1.11. — Suppose that the Heisenberg group (with the
Korányi metric) admitted a bi-Lipschitz embedding into some Euclidean
space. By Lemma 5.4 and Corollary 1.3, some tangent of the Heisenberg
group would be bi-Lipschitz equivalent to Z×R2, for some complete metric
space Z.

By the homogeneity and dilation structure of the metric, every tangent
of the Heisenberg group is isometric to the Heisenberg group itself. Thus,
in this case, H is bi-Lipschitz equivalent to Z × R2. Since H is proper and
quasiconvex, so is Z.

It follows that Z is bi-Lipschitz equivalent to a geodesic metric space,
simply by replacing the metric on Z by the associated length metric. There-
fore, in particular, Z contains a Lipschitz embedding γ : [0, 1]→ Z.

Let ϕ : Z ×R2 → H be bi-Lipschitz. The map from (0, 1)× (0, 1)2 into H
given by

(t, p) 7→ ϕ(γ(t), p)
is therefore a Lipschitz homeomorphism from an open set of R3 into H. By
invariance of domain, the image of this map must be open in H. On the
other hand, this set has Hausdorff dimension at most 3, as the Lipschitz
image of a subset of R3. This violates the Ahlfors 4-regularity of H. □
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Appendix A. Proof of Proposition 2.5

Here we give a proof of Proposition 2.5. The idea is extremely similar
to that of [21, Proposition 3.1] (which in turn is based on [40, 51]), which
is the same statement in the setting of Gromov–Hausdorff tangents rather
than intrinsic tangents. We will therefore omit many steps if they are easy
to adapt from there.

Recall the notion of the outer measure

µ∗(A) = inf{µ(B) : B Borel , B ⊇ A},

and the associated notion of a point of outer density x of a set A, where

lim
r→0

µ∗(B(x, r) ∩A)
µ(B(x, r)) → 1.

As explained briefly in [21], every set of positive outer measure has a point
of outer density.

The following lemma is a simple extension of (6) of Lemma 2.4. See
also [20, Lemma 9.6] or [40, Proposition 3.1] for closely related statements
whose proofs can easily be modified to yield this one.

Lemma A.1. — Let A ⊆ Rn support a doubling measure µ and a Lip-
schitz f : A → Rm. Let E ⊆ A have a point of outer µ-density at a ∈ A.
Then

TanRn(E, f, a) = TanRn(A, f, a).

We now define a notion of distance that yields the correct topology. As
in [21], the distance we define will not precisely be a metric, but it will
suffice for our purposes.

Definition A.2. — Let A,B ⊆ RN be sets and f, g : RN → RM , Lips-
chitz functions. Define

D̃((A, f), (B, g)) = inf
{
ϵ > 0 :

d1/ϵ(A,B) < ϵ and
|f − g| < ϵ on (A ∪B) ∩B(0, 1/ϵ)

}
.

Then define
D = min(D̃, 1/2).

To simplify notation, given A ⊆ RN , f : RN → RM Lipschitz, λ > 0, and
p ∈ RN , we set

Ap,λ = λ−1(A− p)
and

fp,λ(x) = λ−1(f(λx+ p)− f(p)).
Note that fp,λ is Lipschitz with the same constant as f .
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The following is analogous to [21, Lemma 2.3].

Lemma A.3. — The function D has the following properties:
(1) It is non-negative and symmetric.
(2) If D((A, f), (B, g)) = 0 then A = B and f = g on A = B.
(3) For all pairs (A, f), (B, g), (C, h), we have the quasi-triangle inequal-

ity

D((A, f), (C, h)) ⩽ 2(D((A, f), (B, g)) +D((B, g), (C, h)))

(4) (Â, f̂) ∈ TanRN (A, f, a) if and only if some Lipschitz extensions of
f and f̂ to all of RN and some sequence λi → 0 satisfy

(A.1) D((Aa,λi , fa,λi), (Â, f̂))→ 0

Proof. — The first two items are simple, the third follows exactly as
in [21, Lemma 2.3], and the fourth follows from [20, Lemma 8.7]. □

The next lemma is an analog of [21, Lemma 2.6].

Lemma A.4. — For each N,M ∈ N and L, η > 0, the collection

S = {(B, g) : B ⊆ RN , g : RN → RML-Lipschitz}

is contained in a countable collection of sets Bℓ with D-diameter at most η.

The “D-diameter” of a collection of pairs {(B, g)} is the supremum of
the D-distance between pairs of elements in the collection.

Proof. — Consider all pairs (K,h) such that K ⊆ QN ⊆ RN is finite,
and h : K → QM .

By Lemma A.3(3), it suffices to show, given η ∈ (0, 1) and (B, g) ∈ S,
that (B, g) is within D-distance 10η of some (K, ĥ), where (K,h) is as
above and ĥ is a Lipschitz extension of h to all RN . We may also assume
L > 1.

Fix K ⊆ B(0, 2η−1) ∩QN to be η/L-separated and finite such that

d2η−1(K,B) ⩽ η/L.

Then, for x ∈ K, set h(x) to be an element of QM within distance η/L of
g(x). Note that h is 3L-Lipschitz. Extend h to a 3L-Lipschitz map ĥ on
RN by Kirszbraun’s theorem. For x ∈ K ∩B(0, η−1),

|g(x)− ĥ(x)| ⩽ η/L < η

and if x ∈ B ∩B(0, η−1), then

|g(x)− ĥ(x)| ⩽ 6η + |g(y)− h(y)| ⩽ 10η,

where y is a closest element in K to x. This completes the proof. □
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Proof of Proposition 2.5. — We closely follow the argument in [21]. Let
A ⊆ Rn support a doubling measure µ. Let f : A → Rm be a Lipschitz
mapping. Extend f to be an L-Lipschitz function defined on all of RN by
the standard McShane–Whitney extension theorem.

Our goal is to show that the set{
a ∈ A :

there exists (B, g) ∈ TanRN (A, f, a) and b ∈ B such that
(B − b, g( ·+ b)− g(b)) /∈ TanRN (A, f, a)

}
has outer measure zero.

Consider the collection

S = {(B, g) : B ⊆ RN , g : RN → RM L-Lipschitz}.

Note that every rescaling or tangent of (A, f) lies in S.
Fix k ⩾ 1. Apply Lemma A.4 to obtain countably many collections Bl

such that, for all l,
diamD(Bl) < 1/4k

and S ⊆ ∪Bl.
It therefore suffices to show that, for all k, l,m ∈ N, the set of “bad”

points with parameters k, l,m, namely

(A.2)

a∈A :

there exists (B, g) ∈ TanRn(A, f, a) and b ∈ B such that
(B − b, g( ·+ b)− g(b)) ∈ Bl and
D((B−b, g(·+b)−g(b)), (Aa,t, fa,t))> 1

k for all t∈ (0, 1
m )


has outer measure zero.

Suppose that, for some k, l,m ∈ N, the set above has positive outer
measure, and call it A′ ⊆ A. Let a be a point of outer density of A′. Then
there exist (B, g) ∈ TanRN (A, f, a) and b ∈ B such that

(B − b, g(·+ b)− g(b)) ∈ Bl

and D

(
(B − b, g(·+ b)− g(b)) ,

(
1
t
(A− a), 1

t
(f − f(a))

))
>

1
k
,

for all t ∈ (0, 1/m) .
Because (B, g) ∈ TanRN (A, f, a) = TanRN (A′, f, a) by Lemma A.1, there

is a sequence λi → 0 such that

(A.3) ϵi := D
(
(B, g), (A′

a,λi
, fa,λi

)
)
→ 0.

In particular, we may choose ai ∈ A′ such that

(A.4) |b− λ−1
i (ai − a)| < ϵi,

when i is sufficiently large.

ANNALES DE L’INSTITUT FOURIER



INFINITESIMAL SPLITTING 41

Claim. — We have

D ((B − b, g(·+ b)− g(b)), (Aai,λi
, fai,λi

))→ 0.

Proof of Claim. — Observe that if q − b ∈ (B − b) ∩B(0, (2ϵi)−1), then
q ∈ B ∩B(0, ϵ−1

i ) and therefore there is p ∈ A such that

|q − λ−1
i (p− a)| < ϵi.

It follows that

|(q − b)− λ−1
i (p− ai)| ⩽ |q − λ−1

i (p− a)|+ |b− λ−1
i (ai − a)| < 2ϵi.

A similar argument also shows, conversely, that if λ−1
i (p−ai) is an arbitrary

point in λ−1
i (A − ai) ∩ B(0, (2ϵi)−1), then there is a point q − b ∈ B − b

such that
|(q − b)− λ−1

i (p− ai)| < 2ϵi.
Together, these show that

d(2ϵi)−1(B − b, Aai,λi
) < 2ϵi.

By (A.3), the functions g and fa,λi
agree up to error ϵi on (B ∪ Aa,λi

) ∩
B(0, ϵ−1

i ).
Note that if q − b ∈ (B − b) ∩ B(0, (2ϵi)−1), then q ∈ B ∩ B(0, ϵ−1

i ).
Similarly, if λ−1

i (p− ai) ∈ Aai,λi ∩B(0, (2ϵi)−1), then λ−1
i (p− a) ∈ Aa,λi ∩

B(0, ϵ−1).
Thus, a basic calculation using (A.4) and the triangle inequality, ex-

tremely similar to that on [21, p. 565], yields that the functions

g( · )− g(b) and fλi,ai

agree up to error ≲ ϵi on

((B − b) ∪Aai,λi
) ∩B(0, (2ϵi)−1),

where the implied constant depends only on the Lipschitz constants of f
and g. This proves the claim. □

With the claim proven, one reaches a contradiction exactly as on [21,
p. 566]. Therefore, the set of “bad points” defined in (A.2) has outer mea-
sure zero, which completes the proof. □
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