[Magnétisation du modèle d’Ising par couches en zig-zag et polynômes orthogonaux]
Nous étudions la magnétisation
We discuss the magnetization
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3605
Keywords: Planar Ising model, magnetization, discrete fermions, orthogonal polynomials, Hankel determinants, Toeplitz+Hankel determinants.
Mots-clés : Modèle d’Ising planaire, fermions discrets, polynômes orthogonaux, déterminants de Hankel, déterminants Toeplitz+Hankel.
Chelkak, Dmitry 1, 2 ; Hongler, Clément 3 ; Mahfouf, Rémy 4

@article{AIF_2024__74_6_2275_0, author = {Chelkak, Dmitry and Hongler, Cl\'ement and Mahfouf, R\'emy}, title = {Magnetization in the zig-zag layered {Ising} model and orthogonal polynomials}, journal = {Annales de l'Institut Fourier}, pages = {2275--2330}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {6}, year = {2024}, doi = {10.5802/aif.3605}, mrnumber = {4810238}, zbl = {07929007}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3605/} }
TY - JOUR AU - Chelkak, Dmitry AU - Hongler, Clément AU - Mahfouf, Rémy TI - Magnetization in the zig-zag layered Ising model and orthogonal polynomials JO - Annales de l'Institut Fourier PY - 2024 SP - 2275 EP - 2330 VL - 74 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3605/ DO - 10.5802/aif.3605 LA - en ID - AIF_2024__74_6_2275_0 ER -
%0 Journal Article %A Chelkak, Dmitry %A Hongler, Clément %A Mahfouf, Rémy %T Magnetization in the zig-zag layered Ising model and orthogonal polynomials %J Annales de l'Institut Fourier %D 2024 %P 2275-2330 %V 74 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3605/ %R 10.5802/aif.3605 %G en %F AIF_2024__74_6_2275_0
Chelkak, Dmitry; Hongler, Clément; Mahfouf, Rémy. Magnetization in the zig-zag layered Ising model and orthogonal polynomials. Annales de l'Institut Fourier, Tome 74 (2024) no. 6, pp. 2275-2330. doi : 10.5802/aif.3605. https://aif.centre-mersenne.org/articles/10.5802/aif.3605/
[1] Criticality in alternating layered Ising models. II. Exact scaling theory, Phys. Rev. E, Volume 88 (2013), 032148 | DOI
[2] Theory of layered Ising models. II. Spin correlation functions parallel to the layering, Phys. Rev. B, Volume 10 (1974), pp. 3885-3905 | DOI
[3] Theory of layered Ising models: Thermodynamics, Phys. Rev. B, Volume 10 (1974), pp. 886-891 | DOI
[4] Critical correlations in a
[5] Asymptotics of determinants of Hankel matrices via non-linear difference equations, J. Approx. Theory, Volume 198 (2015), pp. 63-110 | DOI | MR | Zbl
[6] Exactly solved models in statistical mechanics, Academic Press Inc., 1989, xii+486 pages (reprint of the 1982 original) | MR | Zbl
[7] Onsager and Kaufman’s calculation of the spontaneous magnetization of the Ising model, J. Stat. Phys., Volume 145 (2011) no. 3, pp. 518-548 | DOI | MR | Zbl
[8] Onsager and Kaufman’s calculation of the spontaneous magnetization of the Ising model: II, J. Stat. Phys., Volume 149 (2012) no. 6, pp. 1164-1167 | DOI | MR | Zbl
[9] 399th solution of the Ising model, J. Phys. A. Math. Gen., Volume 11 (1978) no. 12, p. 2463 | DOI
[10] Smirnov’s fermionic observable away from criticality, Ann. Probab., Volume 40 (2012) no. 6, pp. 2667-2689 | DOI | MR | Zbl
[11] The
[12] 2D Ising model: correlation functions at criticality via Riemann-type boundary value problems, European Congress of Mathematics, European Mathematical Society, 2018, pp. 235-256 | DOI | MR | Zbl
[13] Planar Ising model at criticality: state-of-the-art and perspectives, Proceedings of the International Congress of Mathematicians 2018 (ICM 2018), Vol. 3, World Scientific, 2019, pp. 2789-2816 | DOI | MR | Zbl
[14] Ising model and s-embeddings of planar graphs (2020) (https://arxiv.org/abs/2006.14559)
[15] Revisiting the combinatorics of the 2D Ising model, Ann. Inst. Henri Poincaré D, Comb. Phys. Interact., Volume 4 (2017) no. 3, pp. 309-385 | DOI | Numdam | MR | Zbl
[16] Correlations of primary fields in the critical Ising model (2021) (https://arxiv.org/abs/2103.10263)
[17] Universality of spin correlations in the Ising model on isoradial graphs (2021) (https://arxiv.org/abs/2104.12858)
[18] Universality in the 2D Ising model and conformal invariance of fermionic observables, Invent. Math., Volume 189 (2012) no. 3, pp. 515-580 | DOI | MR | Zbl
[19] The critical temperature for the Ising model on planar doubly periodic graphs, Electron. J. Probab., Volume 18 (2013), 44, 18 pages | DOI | MR | Zbl
[20] Continuum limit of random matrix products in statistical mechanics of disordered systems, Commun. Math. Phys., Volume 369 (2019) no. 1, pp. 171-219 | DOI | MR | Zbl
[21] Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher–Hartwig singularities, Ann. Math., Volume 174 (2011) no. 2, pp. 1243-1299 | DOI | MR | Zbl
[22] Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results, Commun. Pure Appl. Math., Volume 66 (2013) no. 9, pp. 1360-1438 | DOI | MR | Zbl
[23] Critical behaviour of the phase transition in the
[24] Conformal invariance of lattice models, Probability and statistical physics in two and more dimensions (Clay Mathematics Proceedings), Volume 15, American Mathematical Society, 2012, pp. 213-276 | MR | Zbl
[25] Statistical mechanics of lattice systems. A concrete mathematical introduction, Cambridge University Press, 2018, xix+622 pages | DOI | MR | Zbl
[26] Semi-infinite Ising model. II. The wetting and layering transitions, Commun. Math. Phys., Volume 112 (1987) no. 1, pp. 51-74 | DOI | MR | Zbl
[27] Ising model: local spin correlations and conformal invariance, Commun. Math. Phys., Volume 367 (2019) no. 3, pp. 771-833 | DOI | MR | Zbl
[28] Toeplitz forms and their applications, Chelsea Publishing, 1984, x+245 pages | MR | Zbl
[29] Conformal Field Theory at the Lattice Level: Discrete Complex Analysis and Virasoro Structure, Commun. Math. Phys., Volume 395 (2022) no. 1, pp. 1-58 | DOI | MR | Zbl
[30] Discrete holomorphicity and Ising model operator formalism, Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong (Contemporary Mathematics), Volume 644, American Mathematical Society, 2015, pp. 79-115 | DOI | MR | Zbl
[31] Studies on holonomic quantum fields. XVII, Proc. Japan Acad., Ser. A, Volume 56 (1980) no. 9, pp. 405-410 | DOI | MR | Zbl
[32] Determination of an operator algebra for the two-dimensional Ising model, Phys. Rev. B, Volume 3 (1971), pp. 3918-3939 | DOI | MR
[33] The Laplacian and Dirac operators on critical planar graphs, Invent. Math., Volume 150 (2002) no. 2, pp. 409-439 | DOI | MR | Zbl
[34] Dimers and Circle patterns (2018) (https://arxiv.org/abs/1810.05616)
[35] Conformal invariance in the quantum Ising model (2021) (https://arxiv.org/abs/2112.04811)
[36] Theory of a two-dimensional Ising model with random impurities. III. Boundary effects, Phys. Rev., Volume 188 (1969), pp. 1014-1031 | DOI | MR
[37] Integrable models in statistical mechanics: the hidden field with unsolved problems, Int. J. Mod. Phys. A, Volume 14 (1999) no. 25, pp. 3921-3933 | DOI | MR | Zbl
[38] The Importance of the Ising Model, Prog. Theor. Phys., Volume 127 (2012) no. 5, pp. 791-817 | DOI | Zbl
[39] Ising field theory: quadratic difference equations for the
[40] Theory of a two-dimensional Ising model with random impurities. I. Thermodynamics, Phys. Rev., Volume 176 (1968), pp. 631-643 | DOI | MR
[41] Theory of a two-dimensional Ising model with random impurities. II. Spin correlation functions, Phys. Rev., Volume 188 (1969), pp. 982-1013 | DOI | MR
[42] The two-dimensional Ising model, Dover Publications, 2014, xvi+454 pages corrected reprint, with a new preface and a new chapter (Chapter XVII) | MR | Zbl
[43] Discrete Riemann surfaces and the Ising model, Commun. Math. Phys., Volume 218 (2001) no. 1, pp. 177-216 | DOI | MR | Zbl
[44] The surface tension near criticality of the 2d-Ising model (2006) (https://arxiv.org/abs/math/0610636)
[45] History of the Lenz-Ising model 1920–1950: from ferromagnetic to cooperative phenomena, Arch. Hist. Exact Sci., Volume 59 (2005) no. 3, pp. 267-318 | DOI | MR | Zbl
[46] History of the Lenz-Ising model 1920–1950: from ferromagnetic to cooperative phenomena, Arch. Hist. Exact Sci., Volume 59 (2005) no. 3, pp. 267-318 | DOI | MR | Zbl
[47] History of the Lenz-Ising model 1950–1965: from irrelevance to relevance, Arch. Hist. Exact Sci., Volume 63 (2009) no. 3, pp. 243-287 | DOI | MR | Zbl
[48] Planar Ising correlations, Progress in Mathematical Physics, 49, Birkhäuser, 2007, xx+363 pages | MR | Zbl
[49] Boundary critical behaviour of two-dimensional layered Ising models, Int. J. Mod. Phys. B, Volume 11 (1997) no. 11, pp. 1363-1388 | DOI | Zbl
[50] Nonlinear partial difference equations for Ising model n-point Green’s functions, Proc. II International Symposium on Selected Topics in Statistical Mechanics, Dubna, August 25–29, 1981, 1981, pp. 165-180 (https://perk.okstate.edu/papers/older/Dubna1.pdf)
[51] Ising models and soliton equations, III international symposium on selected topics in statistical mechanics, Vol. II (Dubna, 1984) (Ob”ed. Inst. Yadernykh Issled. Dubna, D17-84-850), Ob”ed. Inst. Yadernykh Issled., 1985, pp. 138-151 | MR
[52] New results for the correlation functions of the Ising model and the transverse Ising chain, J. Stat. Phys., Volume 135 (2009), pp. 599-619 | DOI | MR | Zbl
[53] Mathematical theory of the wetting phenomenon in the 2D Ising model. Papers honouring the 60th birthday of Klaus Hepp and of Walter Hunziker, Part I (Zürich, 1995), Helv. Phys. Acta, Volume 69 (1996) no. 5-6, pp. 949-973 | MR | Zbl
[54] Studies on holonomic quantum fields. I-IV, Proc. Japan Acad., Ser. A, Volume 53 (1977) no. 1, p. 6-10, 147-152, 153-158, 183-185 | MR
[55] Two-dimensional Ising model as a soluble problem of many fermions, Rev. Mod. Phys., Volume 36 (1964), pp. 856-871 | DOI | MR
[56] OPUC on one foot, Bull. Am. Math. Soc., Volume 42 (2005) no. 4, pp. 431-460 | DOI | MR | Zbl
[57] Isomonodromic deformation theory and the next-to-diagonal correlations of the anisotropic square lattice Ising model, J. Phys. A. Math. Theor., Volume 40 (2007) no. 24, p. f491-f501 | DOI | MR | Zbl
[58] Spin-spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region, Phys. Rev. B, Volume 13 (1976) no. 1, pp. 316-374 | DOI | MR
- Strong Szegő limit theorems for multi-bordered, framed, and multi-framed Toeplitz determinants, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 20 (2024), p. paper | DOI:10.3842/sigma.2024.062 | Zbl:1550.15031
- A Riemann-Hilbert approach to asymptotic analysis of Toeplitz+Hankel determinants, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 16 (2020), p. paper | DOI:10.3842/sigma.2020.100 | Zbl:1457.15008
Cité par 2 documents. Sources : zbMATH