We discuss the magnetization in the -th column of the zig-zag layered 2D Ising model on a half-plane using Kadanoff–Ceva fermions and orthogonal polynomials techniques. Our main result gives an explicit representation of via Hankel determinants constructed from the spectral measure of a certain Jacobi matrix which encodes the interaction parameters between the columns. We also illustrate our approach by giving short proofs of the classical Kaufman–Onsager–Yang and McCoy–Wu theorems in the homogeneous setup and expressing as a Toeplitz+Hankel determinant for the homogeneous sub-critical model in presence of a boundary magnetic field.
Nous étudions la magnétisation de la m-ième colonne du modèle d’Ising planaire par couches en zig-zag sur le demi-plan en utilisant les fermions de Kadanoff–Ceva et les polynômes orthogonaux. Notre résultat principal exprime comme un déterminant de Hankel construit à partir de la mesure spectrale d’un certain opérateur de Jacobi encodant les interactions entre colonnes successives. Nous illustrons aussi notre approche en donnant des preuves courtes des résultats classiques pour le modèle homogène de Kaufman–Onsager–Yang et McCoy–Wu, et exprimons comme un déterminant Toeplitz+Hankel dans le cadre du modèle homogène sous-critique en présence d’un champ magnétique extérieur au bord.
Revised:
Accepted:
Online First:
Keywords: Planar Ising model, magnetization, discrete fermions, orthogonal polynomials, Hankel determinants, Toeplitz+Hankel determinants.
Mot clés : Modèle d’Ising planaire, fermions discrets, polynômes orthogonaux, déterminants de Hankel, déterminants Toeplitz+Hankel.
@unpublished{AIF_0__0_0_A86_0, author = {Chelkak, Dmitry and Hongler, Cl\'ement and Mahfouf, R\'emy}, title = {Magnetization in the zig-zag layered {Ising} model and orthogonal polynomials}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3605}, language = {en}, note = {Online first}, }
TY - UNPB AU - Chelkak, Dmitry AU - Hongler, Clément AU - Mahfouf, Rémy TI - Magnetization in the zig-zag layered Ising model and orthogonal polynomials JO - Annales de l'Institut Fourier PY - 2024 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3605 LA - en ID - AIF_0__0_0_A86_0 ER -
%0 Unpublished Work %A Chelkak, Dmitry %A Hongler, Clément %A Mahfouf, Rémy %T Magnetization in the zig-zag layered Ising model and orthogonal polynomials %J Annales de l'Institut Fourier %D 2024 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3605 %G en %F AIF_0__0_0_A86_0
Chelkak, Dmitry; Hongler, Clément; Mahfouf, Rémy. Magnetization in the zig-zag layered Ising model and orthogonal polynomials. Annales de l'Institut Fourier, Online first, 56 p.
[1] Criticality in alternating layered Ising models. II. Exact scaling theory, Phys. Rev. E, Volume 88 (2013), 032148 | DOI
[2] Theory of layered Ising models. II. Spin correlation functions parallel to the layering, Phys. Rev. B, Volume 10 (1974), pp. 3885-3905 | DOI
[3] Theory of layered Ising models: Thermodynamics, Phys. Rev. B, Volume 10 (1974), pp. 886-891 | DOI
[4] Critical correlations in a -invariant inhomogeneous Ising model, Physica A, Volume 144 (1987) no. 1, pp. 44-104 | DOI | MR
[5] Asymptotics of determinants of Hankel matrices via non-linear difference equations, J. Approx. Theory, Volume 198 (2015), pp. 63-110 | DOI | MR | Zbl
[6] Exactly solved models in statistical mechanics, Academic Press Inc., 1989, xii+486 pages (reprint of the 1982 original) | MR | Zbl
[7] Onsager and Kaufman’s calculation of the spontaneous magnetization of the Ising model, J. Stat. Phys., Volume 145 (2011) no. 3, pp. 518-548 | DOI | MR | Zbl
[8] Onsager and Kaufman’s calculation of the spontaneous magnetization of the Ising model: II, J. Stat. Phys., Volume 149 (2012) no. 6, pp. 1164-1167 | DOI | MR | Zbl
[9] 399th solution of the Ising model, J. Phys. A. Math. Gen., Volume 11 (1978) no. 12, p. 2463 | DOI
[10] Smirnov’s fermionic observable away from criticality, Ann. Probab., Volume 40 (2012) no. 6, pp. 2667-2689 | DOI | MR | Zbl
[11] The -invariant Ising model via dimers, Probab. Theory Relat. Fields, Volume 174 (2019) no. 1-2, pp. 235-305 | DOI | MR | Zbl
[12] 2D Ising model: correlation functions at criticality via Riemann-type boundary value problems, European Congress of Mathematics, European Mathematical Society, 2018, pp. 235-256 | DOI | MR | Zbl
[13] Planar Ising model at criticality: state-of-the-art and perspectives, Proceedings of the International Congress of Mathematicians 2018 (ICM 2018), Vol. 3, World Scientific, 2019, pp. 2789-2816 | DOI | Zbl
[14] Ising model and s-embeddings of planar graphs (2020) (https://arxiv.org/abs/2006.14559)
[15] Revisiting the combinatorics of the 2D Ising model, Ann. Inst. Henri Poincaré D, Comb. Phys. Interact., Volume 4 (2017) no. 3, pp. 309-385 | DOI | MR | Zbl
[16] Correlations of primary fields in the critical Ising model (2021) (https://arxiv.org/abs/2103.10263)
[17] Universality of spin correlations in the Ising model on isoradial graphs (2021) (https://arxiv.org/abs/2104.12858)
[18] Universality in the 2D Ising model and conformal invariance of fermionic observables, Invent. Math., Volume 189 (2012) no. 3, pp. 515-580 | DOI | MR | Zbl
[19] The critical temperature for the Ising model on planar doubly periodic graphs, Electron. J. Probab., Volume 18 (2013), 44, 18 pages | DOI | MR | Zbl
[20] Continuum limit of random matrix products in statistical mechanics of disordered systems, Commun. Math. Phys., Volume 369 (2019) no. 1, pp. 171-219 | DOI | MR | Zbl
[21] Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher–Hartwig singularities, Ann. Math., Volume 174 (2011) no. 2, pp. 1243-1299 | DOI | MR | Zbl
[22] Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: some history and some recent results, Commun. Pure Appl. Math., Volume 66 (2013) no. 9, pp. 1360-1438 | DOI | MR | Zbl
[23] Critical behaviour of the phase transition in the D Ising model with impurities, Adv. Phys., Volume 32 (1983) no. 2, pp. 129-172 | DOI | MR
[24] Conformal invariance of lattice models, Probability and statistical physics in two and more dimensions (Clay Mathematics Proceedings), Volume 15, American Mathematical Society, 2012, pp. 213-276 | MR | Zbl
[25] Statistical mechanics of lattice systems. A concrete mathematical introduction, Cambridge University Press, 2018, xix+622 pages | DOI | MR | Zbl
[26] Semi-infinite Ising model. II. The wetting and layering transitions, Commun. Math. Phys., Volume 112 (1987) no. 1, pp. 51-74 | DOI | MR | Zbl
[27] Ising model: local spin correlations and conformal invariance, Commun. Math. Phys., Volume 367 (2019) no. 3, pp. 771-833 | DOI | MR | Zbl
[28] Toeplitz forms and their applications, Chelsea Publishing, 1984, x+245 pages | MR | Zbl
[29] Conformal Field Theory at the Lattice Level: Discrete Complex Analysis and Virasoro Structure, Commun. Math. Phys., Volume 395 (2022) no. 1, pp. 1-58 | DOI | MR | Zbl
[30] Discrete holomorphicity and Ising model operator formalism, Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong (Contemporary Mathematics), Volume 644, American Mathematical Society, 2015, pp. 79-115 | DOI | MR | Zbl
[31] Studies on holonomic quantum fields. XVII, Proc. Japan Acad., Ser. A, Volume 56 (1980) no. 9, pp. 405-410 | DOI | MR
[32] Determination of an operator algebra for the two-dimensional Ising model, Phys. Rev. B, Volume 3 (1971), pp. 3918-3939 | DOI | MR
[33] The Laplacian and Dirac operators on critical planar graphs, Invent. Math., Volume 150 (2002) no. 2, pp. 409-439 | DOI | MR | Zbl
[34] Dimers and Circle patterns (2018) (https://arxiv.org/abs/1810.05616)
[35] Conformal invariance in the quantum Ising model (2021) (https://arxiv.org/abs/2112.04811)
[36] Theory of a two-dimensional Ising model with random impurities. III. Boundary effects, Phys. Rev., Volume 188 (1969), pp. 1014-1031 | DOI | MR
[37] Integrable models in statistical mechanics: the hidden field with unsolved problems, Int. J. Mod. Phys. A, Volume 14 (1999) no. 25, pp. 3921-3933 | DOI | MR | Zbl
[38] The Importance of the Ising Model, Prog. Theor. Phys., Volume 127 (2012) no. 5, pp. 791-817 | DOI | Zbl
[39] Ising field theory: quadratic difference equations for the -point Green’s functions on the lattice, Phys. Rev. Lett., Volume 46 (1981) no. 12, pp. 757-760 | DOI | MR
[40] Theory of a two-dimensional Ising model with random impurities. I. Thermodynamics, Phys. Rev., Volume 176 (1968), pp. 631-643 | DOI | MR
[41] Theory of a two-dimensional Ising model with random impurities. II. Spin correlation functions, Phys. Rev., Volume 188 (1969), pp. 982-1013 | DOI | MR
[42] The two-dimensional Ising model, Dover Publications, 2014, xvi+454 pages corrected reprint, with a new preface and a new chapter (Chapter XVII) | MR | Zbl
[43] Discrete Riemann surfaces and the Ising model, Commun. Math. Phys., Volume 218 (2001) no. 1, pp. 177-216 | DOI | MR | Zbl
[44] The surface tension near criticality of the 2d-Ising model (2006) (https://arxiv.org/abs/math/0610636)
[45] History of the Lenz-Ising model 1920–1950: from ferromagnetic to cooperative phenomena, Arch. Hist. Exact Sci., Volume 59 (2005) no. 3, pp. 267-318 | DOI | MR | Zbl
[46] History of the Lenz-Ising model 1920–1950: from ferromagnetic to cooperative phenomena, Arch. Hist. Exact Sci., Volume 59 (2005) no. 3, pp. 267-318 | DOI | MR | Zbl
[47] History of the Lenz-Ising model 1950–1965: from irrelevance to relevance, Arch. Hist. Exact Sci., Volume 63 (2009) no. 3, pp. 243-287 | DOI | MR | Zbl
[48] Planar Ising correlations, Progress in Mathematical Physics, 49, Birkhäuser, 2007, xx+363 pages | MR | Zbl
[49] Boundary critical behaviour of two-dimensional layered Ising models, Int. J. Mod. Phys. B, Volume 11 (1997) no. 11, pp. 1363-1388 | DOI | Zbl
[50] Nonlinear partial difference equations for Ising model n-point Green’s functions, Proc. II International Symposium on Selected Topics in Statistical Mechanics, Dubna, August 25–29, 1981, 1981, pp. 165-180 (https://perk.okstate.edu/papers/older/Dubna1.pdf)
[51] Ising models and soliton equations, III international symposium on selected topics in statistical mechanics, Vol. II (Dubna, 1984) (Ob”ed. Inst. Yadernykh Issled. Dubna, D17-84-850), Ob”ed. Inst. Yadernykh Issled., 1985, pp. 138-151 | MR
[52] New results for the correlation functions of the Ising model and the transverse Ising chain, J. Stat. Phys., Volume 135 (2009), pp. 599-619 | DOI | MR | Zbl
[53] Mathematical theory of the wetting phenomenon in the 2D Ising model. Papers honouring the 60th birthday of Klaus Hepp and of Walter Hunziker, Part I (Zürich, 1995), Helv. Phys. Acta, Volume 69 (1996) no. 5-6, pp. 949-973 | MR | Zbl
[54] Studies on holonomic quantum fields. I-IV, Proc. Japan Acad., Ser. A, Volume 53 (1977) no. 1, p. 6-10, 147-152, 153-158, 183-185 | MR
[55] Two-dimensional Ising model as a soluble problem of many fermions, Rev. Mod. Phys., Volume 36 (1964), pp. 856-871 | DOI | MR
[56] OPUC on one foot, Bull. Am. Math. Soc., Volume 42 (2005) no. 4, pp. 431-460 | DOI | MR | Zbl
[57] Isomonodromic deformation theory and the next-to-diagonal correlations of the anisotropic square lattice Ising model, J. Phys. A. Math. Theor., Volume 40 (2007) no. 24, p. f491-f501 | DOI | MR | Zbl
[58] Spin-spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region, Phys. Rev. B, Volume 13 (1976) no. 1, pp. 316-374 | DOI
Cited by Sources: