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MAGNETIZATION IN THE ZIG-ZAG LAYERED ISING
MODEL AND ORTHOGONAL POLYNOMIALS

by Dmitry CHELKAK,
Clément HONGLER & Rémy MAHFOUF (*)

Abstract. — We discuss the magnetization Mm in the m-th column of the
zig-zag layered 2D Ising model on a half-plane using Kadanoff–Ceva fermions and
orthogonal polynomials techniques. Our main result gives an explicit representation
of Mm via m × m Hankel determinants constructed from the spectral measure of
a certain Jacobi matrix which encodes the interaction parameters between the
columns. We also illustrate our approach by giving short proofs of the classical
Kaufman–Onsager–Yang and McCoy–Wu theorems in the homogeneous setup and
expressing Mm as a Toeplitz+Hankel determinant for the homogeneous sub-critical
model in presence of a boundary magnetic field.

Résumé. — Nous étudions la magnétisation Mm de la m-ième colonne du mo-
dèle d’Ising planaire par couches en zig-zag sur le demi-plan en utilisant les fermions
de Kadanoff–Ceva et les polynômes orthogonaux. Notre résultat principal exprime
Mm comme un déterminant de Hankel m × m construit à partir de la mesure
spectrale d’un certain opérateur de Jacobi encodant les interactions entre colonnes
successives. Nous illustrons aussi notre approche en donnant des preuves courtes
des résultats classiques pour le modèle homogène de Kaufman–Onsager–Yang et
McCoy–Wu, et exprimons Mm comme un déterminant Toeplitz+Hankel dans le
cadre du modèle homogène sous-critique en présence d’un champ magnétique ex-
térieur au bord.

1. Introduction

The planar Ising (or Lenz–Ising) model, introduced by Lenz almost a
century ago, has an extremely rich history which is impossible to overview
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in a short introduction, instead we refer the interested reader to the mono-
graphs [6, 24, 42, 48] as well as the papers [15, 38, 45, 46, 47] and references
therein for more information on various facets of this history. From the
“classical analysis” viewpoint, one of the particularly remarkable aspects is
a fruitful interplay between the explicit computations for the planar Ising
model and the theory of Toeplitz determinants. This interplay originated in
the groundbreaking work of Kaufman and Onsager in late 1940s (see [7, 8])
and, in particular, lead Szegö to the strong form of his famous theorem on
asymptotics of Toeplitz determinants; we refer the interested reader to the
recent survey [22] due to Deift, Its and Krasovsky for more information on
the developments of this link since then.

Besides having representations via (Toeplitz or more complicated) deter-
minants, spin correlations in the planar Ising model are known to satisfy
quadratic identities [39, 50] arising when one changes the position of a
spin variable by one lattice step. Though a direct asymptotic analysis of
these determinants can be easily performed only for “diagonal” or “hori-
zontal” correlations (e.g., see [42, Chapters VIII and XII]), one can then
use the aforementioned quadratic identities to analyze asymptotics near
these special directions; e.g., see a discussion in [52, Section 2]. In their
turn, the quadratic identities for spin correlations are deeply related to the
theory of (discrete) isomonodromic deformations and τ -functions obtained
thereof [54]. This also leads to the famous appearance of discrete Painlevé
equations in the planar Ising model [31] and in its massive scaling limit [58].
We refer the interested reader to the monograph [48] for an account of these
developments and only mention that this deep interplay of several topics
still remains an active research subject in analysis; e.g., see [5, 57] and
references therein.

It is nevertheless worth noting that the research direction outlined above
mostly originated in questions related to the homogeneous model in the
infinite-volume limit – a well-understood case from the statistical physics
perspective. At the same time, it seems that the much richer setup of
the layered model – first considered by McCoy–Wu and Au-Yang–McCoy
in [2, 3, 36, 40, 41], see also [37, Sections 3.1, 3.2] and [49] for historical com-
ments – did not attract much attention of mathematicians. Unfortunately,
tour de force computations summarized in the monograph [42], are nowa-
days often considered (at least, in several mathematical sub-communities
interested in 2D statistical physics) as being too technically involved to de-
velop their analysis further. Certainly, this is an abnormal situation and by
writing this paper we hope to bring the attention to this “layered” setup,
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targeting not only probabilists but also the spectral theory/orthogonal
polynomials community. In the mathematical physics literature, the in-
terest to the layered Ising model also reappeared recently; e.g. see [1], [20]
and references therein.

Our paper should not be considered as a “39999th solution of the Ising
model”. On the contrary, the methods we use can be viewed as a simpli-
fication of the classical ones in presence of the translation and reflection
symmetry in the direction orthogonal to the line connecting spins under
consideration. Comparing to [42], this simplification (which was first pre-
sented in [12, Section 3] based upon an early version of this paper) comes
from the fact that we use the Kadanoff–Ceva lattice instead of the On-
sager (or Fisher) one and, more importantly, work directly with orthogonal
polynomials instead of Toeplitz determinants. Though such details are not
vital in the homogeneous case, this allows us to perform computations for
a general “zig-zag layered” model in a transparent way (see Theorem 1.1);
in the latter case, the polynomials are orthogonal with respect to a cer-
tain measure on the segment [0, 1] constructed out of a given sequence of
interaction constants.

It is worth mentioning that the simplification discussed above manifests
itself even in the homogeneous setup since we always deal with real weights,
the simplest possible framework of the OPUC/OPRL theory. From the per-
spective of the “free fermion algebra” solution [55] of the planar Ising model,
our derivations can be viewed as its translation to the language of discrete
fermionic observables, see [30] for a discussion of such a correspondence.
The latter viewpoint was advertised by Smirnov in his celebrated work on
the critical Ising model (e.g., see [24] and references therein). We refer the
interested reader to [15, Section 3] for a discussion of equivalences between
various combinatorial formalisms used to study the planar Ising model, see
also [43] and [18, Section 3.2]. In this paper we also want to make a link be-
tween discrete complex analysis techniques and classical computations more
transparent; similar ideas are applied to the quantum 1d Ising model in [35].

Before formulating our main result – Theorem 1.1 – for the layered Ising
model, let us briefly mention the list of questions that we discuss along the
way in the homogeneous setup:

• Kaufman–Onsager–Yang theorem on the spontaneous magnetiza-
tion below criticality: Theorem 3.6, cf. [42, Section X.4];

• McCoy–Wu theorem on the asymptotic behavior of the horizon-
tal spin-spin correlations at criticality: Theorem 3.9, cf. [42, Sec-
tion XI.5];
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• the wetting phase transition in the subcritical model caused by a
boundary magnetic field [26, 53] (which was interpreted as a hys-
teresis effect in the earlier work [42]): we discuss a setup similar
to [42, Section XIII] in Section 4.3 and reduce the problem to the
analysis of explicit Toeplitz+Hankel determinants, see Theorem 4.4;

• Wu’s explicit formula for diagonal spin-spin correlations in the fully
homogeneous critical Ising model (see [42, Section XI.4]). This very
short computation via Legendre polynomials already appeared in
[12, Section 3], we repeat it here to emphasize a direct link with
similar formulas for the magnetization in the zig-zag half-plane.
Note that we were unable to find neither Theorem A.4 nor the
identity (A.7) in the literature.

We now move on to the layered Ising model in a half-plane. Instead
of working in the original framework of Au-Yang, McCoy and Wu who
considered the layered Ising model in a discrete half-plane with straight
boundary and translation invariant interaction constants, we slightly sim-
plify the setup by working in the left half-plane of the π

4 -rotated square
grid, which we call the zig-zag half-plane H⋄, and require that the inter-
action constants assigned to all edges separating each pair of neighbor-
ing columns are the same; see Figure 4.1. We believe that such a sim-
plification does not change key features of the problem, at the same it
allows us to obtain more transparent results in full generality. We are
mostly interested in making our main result – Theorem 1.1 – easily ac-
cessible to the mathematical community interested in orthogonal poly-
nomials rather than in discussing the physics behind the problem. It is
worth emphasizing that Theorem 1.1 does not express Mm as a Toeplitz
determinant. Nevertheless, we believe that the formula (1.5) is amenable
for the asymptotic analysis and is of interest from the mathematical per-
spective.

The (half-)infinite volume limit of the Ising model on H⋄ is defined as a
limit of probability measures on an increasing sequence of finite domains
exhausting H⋄, with “+” boundary conditions at the right-most column C0
and at infinity. All interaction parameters between the columns Cp−1 and
Cp are assumed to be the same and equal to xp = exp[−2βJp] = tan 1

2θp,
where θp ∈ (0, 1

2π) can be viewed as a convenient parametrization of βJp,
see Section 2.1 for more details. Let

(1.1) Mm = Mm(θ1, θ2, . . . ) := E+
H⋄ [ σ(−2m− 1

2 ,0) ]
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be the magnetization in the (2m)-th column (the analysis for odd columns
can be done similarly). Denote

(1.2) Deven := i


cos θ1 cos θ2 0 0 . . .

− sin θ2 sin θ3 cos θ3 cos θ4 0 . . .

0 − sin θ4 sin θ5 cos θ5 cos θ6 . . .

. . . . . . . . . . . .


and let

(1.3) D∗
even = UevenSeven, Seven =(DevenD

∗
even)1/2

be the polar decomposition of the operator D∗
even, see also Remark 4.3

for another interpretation of the (partial) isometry Ueven . Further, denote
J := DevenD

∗
even. A straightforward computation shows that

(1.4) J =


b1 −a1 0 . . .

−a1 b2 −a2 . . .

0 −a2 b3 . . .

. . . . . . . . . . . .

 ,
where

ak = cos θ2k−1 cos θ2k sin θ2k sin θ2k+1 ,

bk = cos2 θ2k−1 cos2 θ2k + sin2 θ2k−2 sin2 θ2k−1 ,

θ0 := 0 and b1 = cos2 θ1 cos2 θ2.
Let νJ be the spectral measure of J associated with the first basis vector.

It is easy to see that 0 ⩽ J ⩽ 1 and thus supp νJ ∈ [0, 1]. Given a mea-
sure µ on [0, 1], let Hm[µ ] := det[

∫ 1
0 λ

p+qµ(dλ) ]m−1
p,q=0 be the m-th Hankel

determinant composed from the moments of this measure. Denote by Pm

the orthogonal projector on the space of first m coordinates of ℓ2.

Theorem 1.1. — For all θ1, θ2, . . . ∈ (0, π
2 ) and m ⩾ 1, we have

Mm = |detPmUevenPm|(1.5)

= detPmJ
1/2Pm∏2m

k=1 cos θk

= Hm[λ1/2νJ ]
(Hm[νJ ] · Hm[λνJ ])1/2 ,

where Ueven is the (partial) isometry factor in the polar decomposition (1.3),
the Jacobi matrix J=DevenD

∗
even is given by (1.4), and νJ is the spectral

measure of J .
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Remark 1.2. — Assume that θk = θ for all k ⩾ 1, i.e., that we work with
the fully homogeneous model. One can easily see that

supp νJ = [cos2(2θ) , 1] if θ ⩽
π

4 , while

supp νJ = {0} ∪ [cos2(2θ) , 1] if θ >
π

4 .

In particular, this clearly marks the critical value θcrit = π
4 of the in-

teraction parameter. Moreover, in the supercritical regime θ > θcrit, the
existence of an exponentially decaying eigenfunction ψ◦

k = (cot θ)2k, ψ◦ ∈
KerD∗

even, directly leads to the exponential decay of the truncated deter-
minants |detPmUevenPm|.

Remark 1.3. — Assume now that θk+2n = θk for all k ⩾ 1 and some
n ⩾ 1. In this case, the criticality condition reads as

∏2n
k=1 tan θk = 1, see

Lemma 5.2 below. This condition is equivalent to the fact that the contin-
uous spectrum of J begins at 0. Moreover (see Section 5.3), in this setup
the integrated density of states of the periodic Jacobi matrix J behaves
like CJ · π−1

√
λ as λ → 0, where

(1.6) CJ =
[
n−2

n∑
k=1

(ψ◦
k)2 ·

n∑
k=1

(akψ
◦
kψ

◦
k+1)−1

]1/2

and ψ◦
k denotes the periodic vector solving the equation Jψ◦ = 0. In Sec-

tion 5.2 we show that the quantity (1.6) also admits a clear geometric
interpretation in the context of the so-called s-embeddings of planar Ising
models, see (5.8) and a discussion following that identity.

It is clear that the spectral properties of the matrix J (which can be
viewed as an effective propagator in the direction orthogonal to the bound-
ary of H⋄) are directly related to the behavior of the magnetization Mm

as m → ∞. Nevertheless, we are not aware of asymptotical results for (1.5)
in the general case, especially when J has a singular continuous spectrum.
This leads to the following question:

• to find necessary and sufficient conditions on the measure νJ that
imply (a) the asymptotics lim infm→∞ Mm = 0 (b) the asymptotics
lim supm→∞ Mm = 0 in (1.5).

We believe that an answer to this question should shed more light, in
particular, on the random layered 2D Ising model. Moreover, it would be
very interesting

• to understand the dynamics of the measure νJ when the inverse
temperature β varies from ∞ to 0 and hence all parameters θp =
2 arctan exp[−2βJp] increase from 0 to 1 in a coherent way.

ANNALES DE L’INSTITUT FOURIER



ZIG-ZAG LAYERED ISING MODEL AND ORTHOGONAL POLYNOMIALS 2281

Classically, this dynamics should lead to the Griffiths–McCoy phase tran-
sition for i.i.d. interaction parameters between the columns and also could
give rise to less known effects in the dependent case. As already mentioned
above, one of the goals of this paper is to bring the attention of the prob-
ability and orthogonal polynomials communities to these questions.

The rest of the paper is organized as follows. In Section 2 we review
the Kadanoff–Ceva formalism of spin-disorder operators in the planar Ising
model. In Section 3 we illustrate our approach by giving streamlined proofs
of two classical results due to Kaufman–Onsager–Yang and McCoy–Wu,
respectively: Theorem 3.6 and Theorem 3.9; we believe that this mate-
rial should help the reader to position this proof into the classical Ising
model landscape. We prove our main result – Theorem 1.1 – in Section 4.
In Section 5 we briefly discuss the geometric interpretation of our results
via s-embeddings of planar Ising models, a generalization of isoradial em-
beddings of the critical Baxter’s Z-invariant model introduced in [13, 14].
The appendix is devoted to the explicit analysis of diagonal correlations
(Wu’s formula) and of the zig-zag half-plane magnetization at criticality
via Legendre polynomials.

Acknowledgements
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2. Combinatorics of the planar Ising model

In order to keep the presentation self-contained, in this section we col-
lect basic definitions and properties of the planar Ising model observables.
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Below we adopt the notation from [13, 14, 16], the interested reader is also
referred to [15] or [29] for more details (note however that these papers
use slightly different definitions). Even though we discuss the spin-disorder
observables in the full generality (m spins and n disorders), below we are in-
terested in the situations m = n = 2 (Section 3 and Appendix) and m = 1,
n = 2 (Section 4 and Appendix) only.

2.1. Definition and domain wall representation

Let G be a finite connected planar graph embedded into the plane such
that all its edges are straight segments. We denote by G• the set of its
vertices and by G◦ the set of its faces (identified with their centers). The
(ferromagnetic) nearest-neighbor Lenz–Ising model on the graph dual to G
is a random assignment of spins σu ∈ {±1} to the faces u ∈ G◦ such that
the probability of a spin configuration σ=(σu) is proportional to

PG[σ] ∝ exp
[
β

∑
u∼w

Jeσuσw

]
, e = (uw)∗,

where a positive parameter β = 1/kT is called the inverse temperature,
the sum is taken over all pairs of adjacent faces u,w (equivalently, edges e)
of G, and J = (Je) is a collection of positive interaction constants, indexed
by the edges of G. Below we use the following parametrization of Je:

(2.1) xe = tan 1
2θe := exp[−2βJe].

Note that the quantities xe ∈ (0, 1) and θe := 2 arctan xe ∈ (0, 1
2π) have

the same monotonicity as the temperature β−1.
We let the spin σout of the outermost face of G be fixed to +1, in other

words we impose “+” boundary conditions. In this case, the domain wall
representation (also known as the low-temperature expansion) of the Ising
model is a 1-to-1 correspondence between spin configurations and even
subgraphs P of G: given a spin configuration, P consists of all edges that
separate pairs of disaligned spins. One can consider a decomposition (not
unique in general) of P into a collection of non-intersecting and non-self-
intersecting loops. The above correspondence implies that

EG[σu1 . . . σum
] = Z−1

G

∑
P ∈EG

x(P )(−1)loops[u1,...,um](P )

for u1, . . . , um ∈ G◦, where EG denotes the set of all even subgraphs of G,

ZG :=
∑

P ∈EG

x(P ), x(P ) :=
∏
e∈P

xe,

ANNALES DE L’INSTITUT FOURIER
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and loops[u1,...,um](P ) is the number (always well defined modulo 2) of
loops in P surrounding an odd number of faces u1, ..., um. Up to a fac-
tor exp[β

∑
e∈EG

Je], the quantity ZG is the partition function of the Ising
model on G◦.

2.2. Disorder insertions

Following Kadanoff and Ceva [32], given an even number of vertices
v1, . . . , vn ∈ G• we define the correlation of disorders µv1 , . . . , µvn

⟨µv1 . . . µvn
⟩G := Z−1

G · Z [v1,...,vn]
G , where(2.2)

Z [v1,...,vn]
G :=

∑
P ∈EG(v1,...,vn)

x(P )

and EG(v1, ..., vn) denotes the set of subgraphs P of G such that each of
the vertices v1, . . . , vn has an odd degree in P while all other vertices have
an even degree. Probabilistically, one can easily see that

(2.3) ⟨µv1 . . . µvn⟩G = EG

exp

−2β
∑

(uw)∗∈P0(v1,...,vn)

Jeσuσw

 ,
where P0(v1, . . . , vn) is a fixed collection of edge-disjoint paths matching in
pairs the vertices v1, . . . , vn; note that the right-and side does not depend
on the choice of these paths. The Kramers–Wannier duality implies (e.g.,
see [32]) that

(2.4) ⟨µv1 . . . µvn⟩G = E⋆
G•

[
σ•

v1
. . . σ•

vn

]
,

where the expectation in the right-hand side is taken with respect to the
Ising model on vertices of G, with dual weights xe∗ := tan 1

2 ( π
2 − θe) and

free boundary conditions. Indeed, (2.2) is nothing but the high-temperature
expansion of (2.4).

Similarly to ZG, one can interpret Z [v1,...,vn]
G as the low-temperature (do-

main walls) expansion of the partition function of the Ising model defined
on the faces of a double cover G[v1,...,vn] of the graph G that branches
over v1, . . . , vn, with the following spin-flip symmetry constraint: we re-
quire σuσu⋆ = −1 for any pair of faces of the double cover such that u
and u⋆ lie over the same face in G. Using this interpretation, we introduce
mixed correlations

(2.5) ⟨µv1 . . . µvnσu1 . . . σum⟩G := ⟨µv1 . . . µvn⟩G · EG[v1,...,vn] [σu1 . . . σum ] ,

TOME 74 (2024), FASCICULE 6
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where u1, . . . , um should be viewed as faces of the double cover G[v1,...,vn].
Similarly to (2.3) one can easily give a probabilistic interpretation of these
quantities in terms of the original Ising model on G. Nevertheless, we prefer
to speak about the Ising model on G[v1,...,vn] as this approach is more
invariant and does not require to fix an arbitrary choice of the disorder
lines P0(v1, . . . , vn).

By definition of the Ising model on G[v1,...,vn], the correlation (2.5) fulfills
the sign-flip symmetry constraint between the sheets of the double cover.
When considered as a function of both vertices vp and faces uq, this corre-
lation is defined on a double cover of (G•)n × (G◦)m and changes sign each
time one of the vertices vp ∈ G• turns around one of the vertices uq ∈ G◦

(or vice versa). We call spinors functions defined on double covers that
obey such a sign-flip property.

2.3. Fermions and the propagation equation

We need an additional notation. Let Λ(G) be a planar bipartite graph
(the so-called quad-graph) whose vertices are G• ∪ G◦ and the set of (de-
gree four) faces ♢(G) is in a 1-to-1 correspondence with the set of edges
of G; in other words, the edges of Λ(G) connect a vertex v ∈ G• with
all adjacent vertices u ∈ G◦ of the dual graph and vice versa. Let Υ(G)
denote the medial graph of Λ(G), whose vertices are in a 1-to-1 correspon-
dence with edges (vu) of Λ(G) and are also called corners of G, while the
faces of Υ(G) correspond either to vertices of G• or to vertices of G◦ or to
quads from ♢(G). We denote by Υ×(G) a double cover of the graph Υ(G)
that branches around each of its faces (e.g., see [14, Figure 3A] or [43,
Figure 27], [18, Figure 6]). For a corner c = (v(c)u(c)) ∈ Υ×(G) (with
u(c) ∈ G◦ and v(c) ∈ G•), let

(2.6) ηc := i · exp
[
− i

2 arg(v(c) − u(c))
]
,

where the global prefactor i is chosen for later convenience. Though a priori
the sign in the expression (2.6) is ambiguous, it can be fixed so that ηc is a
spinor on Υ×(G), called the Dirac spinor, by requiring that the values of ηc

at corners c surrounding each face of Υ(G) are defined in a “continuous”
way. (In particular, this local definition implies the spinor property of ηc

on Υ×(G).)
Given c ∈ Υ×(G), one defines the Kadanoff–Ceva fermion as χc :=

µv(c)σu(c). More accurately, we set

(2.7) Xϖ(c) := ⟨µv(c)µv1 . . . µvn−1σu(c)σu1 . . . σum−1⟩G,
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for ϖ := (v1, . . . , vn−1, u1, . . . , um−1) ∈ (G•)n−1 × (G◦)m−1. Let Υ×
ϖ(G)

denote a double cover of Υ(G) that branches over each of the faces of Υ(G)
except those corresponding to the points from ϖ. The preceding discussion
of mixed spin-disorder correlations ensures that Xϖ is a spinor on Υ×

ϖ(G).
Finally, let

(2.8) Ψϖ(c) := ηcXϖ(c)

where ηc is defined by (2.6). The function Ψϖ locally does not branch (the
signs changes of χc and ηc cancel each other). More precisely, Ψϖ is a
spinor on the double cover Υϖ(G) of Υ(G) that branches only over points
from ϖ: it changes the sign only when c turns around one of the vertices
vp or the faces uq.

We now move on to the crucial three-term equation for the correla-
tions (2.7), called the propagation equation for Kadanoff–Ceva fermions
on Υ×(G), see [23, 43, 50] or [15, Section 3.5] for more details. For a
quad ze ∈ ♢(G) corresponding to an edge e of G, we denote its vertices
by v0(ze) ∈ G•, u0(ze) ∈ G◦, v1(ze) ∈ G•, and u1(ze) ∈ G◦, listed in the
counterclockwise order. Further, for p, q ∈ {0, 1}, let

cp,q(ze) := (vp(ze)uq(ze)).

The following identity holds for all triples of consecutive (on Υ×
ϖ(G)) cor-

ners cp,1−q(ze), cp,q(ze) and c1−p,q(ze) surrounding the edge e:

(2.9) Xϖ(cp,q) = Xϖ(cp,1−q) cos θe +Xϖ(c1−p,q) sin θe ,

where θe stands for the parametrization (2.1) of the Ising model weight xe

of e. In recent papers, the equation (2.9) is often used in the context of
rhombic lattices, in which case the parameter θe admits a geometric inter-
pretation (see Section 5.1), but in fact it does not rely upon a particular
choice of an embedding (up to a homotopy) of ♢(G) into C provided that θe

is defined by (2.1).

2.4. Cauchy–Riemann and Laplacian-type identities on the
square grid

From now on we assume that G is a subgraph of the regular square
grid Z2 ⊂ C. In this situation one can use (2.9) to derive a version of
discrete Cauchy–Riemann equations for the complex-valued observable Ψϖ

defined by (2.8).
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Proposition 2.1. — Let c1, d1, c2, d2 be corners of G located as in Fig-
ure 2.1A (and lying on the same sheet of the double cover Υϖ(G)). Let
θ1, θ2 be the interaction parameters assigned via (2.1) to the edges e1, e2.
Then, the following identity holds:

(2.10) [Ψϖ(c2) cos θ2−Ψϖ(c1) sin θ1] = ±i·[Ψϖ(d2) sin θ2−Ψϖ(d1) cos θ1],

where the “±” sign is “+” if the square (c1d2c2d1) is oriented counterclock-
wise (top picture in Figure 2.1A) and “−” otherwise (bottom picture in
Figure 2.1A).

Proof. — Let a ∈ Υ×
ϖ(G) be the center of the square (c1d2c2d2) and

let c1, d2, c2, d1 be the neighbors of a on Υ×
ϖ(G). Writing two propagation

equations (2.9) at a one gets the identity

Xϖ(c2) cos θ2 +Xϖ(d2) sin θ2 = Xϖ(a) = Xϖ(c1) sin θ1 +Xϖ(d1) cos θ1.

Since ηd1 = ηd2 = e±i π
4 ηa (with the same choice of the sign: “+” for the

left picture, “−” for the right one) and ηc1 = ηc2 = e∓i π
4 ηa, the result

immediately follows. □

Below we often focus on the values of observables Ψϖ or Xϖ at corners
c ∈ Υ(G) of one of four “types”; by a type of c we mean its geometric
position inside the face of G ⊂ Z2 to which c belongs, see Figure 2.1. For
each type of corners, the values ηc are all the same and, moreover, the
branching structure of Υ×

ϖ(G) restricted to this type of corners coincides
with the one of Υϖ(G). In other words, Ψϖ and Xϖ differ only by a global
multiplicative constant on each of the four types of corners.

In this paper, we are interested in the following two setups:
• homogeneous model, in which all the parameters θe corresponding

to horizontal edges of Z2 have the common value θh (resp., θv for
vertical edges);

• zig-zag layered model on the π
4 -rotated grid, in which all interaction

constants between each pair of adjacent columns have the same
value (see Figure 4.1).

In both situations, one can use (2.10) to derive a harmonicity-type iden-
tity for the values of Xϖ (note however that this is not possible in the
general case).

Proposition 2.2. — In the homogeneous setup, assume that a cor-
ner c ∈ Υϖ(G) is not located near the branching, i.e., that neither v(c)
nor u(c) are in ϖ. Then, the observable Xϖ satisfies the following equation
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c1

d2

c2

d1

a

θ2

θ1

c1

d2

c2

d1

a

θ2

θ1

1

(A) The notation used
in Proposition 2.1
(Cauchy–Riemann
equations (2.10)).

cc− c+

c[

c]

θh θh

θh

θv

θv

θv

sin θh

cos θh

cos θv

sin θv

1

(B) The notation used in Proposition 2.2 (mas-
sive harmonicity of fermionic observables in the
homogeneous model away from the branchings).

v

c]−(v) c]+(v)

c[−(v) c◦=c[+(v)

c−◦ c+◦

c[◦

c]◦

1

(C) The notation used in the
proof of Lemma 3.2 (the value
[∆(m)Xsym

[v,u]] near the branching
point v = (0, 1

4 )).

c

c[−

c]−

c[+

c]+

θ−

θ−

θ◦

θ◦

θ+

θ+sin θ◦

sin θ◦

cos θ◦

cos θ◦

1

(D) The notation used in Propo-
sition 2.4 (harmonicity-type identi-
ties in the zig-zag layered model).

Figure 2.1. Local relations for Kadanoff–Ceva fermionic observables.
We indicate the four “types” of corners of (subgraphs of) the square
grid by orienting and coloring the triangles depicting them.
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at c:

Xϖ(c) = 1
2sin θh cos θv · [Xϖ(c+) +Xϖ(c−)]

+ 1
2cos θh sin θv · [Xϖ(c♯) +Xϖ(c♭)] ,

where c+, c♯, c−, c♭ are the four nearby corners having the same type as c,
located at the east, north, west and south direction from c, respectively
(see Figure 2.1B).

Proof. — Recall that, at corners of a given type, the values Xϖ and Ψϖ

differ only by a multiplicative constant. Due to the symmetry of the ho-
mogeneous model, we can assume that c, c+, c♯, c−, c♭ are located as in Fig-
ure 2.1B. Let us write four Cauchy–Riemann equations (2.10) between c

and c+, c and c♯, c and c−, c and c♭. Multiplying the first equation by sin θh,
the second by cos θh, the third by cos θv, the fourth by sin θv, and taking
the sum with appropriate signs we get the result. □

Remarks 2.3.

(i) Proposition 2.2 can be reformulated as the massive harmonicity
condition [∆(m)Xϖ](c) = 0, where the massive Laplacian ∆(m) is
defined as

[∆(m)F ](c) := −F (c) + 1
2sin θh cos θv · [F (c+) + F (c−)]

+ 1
2cos θh sin θv · [F (c♯) + F (c♭)].

It is worth noting that ∆(m) is a generator of a (continuous time)
random walk on Z2 with killing rate 1 − sin(θh + θv); in particular,
one can easily guess from Proposition 2.2 the classical criticality
condition

θh + θv = π

2 ⇐⇒ sinh[2βJh] · sinh[2βJv] = 1.

(ii) The fact that the near-critical homogeneous Ising model on Z2 ad-
mits a description via massive holomorphic fermions is a common-
place in the theoretical physics literature. In the probabilistic com-
munity, an explicit link between formulas for spin-spin correlations
derived in [42] and the partition functions of killed random walks
was pointed out in [44]. We refer the interested reader to the pa-
per [10], in which the massive holomorphicity property of fermionic
observables was used for the analysis of the exponential decay rate
of spin-spin correlations E[σ0σnα], n → ∞, and of its dependence
on the direction α in the super-critical model on Z2.
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A similar identity holds in the layered setup (see Figure 2.1D for the
notation). Assume that c is a west corner of a face on the π

4 -rotated square
grid. Denote by c♯

±, c♭
± the four nearby corners of the same type as c and

let θ−, θ◦ and θ+ be the parameters assigned via (2.1) to the edges to the
left of c♯,♭

− , to the left of c, and to the left of c♯,♭
+ , respectively.

Proposition 2.4. — In the setup described above (see also Figure 2.1D),
assume that neither v(c) nor u(c) are in ϖ. Then, the following identity
holds:

Xϖ(c) = 1
2 sin θ− cos θ◦ · [Xϖ(c♯

−) +Xϖ(c♭
−)]

+ 1
2 sin θ◦ cos θ+ · [Xϖ(c♯

+) +Xϖ(c♭
+)] .

Proof. — The result follows by summing four Cauchy–Riemann equa-
tions (2.10) with coefficients ± cos θ◦, ± sin θ◦ similarly to the proof of
Proposition 2.2. □

Remark 2.5. — It is worth emphasizing that the harmonicity-type iden-
tities discussed in Propositions 2.2 and 2.4 fail when c is located near the
branching. The reason is that applying (2.10) four times and summing the
results as in the proofs of Proposition 2.2 and Proposition 2.4 one gets the
difference Xϖ(d∗) − Xϖ(d) with d∗, d located over the same point on the
different sheets of the double cover Υϖ(G).

3. Homogeneous model

In this section we discuss classical results on the horizontal spin-spin
correlations in the infinite volume for the homogeneous model. Namely, we
assume that all horizontal edges have a weight exp[−2βJh] = tan 1

2θ
h while

all vertical edges have a weight exp[−2βJv] = tan 1
2θ

v, see also Appendix in
which the diagonal spin-spin correlations are treated in the fully homoge-
neous critical case θh = θv = π

4 . Though these results and even a roadmap
of the proofs are well-known (e.g., see the classical treatment by McCoy
and Wu [42]), we use this setup to illustrate a simplification that comes
from working directly with real-valued orthogonal polynomials instead of
Toeplitz determinants, an approach that we apply to the layered model.

3.1. Full-plane observable with two branchings

Assume that the square grid on which the Ising model lives is shifted
so that its vertices coincide with Z × (Z + 1

4 ) and the centers of faces
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are (Z + 1
2 ) × (Z − 1

4 ), see Figure 3.1A. It is well known (e.g., see [25]) that
there are no more than two extremal Gibbs measures (coming from “+”
and “−” boundary conditions at infinity) and that the spin correlations
in the infinite volume limit are translationally invariant. Given n ⩾ 0, we
define the horizontal and next-to-horizontal correlations

(3.1)

Dn :=EZ2
[
σ( 1

2 ,− 1
4 )σ(n+ 1

2 ,− 1
4 )], D⋆

n :=E⋆
(Z2)• [σ•

(0, 1
4 )σ

•
(n, 1

4 )],

Dn+1 :=EZ2
[
σ(− 1

2 ,− 1
4 )σ(n+ 1

2 ,− 1
4 )], D⋆

n+1 :=E⋆
(Z2)• [σ•

(0, 1
4 )σ

•
(n+1, 1

4 )],

D̃n+1 :=EZ2 [σ(− 1
2 , 3

4 )σ(n+ 1
2 ,− 1

4 )], D̃⋆
n+1 :=E⋆

(Z2)• [σ•
(0, 1

4 )σ
•
(n+1,− 3

4 )],

where the expectations in the second column are taken for the dual Ising
model with interaction parameters tan 1

2 ( π
2 −θv) and tan 1

2 ( π
2 −θh) assigned

to horizontal and vertical edges of the dual square grid (Z2)•, respectively.
Due to (2.4) one can view these quantities as disorder-disorder correlations
in the original model.

Let v = (0, 1
4 ) and u = (n + 1

2 ,−
1
4 ). Below we rely upon the full-plane

observable X[v,u] which can be thought of as a (subsequential) limit of the
similar observables defined on finite graphs G exhausting the square grid.
Indeed, since

(3.2)
∣∣⟨µv(c)µvσu(c)σu⟩G

∣∣ ⩽ ⟨µv(c)µv⟩G = E⋆
G• [σ•

v(c)σ
•
v] ⩽ 1,

a point-wise subsequential limit exists; its uniqueness (and hence the ex-
istence of the true limit) follows from Lemma 3.1 given below. Moreover,
in Section 3.2, we provide an explicit construction of functions satisfying
the conditions listed in Lemma 3.1, which allows us to identify X[v,u] with
these explicit functions.

Let [(Z± 1
4 ) ×Z; v,u] denote the double cover of the lattice (Z± 1

4 ) ×Z
branching over v and u. We now introduce the following symmetrized and
anti-symmetrized versions of the observable X[v,u](·) on north-west and
north-east corners, respectively (see Figure 3.1):

Xsym
[v,u](c) := 1

2 [X[v,u](c) +X[v,u](c)], c ∈
[(

Z + 1
4

)
× Z; v,u

]
,(3.3)

Xanti
[v,u](c) := 1

2 [X[v,u](c) −X[v,u](c)], c ∈
[(

Z − 1
4

)
× Z; v,u

]
,(3.4)

where the continuous conjugation z 7→ z on [(Z± 1
4 ) ×Z; v,u] is defined so

that it maps the segment [ 1
4 , n+ 1

4 ]×{0} to itself (i.e., the conjugate of each
point located over this segment is chosen to be on the same sheet of the dou-
ble cover). Once z 7→ z is specified in between the branching points, it can
be “continuously” extended to the entire double cover [(Z ± 1

4 ) × Z; v,u].
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v=(0, 1
4 ) (n, 1

4 ) (n+1, 1
4 )

(n+1,− 3
4 )

u=(n+ 1
2 ,− 1

4 )(− 1
2 ,− 1

4 ) ( 12 ,− 1
4 )

(− 1
2 ,

3
4 )

DnDn+1

D̃n+1

D?
n D?

n+1

D̃?
n+1

1

(A) Particular values, considered up to the sign, of the Kadanoff–Ceva
fermionic observable X[v,u] near its branching points v,u; see (3.1).

0 Dn N N D?
n 0· · · · · ·

n

1

(B) Boundary value problem [Psym
n ] for the observable Xsym

[v,u].

N −Dn+1 0 0 0 D?
n+1 N· · · · · ·

n+ 1

1

(C) Boundary value problem [Panti
n+1] for the observable Xanti

[v,u].

Figure 3.1. To derive recurrence relations on horizontal spin-spin cor-
relations, we consider the Kadanoff–Ceva fermionic observable X[v,u]
with two branchings at v = (0, 1

4 ) and u = (n + 1
2 ,−

1
4 ). The sym-

metrized observable Xsym
[v,u] is defined on north-west corners (marked

as ▷ in the figure) and the anti-symmetrized observable Xanti
[v,u] is de-

fined on north-east corners (marked as △). Both Xsym
[v,u] and Xanti

[v,u] are
massive harmonic in the upper half-plane Z × N0 and solve boundary
value problems [Psym

n ], [Panti
n+1], respectively; the sign N denotes Neu-

mann boudary conditions.
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In particular, the points c located over the real line outside of the seg-
ment [ 1

4 , n+ 1
4 ] are mapped by z 7→ z to their counterparts c∗ on the other

sheet of the double cover.
Let us list basic properties of the observables Xsym

[v,u] and Xanti
[v,u] and show

that they characterize these observables uniquely. Due to (3.2) we have∣∣∣∣Xsym
[v,u]

(
k + 1

4 , s
)∣∣∣∣ ⩽ 1 and

∣∣∣∣Xanti
[v,u]

(
k − 1

4 , s
)∣∣∣∣ ⩽ 1 for all k, s ∈ Z.

Proposition 2.2 (see also Remark 2.3) ensures that the observables Xsym
[v,u]

and Xanti
[v,u] are massive harmonic away from the branching points v,u. In

particular, one has

[∆(m)Xsym
[v,u]]

((
k+ 1

4 , s
))

= 0 , [∆(m)Xanti
[v,u]]

((
k− 1

4 , s
))

= 0 if s ̸= 0.(3.5)

Further, the spinor property of the observable X[v,u] together with the
choice of the conjugation described above gives

(3.6)
Xsym

[v,u]

((
k + 1

4 , 0
))

= 0, if k ̸∈ [0, n],

[∆(m)Xsym
[v,u]]

((
k + 1

4 , 0
))

= 0, if k ∈ [1, n− 1];

and

(3.7)
Xanti

[v,u]

((
k − 1

4 , 0
))

= 0,if k ∈ [1, n],

[∆(m)Xanti
[v,u]]

((
k − 1

4 , 0
))

= 0,if k ̸∈ [0, n+ 1].

Finally, the definition of X[v,u] implies

Xsym
[v,u]

((
1
4 , 0

))
= Dn, Xsym

[v,u]

((
n+ 1

4 , 0
))

= D⋆
n;(3.8)

Xanti
[v,u]

((
−1

4 , 0
))

= −Dn+1, Xanti
[v,u]

((
n+ 3

4 , 0
))

= D⋆
n+1,(3.9)

where we assume that these pairs of corners are located on the same sheet
of the double cover [(Z± 1

4 ) ×Z; v,u] as viewed from the upper half-plane;
this is why the value Dn+1 at (− 1

4 , 0) appears with the different sign.

Lemma 3.1.
(i) The uniformly bounded observable Xsym

[v,u] given by (3.3) is uniquely
characterized by the properties (3.5), (3.6) and its values (3.8)
near v and u.
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(ii) Similarly, the uniformly bounded observable Xanti
[v,u] given by (3.4)

is uniquely characterized by the properties (3.5), (3.7) and its val-
ues (3.9) near v and u.

Proof.
(i). — Let X1 and X2 be two bounded spinors satisfying (3.5), (3.6)

and (3.8). Denote X0 := X1 − X2. It follows from (3.5) and (3.6) that
[∆(m)X0](k + 1

4 , s) = 0 if s ̸= 0 or if s = 0 and k ∈ [1, n − 1]. Moreover,
X0(k + 1

4 , 0) = 0 if k ̸∈ [1, n − 1] due to (3.6) and (3.8). We need to show
that these conditions, together with the uniform boundedness, imply that
X0 vanishes everywhere on [(Z + 1

4 ) × Z; u,v].
Let (Zj)j⩾0 be a nearest-neighbor random walk (with killing) on the

double cover [(Z + 1
4 ) × Z; u,v] that corresponds to the massive Lapla-

cian ∆(m). (At each step this random walk makes a (±1, 0) jump with
probability 1

2 sin θh cos θv, a (0,±1) jump with probability 1
2 cos θh sin θv

and, if θh + θv ̸= 1
2π, dies with probability 1 − sin(θh + θv).) Let τ be the

first time when this random walk hits the set {(k + 1
4 , 0), k ̸∈ [1, n − 1]}}

or dies; clearly τ < +∞ almost surely. Since the process (X0(Zj))j⩾0 is a
uniformly bounded martingale, the optional stopping theorem implies that
X0(c) = E[X0(Zτ )] = 0 for all starting points c ∈ [(Z + 1

4 ) × Z; u,v].
(ii). — The proof is similar. In this case τ defines the first moment when

a similar random walk on [(Z − 1
4 ) × Z; u,v] hits the set {(k − 1

4 , 0), k ∈
[0, n + 1]}} or dies. Note that τ < +∞ almost surely even if θh + θv = π

2
as (Zk)k⩾0 is recurrent. □

The next lemma allows one to use an explicit construction of functions
X[v,u] given in Section 3.2 in order to get a recurrence relation for the
spin-spin correlations. For n ⩾ 1, denote

Ln := 1
2 cos θv · [Dn + cos θh · D̃n], L⋆

n := 1
2 sin θh · [D⋆

n + sin θv · D̃⋆
n].

Lemma 3.2. — For each n ⩾ 1, the following identities are fulfilled:

(3.10)
−[∆(m)Xsym

[v,u]]
((

1
4 , 0

))
= Ln+1,

−[∆(m)Xsym
[v,u]]

((
n+ 1

4 , 0
))

= L⋆
n+1;

(3.11)
−[∆(m)Xanti

[v,u]]
((

−1
4 , 0

))
= −Ln,

−[∆(m)Xanti
[v,u]]

((
n+ 3

4 , 0
))

= L⋆
n,
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with the same choice of points on the double covers [(Z ± 1
4 ) × Z; v,u] as

above. If n = 0, the identities (3.10) should be replaced by

−
[
∆(m)Xsym

[v,u]

] ((
1
4 , 0

))
= L1 + L⋆

1

while (3.11) hold with L0 := cos θv and L⋆
0 := sin θh.

Proof. — We focus on the first identity in (3.10). Let c◦ = c♭
+(v) :=

( 1
4 , 0), see Figure 2.1C for the notation. First, note that Xsym

[v,u](c
−
◦ ) = 0 and

hence

−
[
∆(m)Xsym

[v,u]

]
(c◦) = X[v,u](c◦) − 1

2sin θh cos θv ·X[v,u](c+
◦ )

− 1
2cos θh sin θv ·

[
X[v,u](c♯

◦) +X[v,u](c♭
◦)

]
.

Recall that we deduced the massive harmonicity property of the observ-
ables X[v,u] away from the branchings from four Cauchy–Riemann identi-
ties (2.10), each of them based upon two propagation equations (2.9); see
Figure 2.1B. We now repeat the same proof but with seven three-terms
identities (2.9) instead of eight ones required to prove Proposition 2.2, the
one involving the values of X[v,u] at c−

◦ = (− 3
4 , 0), c♭

−(v) = (− 1
4 , 0) and

c♯
−(v) = (− 1

4 ,
1
2 ) missing; see Figure 2.1C. As a result, one sees that the

value [∆(m)Xsym
[v,u]](c

♭
+(v)) is 1

2 cos θv times the missing linear combination
of the values

X[v,u](c♭
−(v)) = Dn+1 and X[v,u](c♯

−(v)) · cos θh = D̃n+1 · cos θh,

which leads to the first identity in (3.10) (we let the reader to check the
signs obtained along the computation). The proofs of the other three iden-
tities for n ⩾ 1 are similar. If n = 0, one should sum six three-term identi-
ties (2.9) when dealing with Xsym

[v,u] and eight ones when dealing with Xanti
[v,u].

In the latter case, the values L0 and L⋆
0 appear due to the presence of the

branchings v,u near the points at which ∆(m)Xanti
[v,u] is computed (and due

to the fact that D0 = D⋆
0 = 1). □

3.2. Construction via the Fourier transform and orthogonal
polynomials

In this section we construct two bounded functions satisfying the prop-
erties (3.5)–(3.9) using Fourier transform and orthogonal polynomials tech-
niques, the explicit formulas are given in Lemma 3.4 and Lemma 3.5. Recall
that these explicit solutions must coincide with Xsym

[v,u] and Xanti
[v,u] due to
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Lemma 3.1. Instead of the double covers [(Z± 1
4 ) ×Z; u,v], we work in the

upper half-plane Z×N0 only (see Lemma 3.3 for the link between the two
setups).

For a function V : Z×N0 → R we use the same definition of the massive
Laplacian [∆(m)V ](k, s) as above for s ⩾ 1 and introduce the values

(3.12) [NV ](k, 0) := V (k, 0) − cos θh sin θv · V (k, 1)

− 1
2 sin θh cos θv · [V (k − 1, 0) + V (k + 1, 0)]

which might be viewed as a version of the normal derivative of V at the
point (k, 0). We now formulate two problems [Psym

n ] and [Panti
n ] to solve.

Due to Lemma 3.1, these problems are equivalent to constructing explic-
itly the functions Xsym

[v,u] and Xanti
[v,u], respectively; see also Figure 3.1B and

Figure 3.1C.

• [Psym
n ] : given n ⩾ 1, to construct a bounded function V : Z×N0 →

R such that the following conditions are fulfilled:

[∆(m)V ](k, s) = 0 if s ⩾ 1; [NV ](k, 0) = 0 for k ∈ [1, n− 1];
V (k, 0) = 0 for k ̸∈ [0, n]; V (0, 0) = Dn and V (n, 0) = D⋆

n .

• [Panti
n+1] : given n ⩾ 0, to construct a bounded function V : Z×N0 →

R such that the following conditions are fulfilled:

[∆(m)V ](k, s) = 0 if s ⩾ 1; [NV ](k, 0) = 0 for k ̸∈ [0, n+ 1];
V (k, 0) = 0 for k ∈ [1, n]; V (0, 0) = −Dn+1; V (n+ 1, 0) = D⋆

n+1 .

Lemma 3.3. — Assume that a function V sym
n (resp., V anti

n+1 ) solves the
problem [Psym

n ] (resp., [Panti
n+1]). Then, the following identities hold:

[NV sym
n ](0, 0) = Ln+1, [NV sym

n ](n, 0) = L⋆
n+1;(3.13)

[NV anti
n+1 ](0, 0) = −Ln, [NV anti

n+1 ](n+ 1, 0) = L⋆
n.(3.14)

Proof. — Consider a section of the double cover [(Z ± 1
4 ) × Z; v,u] with

a cut going along the horizontal axis outside the segment [0, n + 1
2 ] for

the problem [Psym
n ] and along [0, n+ 1

2 ] for the problem [Panti
n+1]. Define two

functions on north-west and north-east, respectively, corners of the grid by

V sym
[v,u]

((
±k + 1

4 , s
))

:=V sym
n (k, s) V anti

[v,u]

((
±k − 1

4 , s
))

:= ±V anti
n+1 (k, s).

These functions vanish on the cuts and thus can be viewed as bounded
spinors on the double covers [(Z ± 1

4 ) × Z; v,u], which satisfy all the con-
ditions (3.5)–(3.9). Due to the uniqueness result provided by Lemma 3.1,
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this implies Xsym
[v,u] = V sym

[v,u] and Xanti
[v,u] = V anti

[v,u]. The identities (3.13), (3.14)
now easily follow from (3.10), (3.11) and the definition (3.12). □

Let V be a solution to the problem [Psym
n ], recall that this solution is

unique due to Lemma 3.1. To construct it explicitly, we start with a heuris-
tic argument. Assume for a moment that the Fourier series

V̂s(eit) :=
∑
k∈Z

V (k, s) eikt, s ⩾ 0, t ∈ [0, 2π],

are well-defined. The massive harmonicity property [∆(m)V ](k, s) = 0
for s ⩾ 1 can be rewritten as the recurrence relation

[1 − sin θh cos θv cos t] · V̂s(eit) = 1
2 cos θh sin θv · [V̂s−1(eit) + V̂s+1(eit)].

A general solution to this recurrence relation is a linear combination of the
functions (y−(t; θh, θv))s and (y+(t; θh, θv))s, where 0 ⩽ y− ⩽ 1 ⩽ y+ solve
the quadratic equation

[1 − sin θh cos θv cos t] · y(t) = 1
2 cos θh sin θv · [(y(t))2 + 1].

At level s = 0 we have V̂0(eit) = Qn(eit), an unknown trigonometric poly-
nomial of degree n. Since we are looking for bounded Fourier coefficients
of V̂s, we are tempted to say that V̂s(eit) = Qn(eit)·(y−(t; θh, θv))s for s ⩾ 1.
A straightforward computation shows that

(3.15)

∑
k∈Z

[NV ](k, 0) eikt = w(t; θh, θv)Qn(eit),

w(t; θh, θv) :=
[
(1−sin θh cos θv cos t)2 −(cos θh sin θv)2]1/2

.

The key observation of this section is that the property [NV ](k, 0) = 0,
k ∈ [1, n − 1], reads as a simple orthogonality condition for the polyno-
mial Qn(eit).

We now use the heuristics developed in the previous paragraph to rigor-
ously identify the unique solution to [Psym

n ].

Lemma 3.4. — Let n ⩾ 1. If a trigonometric polynomial

Qn(eit) = Dn + · · · +D⋆
n eint

of degree n with prescribed free and leading coefficients is orthogonal to
the family {eit, . . . , ei(n−1)t} with respect to the measure w(t; θh, θv) dt

2π , then
the function

V (k, s) := 1
2π

∫ π

−π

e−ikt Qn(eit)(y−(t; θh, θv))s dt
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is uniformly bounded and solves the problem [Psym
n ]. Moreover,

(3.16) ⟨Qn, 1⟩ w
2π ≫t = Ln+1 and ⟨Qn, eint⟩ w

2π dt = L⋆
n+1,

where the scalar product is taken with respect to the same measure on the
unit circle.

Proof. — The values V (k, s) are uniformly bounded as 0 ⩽ y− ⩽ 1, the
massive harmonicity property [∆(m)V ](k, s) = 0 for s ⩾ 1 is straightfor-
ward and the required properties of the values V (k, 0) and [NF ](k, 0) follow
from the assumptions made on the polynomial Qn. The identities (3.13)
give (3.16). □

A similar construction can be done for the problem [Panti
n+1], see Fig-

ure 3.1C. The only difference is that at level s = 0 we now require that
V̂0(eit) does not contain monomials eit, . . . , ei(n+1)t while∑

k∈Z
[NV ](k, 0) eikt = w(t; θh, θv)V̂0(eit) = −Ln + · · · + L⋆

n ei(n+1)t

is a trigonometric polynomial of degree n+ 1. In other words, this polyno-
mial is orthogonal to {eit, . . . , eint} with respect to the weight

(3.17) w#(t; θh, θv) := (w(t; θh, θv))−1, t ∈ [0, 2π].

provided that w# is integrable on the unit circle. One can easily see from
(3.15) that this is true if and only if θh +θv ̸= π

2 . We discuss a modification
of the next claim required for the analysis of the critical case θh + θv = π

2
in Section 3.4.

Lemma 3.5. — Let n ⩾ 0 and assume that θh + θv ̸= π
2 . If a trigono-

metric polynomial Q#
n+1(eit) = −Ln + · · · +L⋆

n ei(n+1)t is orthogonal to the
family {eit, . . . , eint} with respect to the measure w#(t; θh, θv) dt

2π , then the
function

(3.18) V (k, s) := 1
2π

∫ π

−π

e−ikt Q#
n+1(eit)(y−(t; θh, θv))sw#(t; θh, θv) dt

is uniformly bounded and solves the problem [Panti
n+1]. Moreover,

(3.19) ⟨Q#
n+1, 1⟩ w#

2π dt
= −Dn+1 and ⟨Q#

n+1, ei(n+1)t⟩ w#
2π dt

= D⋆
n+1,

where the scalar product is taken with respect to the same measure on the
unit circle.

Proof. — The proof repeats the proof of Lemma 3.4. □
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3.3. Horizontal spin-spin correlations below criticality

In this section we combine the results of Lemmas 3.4 and 3.5 into a single
result on asymptotics of the horizontal spin-spin correlations Dn as n → ∞.
We assume that θh+θv < π

2 and rely upon the fact that D⋆
n → 0 as n → ∞.

This can be easily derived from the monotonicity of Dn with respect to the
temperature and the fact that Dn = D⋆

n → 0 as n → ∞ in the critical
regime θh + θv = π

2 which is discussed in the next section.

Theorem 3.6 (Kauffman–Onsager–Yang). — Let θh + θv < π
2 .

Then, the spontaneous magnetization M(θh, θv) of the homogeneous Ising
model is given by

(3.20) M(θh, θv) := lim
n→∞

D1/2
n =

[
1 − (tan θh tan θv)2]1/8

.

(Note that tan θe = (sinh(2βJe))−1 under the parametrization (2.1).)

Remark 3.7. — It is worth mentioning that the value tan θh tan θv also
admits a fully geometric interpretation as Baxter’s elliptic parameter of the
Z-invariant Ising model on isoradial graphs [6, Eq. (7.10.50)], see Section 5.1
for details.

Proof. — Classically, the computation given below is based upon the
strong Szegö theorem on the asymptotics of the norms of orthogonal poly-
nomials on the unit circle. Note however that we use this result in its
simplest form, for real weights w and w# given by (3.15) and (3.17).

Let Φn(z) = zn + · · · − αn−1 be the n-th monic orthogonal polynomial
on the unit circle with respect to the measure w(t; θh, θv) dt

2π , the real num-
ber αn−1 is called the Verblunsky coefficient, recall that |αn−1| < 1 for
all n ⩾ 1. Denote by Φ∗

n := znΦn(z−1) = −αn−1z
n + · · · + 1 the reciprocal

polynomial. Matching the free and the leading coefficients, it is easy to see
that the polynomial Qn from Lemma 3.4 can be written as

Qn(eit) = cnΦn(eit) + c∗
nΦ∗

n(eit),

where [
c∗

n

cn

]
=

[
1 −αn−1

−αn−1 1

]−1 [
D⋆

n

Dn

]
.

Moreover, one has ⟨Φn, eint⟩ = ⟨Φ∗
n, 1⟩ = ∥Φn∥2 =: βn = β0

∏n
k=1(1−α2

k−1)
(e.g., see [56, Theorem 2.1]) and ⟨Φn, 1⟩ = ⟨Φ∗

n, eint⟩ = 0, here and below
we drop the measure w dt

2π from the notation for shortness. Therefore, the
identities (3.13) imply that

(3.21)
[
L⋆

n+1
Ln+1

]
= βn

[
c∗

n

cn

]
= βn−1

[
1 αn−1

αn−1 1

] [
D⋆

n

Dn

]
,
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and hence

(3.22) L2
n+1 − (L⋆

n+1)2 = βnβn−1 · (D2
n − (D⋆

n)2) for n ⩾ 1.

Similarly, it follows from Lemma 3.5 that

(3.23)
[
D⋆

n+1
−Dn+1

]
= β#

n

[
1 α#

n

α#
n 1

] [
L⋆

n

−Ln

]
,

where α#
n and β#

n stand for the Verblunsky coefficients and squared norms
of monic orthogonal polynomials corresponding to the weight (3.17). In
particular, we have

(3.24) D2
n+1 − (D⋆

n+1)2 = β#
n+1β

#
n · (L2

n − (L⋆
n)2) for n ⩾ 0.

The recurrence relations (3.24), (3.22) applied for even and odd indices n,
respectively, lead to the formula

D2
2m+1 − (D⋆

2m+1)2 = β#
2m+1β

#
2m · β2m−1β2m−2 · (D2

2m−1 − (D⋆
2m−1)2)

= · · · =
2m+1∏
k=0

β#
k ·

2m−1∏
k=0

βk · (L2
0 − (L∗

0)2) ,

note that L2
0 − (L∗

0)2 = (cos θv)2 − (sin θh)2 = cos(θh+ θv) cos(θh− θv).
Recall that D⋆

2m+1 → 0 as m → ∞. It remains to apply the Szegö
theory (e.g., see [28, Section 5.5] or [56, Theorems 8.1 and 8.5]) to the
weights (3.15) and (3.17). A straightforward computation shows that

w(t; θh, θv) = Cwq−(t)wq+(t), where C =
(

cos 1
2θ

h
)2

cos θv

and we set

wq(t) :=
[

(1 + q2)2 −
(

2q cos t2

)2
]1/2

= |1 − q2 eit |

for q2
± := tan( 1

2θ
h) tan( π

4 ∓ 1
2θ

v) . Since w#(t; θh, θv) = (w(t; θh, θv))−1, we
have

lim
m→∞

2m+1∏
k=0

β#
k ·

2m−1∏
k=0

βk = C−2 ·G2,
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where

G = exp
[

1
4π

∫∫
D

∣∣∣∣ d
dz

(
log(1 − q2

−z) + log(1 − q2
+z)

∣∣∣∣2
d2z

]

= exp

−
∑
k⩾1

1
4k (q2k

− + q2k
+ )2

 =
[
(1 − q4

−)(1 − q4
+)(1 − q2

−q
2
+)2]−1/4

=
(

cos 1
2θ

h
)2

(cos θv)1/2(cos θh)−1/2(cos(θh+ θv) cos(θh− θv))−1/4

(in the first line, d2z denotes the area measure in the unit disc D). Putting
all the factors together, one gets (3.20). □

Remark 3.8. — The identity (3.23) with n = 0 also provides a formula

D1 = β#
0 · [cos θv − α#

0 sin θh]

for the energy density (on a vertical edge) of the homogeneous Ising model.

3.4. Asymptotics of horizontal correlations Dn as n → ∞ at
criticality

Assume now that θh + θv = π
2 . Another classical result that we discuss

in this section is that spin-spin correlations Dm decay like m−1/4 at large
distances.

Theorem 3.9 (McCoy–Wu). — Let Cσ := 2 1
6 e 3

2 ζ′(−1), θh = θ and
θv = π

2 − θ. Then,

(3.25) Dm ∼ C2
σ · (2m cos θ)−1/4 as m → ∞.

Proof. — A straightforward computation shows that

w
(
t; θ, π2 − θ

)
= 2 sin θ ·

[
1 −

(
sin θ cos 1

2 t
)2

]1/2

·
∣∣∣∣sin 1

2 t
∣∣∣∣ .

In particular, the weight w# := w−1 is not integrable and the arguments
used in the proof of Theorem 3.6 require a modification. Also, the Kramers–
Wannier duality ensures that Dn = D⋆

n, Ln = L⋆
n and hence the identi-

ties (3.22), (3.24) become useless (though one still could use (3.21)). In this
situation we prefer to switch to the framework of orthogonal polynomials
on the real line (more precisely, on the segment [−1, 1]) for computations.
Let

(3.26) w(x; θ) := [ 1 − (sin θ · x)2 ]1/2 , x ∈ [−1; 1],
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and let Pn(x) = xn + . . . be the monic orthogonal polynomial of degree n
on [−1, 1] with respect to the weight w(x, θ). It is easy to check that the
trigonometric polynomial

Qn(eit) := Dn · e 1
2 int ·2nPn

(
cos 1

2 t
)

fits the construction given in Lemma 3.4 to solve the problem [Psym
n ]. The

formula (3.16) gives

(3.27)

Ln+1 = 1
2π

∫ π

−π

Qn(eit)w
(
t; θ, π2 − θ

)
dt

= Dn2n−1

π

∫ π

−π

cos
(

1
2nt

)
Pn

(
cos 1

2 t
)
w

(
t; θ, π2 − θ

)
dt

= Dn2n+1 sin θ
π

∫ 1

−1
(2n−1xn + · · · )Pn(x)w(x; θ) dx

= π−122n sin θ · ∥Pn∥2
w dx ·Dn, n ⩾ 1.

Moreover, a similar computation for n = 0 implies that

(3.28) 2L1 = 2π−1 sin θ
∫ 1

−1
P0(x)w(x; θ) dx = 2π−1 sin θ · ∥P0∥2

w dx

since D0 = 1 and due to the modification required in Lemma 3.2 in the
case n = 0.

We can use the same line of reasoning to construct a solution of the
problem [Panti

n+1] treated in Lemma 3.5 in the non-critical regime. Namely,
let P#

n (x) be the monic orthogonal polynomial of degree n on [−1, 1] with
respect to the weight

(3.29) w#(x) := [ 1 − (sin θ · x)2 ]−1/2 , x ∈ [−1, 1],

and

Q#
n+1(eit) := Ln · (eit −1) e 1

2 int ·2nP#
n

(
cos 1

2 t
)
.

It is straightforward to check that the formula (3.18) gives a solution
to the boundary value problem [Panti

n+1], note that the product
(eit −1)w#(t; θ, π

2 − θ) is integrable on the unit circle as the first factor
kills the singularity of w# at t = 0. Moreover, the computation (3.19)
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remains valid and reads as

(3.30)

Dn+1 = − 1
2π

∫ π

−π

Q#
n+1(eit)w#

(
t; θ, π2 − θ

)−1
dt

= Ln2n

π

∫ π

−π

sin( 1
2 (n+ 1)t)
sin 1

2 t
P#

n

(
cos 1

2 t
) (sin 1

2 t)
2 dt

w(t; θ, π
2 − θ)

= Ln2n

π sin θ

∫ 1

−1
(2nxn + . . . )P#

n (x)w#(x) dx

= π−122n(sin θ)−1 · ∥P#
n ∥2

w# dx · Ln, n ⩾ 0.

Recall that L0 = sin θ (see Lemma 3.2). Taking a product of the recur-
rence relations (3.28), (3.27) for 1 ⩽ n ⩽ m− 1, and (3.30) for 0 ⩽ n ⩽ m,
one obtains the identity

Dm+1Dm = π−2m−122m2
m−1∏
k=0

∥Pk∥2
wdx ·

m∏
k=0

∥P#
k ∥2

w#dx ,

where the weights w(x; θ) and w#(x; θ) on [−1, 1] are given by (3.26)
and (3.29).

This is again a classical setup of the orthogonal polynomials theory, note
that, if one now passes back to the unit circle, then the |t|-type singularity
of the weights appear at the point eit = 1. One might now use the gen-
eral results (summarized, e.g., in [21]) but we prefer to refer to a specific
treatment [5]. Applying [5, Theorem 1.7] with parameters α = 0, β = ± 1

2
and k = sin θ one obtains the asymptotics

Dm+1Dm ∼ π

[
G

(
1
2

)]4
(1 − k2)−1/4m−1/2 ∼ 22/3e6ζ′(−1)(2m cos θ)−1/2

as m → ∞, where G denotes the Barnes G-function. (Note that [5] also
provides sub-leading terms of this asymptotics.) The proof of (3.25) is com-
plete modulo the fact that Dm+1 ∼ Dm as m → ∞. This statement can be
proved by the arguments given in the next remark (or, alternatively, using
probabilistic estimates). □

Remark 3.10. — Due to the famous quadratic identities [39, 50] for the
spin-spin correlations, one can write (3.27) and (3.30) as

An := π−122n∥Pn∥2
w dx = Dn+1 + cos θ · D̃n+1

Dn
= Dn+2

Dn+1 − cos θ · D̃n+1
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and

Bn+1 := π−122n+2∥P#
n+1∥2

w#dx

= Dn+2

Dn+1 + cos θ · D̃n+1
= Dn+1 − cos θ · D̃n+1

Dn
.

In fact, one can also prove these identities by considering the anti-sym-
metrization (resp., symmetrization) of the observable X[u,v] on the north-
west (resp., north-east) corners of the lattice and noticing that, up to a
multiplicative constant, it solves the problem [Panti

n+2] (resp., [Psym
n−1]). In par-

ticular, we have

Dm+1/Dm = 1
2(Am +Bm+1) = 2(A−1

m−1 +B−1
m )−1

so one can see that Dm+1 ∼ Dm and find sub-leading corrections to the
asymptotics of Dm (and D̃m) using the analysis of orthogonal polynomials
performed in [5].

4. Layered model in the zig-zag half-plane

In this section we work with the (half-)infinite volume limit of the Ising
model on the zig-zag half-plane H⋄ (see Figure 4.1 for the notation), which
is defined as a limit of probability measures on an increasing sequence of
finite domains exhausting H⋄, with “+” boundary conditions at the right-
most column C0 and at infinity. All interaction parameters between the
columns Cp−1 and Cp are assumed to be the same and equal to xp =
exp[−2βJp] = tan 1

2θp. The goal is to find a representation for the magne-
tization Mm at the column C2m, see (1.1). The uniqueness of the relevant
half-plane fermionic observable is discussed in Section 4.1 and our main
result – Theorem 1.1 – is proved in Section 4.2. In Section 4.3 we use
Theorem 1.1 to discuss the wetting phase transition [26, 53] caused by a
boundary magnetic field. In this case the Jacobi matrix J can be explicitly
diagonalized and the final answer can be written in terms of the so-called
Toeplitz+Hankel determinants.

4.1. Half-plane fermionic observable

Let v = (−2m− 3
2 , 0). Below we work with the fermionic observable X[v]

defined by (2.7); comparing with Section 3 one can think about the spin
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σu := σout as being attached to the vertical boundary. We are mostly
interested in the values of X[v] at west corners (see Figure 4.1)

H(−k, s) := Ψ[v]((−k, s)) = X[v]((−k, s)), k ∈ N0, s ∈ Z, k + s ̸∈ 2Z,

note the convention on ηc chosen in (2.6). By definition, one has

(4.1) H(−2m− 1, 0) = E+
H⋄ [σ(−2m− 1

2 ,0)] = Mm.

We also need the values of X[v] at east corners:

H◦(−k, s) := Ψ[v]((−k, s)) = iX[v]((−k, s)), k ∈ N, s ∈ Z, k + s ∈ 2Z.

It is convenient to set θ0 := 0 and H◦(0, s) := 0 for all s ∈ 2Z.

v=(−2m− 3
2 , 0)

iMm+1 Mm

θ1

θ1

θ1

θ1

θ1

θ2

θ2

θ2

θ2

θ2

θ3

θ3

θ3

θ3

θ3

θ2m+1

θ2m+1

θ2m+1

θ2m+2

θ2m+2

θ2m+2

θ2m+3

θ2m+3

θ2m+3

θ2m+3

θ2m+3

C0C1C2· · ·C2mC2m+1C2m+2C2m+3

1

Figure 4.1. The zig-zag layered model in the left half-plane H⋄. All
the interaction parameters between two adjacent columns are assumed
to be the same. The “+” boundary conditions are imposed at the
column C0. To analyze the ratio Mm+1/Mm we consider the Kadanoff–
Ceva fermionic observable branching at v=(−2m− 3

2 , 0).

The infinite-volume observable X[v] is defined as a (subsequential) limit
of the same observables constructed in finite regions. Subsequential limits
exist due to the uniform bound (3.2) while the uniqueness of X[v] is given by
Lemma 4.1. The discrete Cauchy–Riemann identities (2.10) can be written
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as

(4.2) H(−k − 1, s± 1) sin θk+1 −H(−k, s) cos θk

=,±i · [H◦(−k, s± 1) sin θk −H◦(−k − 1, s) cos θk+1 ]

if k ⩾ 1 and k+s ̸∈ 2Z. Near the vertical boundary, these equations should
be modified as follows:

(4.3) H(−1, s± 1) sin θ1 −H(0, s) = ∓i ·H◦(−1, s) cos θ1, s ̸∈ 2Z.

Indeed, X[v]((− 1
2 , s± 1

2 )) = X[v](0, s)) = H(0, s) and hence (4.3) are noth-
ing but the three-term identities (2.9).

Lemma 4.1. — The spinors H,H◦ defined in H⋄ and branching over v
are uniquely determined by the following conditions: uniform bounded-
ness, Cauchy–Riemann identities (4.2), boundary relations (4.3), and the
value (4.1) of H near v.

Proof. — Taking the difference of two solutions, assume that H,H◦ are
uniformly bounded, satisfy (4.2), (4.3) and that H(−2m− 1, 0) = 0. Recall
that Proposition 2.4 gives the harmonicity-type identity

(4.4) H(−k, s) = 1
2 sin θk+1 cos θk · [H(−k− 1, s+1) +H(−k−1, s−1)]

+ 1
2 sin θk cos θk−1 · [H(−k + 1, s+ 1) +H(−k + 1, s− 1)]

at all west corners c = (−k+ 1
2 , s) with k ⩾ 2 except in the case k = −2m−1,

s = 0 (i.e., at the west corner located near the branching v). Moreover, due
to the boundary relations (4.3), exactly the same identity holds for k = 0, 1
(recall that we formally set θ0 := 0). In its turn, the function H◦ satisfies
the identities

H◦(−k, s) = 1
2 cos θk+1 sin θk · [H◦(−k−1, s+1)+H◦(−k−1, s−1)](4.5)

+1
2 cos θk sin θk−1 · [H◦(−k + 1, s+ 1) +H◦(−k + 1, s− 1)]

at all east corners d = (−k + 1
2 , s), including the one located near the

branching v (in the latter case the proof of Proposition 2.4 works verba-
tim due to the fact that H(−2m − 1, 0) = 0). Both (4.4) and (4.5) can
be rewritten as true discrete harmonicity properties if one passes from H
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and H◦ to the functions

H̃(−k, s) := ϱk ·H(−k, s), H̃◦ := ϱ◦
k ·H◦(−k, s),

ϱk :=
k∏

j=1
(sin θj / cos θj−1), ϱ◦

k :=
k∏

j=2
(cos θj / sin θj−1),

recall that we set H̃◦(0, s) = H◦(0, s) := 0 on the vertical axes.
Let Zn = (Kn, Sn) (respectively, Z◦

n = (K◦
n, Sn)) be the nearest-neighbor

random walk on west (respectively, east) corners, with jump probabili-
ties ( 1

2 ,
1
2 ) for the process Sn and (cos2 θk, sin2 θk) for the process Kn (re-

spectively, (sin2 θk, cos2 θk) for the process K◦
n); see Figure 4.2. Note that

the walk Zn on west corners is reflected from the vertical axes while the
walk Z◦

n on east corners is absorbed there.

C0C1C2· · ·Ck−1CkCk+1· · ·
sin2θ1

1

sin2θ2

cos2θ1

sin2θ3

cos2θ2

. . .

. . .

sin2θk

cos2θk−1

sin2θk+1

cos2θk

sin2θk+2

cos2θk+1

. . .

. . .

1

∅∅∅C0C1C2· · ·Ck−1CkCk+1· · ·
cos2θ1cos2θ2

sin2θ1

cos2θ3

sin2θ2

. . .

. . .

cos2θk

sin2θk−1

cos2θk+1

sin2θk

cos2θk+2

sin2θk+1

. . .

. . .

1

1

Figure 4.2. For appropriately chosen prefactors ϱk and ϱ◦
k, the identi-

ties (4.4), (4.5) (coming from Proposition 2.4) can be written as the dis-
crete harmonicity property of functions ϱkH(−k, s) and ϱ◦

kH
◦(−k, s)

with respect to random walks having the indicated transition prob-
abilities in the horizontal direction (and 1

2 in the vertical one). The
first random walk (on ▷) is reflected from the imaginary axis while the
second (on ◁) is absorbed there.

It follows from (4.4) that the stochastic process H̃(Zn) is a martingale,
when equipped with the canonical filtration, until the first time when Zn

hits the west corner (−2m − 1, 0) located near the branching, recall that
H̃(−2m− 1, 0) = 0. Similarly, (4.5) implies that the process H̃◦(Z◦

n) is a
martingale until the first time when Z◦

n hits the imaginary axis, recall
that H̃◦ = 0 there. As we show below, depending on the behavior of
ϱk and ϱ◦

k as k → ∞, the optional stopping theorem allows to conclude
that either H̃ or H̃◦ vanishes identically. Once the identity H̃ ≡ 0 (resp.,
H̃◦ ≡ 0) is proven, the equations (4.2), (4.3) and the fact that H̃◦ vanishes
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on the imaginary axis (resp., H̃ vanishes at the point (−2m− 1, 0)) imply
that H̃◦ ≡ 0 (resp., H̃ ≡ 0) too.

Recall that the functions H and H◦ are uniformly bounded and note
that ϱkϱ

◦
k = (cos θ1)−1 sin θk cos θk = O(1) as k → ∞. It follows from the

maximum principle that
• the function H̃ is uniformly bounded unless ϱk → ∞ as k → ∞;
• the function H̃◦ is uniformly bounded unless ϱ◦

k → ∞ as k → ∞.
We have three cases to consider separately.

• Let lim infk→∞ ϱk = 0, in particular this implies that H̃ is uniformly
bounded. The optional stopping theorem applied to the martin-
gale H̃(Zn) and the fact that a one-dimensional random walk on
−N0 reflected at 0 almost surely takes arbitrary large (negative)
values imply that H ≡ 0.

• Let lim infk→∞ ϱ◦
k = 0. A similar argument applied to the martin-

gale H̃◦(Z◦
n) (recall that H̃◦ vanishes on the imaginary axis) shows

that H̃◦ ≡ 0.
• Let both sequences ϱk and ϱ◦

k be uniformly bounded from below
as k → ∞. Since ϱkϱ

◦
k = (cos θ1)−1 sin θk cos θk, these sequences are

also uniformly bounded from above and the parameters θk, k ⩾ 1,
stay away from 0. In this case it is easy to see that the process K◦

n

hits 0 almost surely (i.e., that the random walk Z◦
n hits the imagi-

nary axis almost surely). Indeed, the probability p◦
k to hit 0 starting

from −k satisfies the recurrence

p◦
k − p◦

k+1 = cot2 θk · (p◦
k−1 − p◦

k) = . . . = ϱ−2
k+1 sin2 θk+1 · (1 − p◦

1),

which is only possible if p◦
1 = 1 since the factors ϱk+1/ sin θk+1 are

uniformly bounded. We conclude as before by applying the optional
stopping theorem to the uniformly bounded martingale H̃(Z◦

n).
The proof is complete. □

4.2. Magnetization Mm in the (2m)-th column

Similarly to Section 3.2, below we rely upon the uniqueness Lemma 4.1
and aim to construct the values of X[v] on west and east corners (i.e., the
pair of spinors H,H◦) as explicitly as possible. Note that we have

(4.6) H(−2p− 1, 0) = 0 for p ⩾ m+ 1, H◦(−2p, 0) = 0 for p ⩽ m.
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since the spinors defined (on the double cover branching over v) by the
symmetry H1(−k,−s) := H(−k, s), H◦

1 (−k,−s) := −H◦(−k, s) also sat-
isfy the Cauchy–Riemann equations (4.2), (4.3) and thus must coincide
with H,H◦.

Given s ⩾ 0, let Hs denote the semi-infinite vector of the (real) val-
ues H(−k, s), k ∈ N0, where we assign zero values to the indices s such
that s+ k ∈ 2Z. Similarly, let H◦

s be the vector of the (purely imaginary)
values H◦(−k, s), k ∈ N, where we assign zero values to the indices s
such that s + k ̸∈ 2Z. We can write the harmonicity-type equations (4.4)
and (4.5) as

(4.7) Hs = 1
2C[Hs−1+Hs+1], H◦

s = 1
2C

◦[H◦
s−1+H◦

s+1] , s ⩾ 1,

where the self-adjoint operators C and C◦ are given by

C :=


0 sin θ1 0 0 . . .

sin θ1 0 sin θ2 cos θ1 0 . . .

0 sin θ2 cos θ1 0 sin θ3 cos θ2 . . .

0 0 sin θ3 cos θ2 0 . . .

. . . . . . . . . . . . . . .

 ,

C◦ :=


0 cos θ2 sin θ1 0 0 . . .

cos θ2 sin θ1 0 cos θ3 sin θ2 0 . . .

0 cos θ3 sin θ2 0 cos θ4 sin θ3 . . .

0 0 cos θ4 sin θ3 0 . . .

. . . . . . . . . . . . . . .

 .

Let T (λ) := λ−1 · (1 −
√

1 − λ2). Similarly to Section 3.2, in order to
satisfy the recurrences (4.7) we intend to write

(4.8) Hs := [T (C)]sH0, H◦
s := [T (C)]sH◦

0 , s ⩾ 1.

We now introduce an operator D, which plays the key role in the rest of
the analysis:

D := i


cos θ1 0 0 0 . . .

0 cos θ1 cos θ2 0 0 . . .

− sin θ1 sin θ2 0 cos θ2 cos θ3 0 . . .

0 − sin θ2 sin θ3 0 cos θ3 cos θ4 . . .

. . . . . . . . . . . . . . .

 .
A straightforward computation gives

(4.9) CD = DC◦, DD∗ = I − C2 and D∗D = I − (C◦)2.
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In particular, this implies that −I ⩽ C,C◦ ⩽ I. Therefore, the opera-
tors T (C) and T (C◦) in (4.8) are well-defined and the vectors Hs and H◦

s

defined by (4.8) are uniformly bounded as s → ∞. Still, we need to find the
vectors H0 and H◦

0 so that not only the harmonicity-type identities (4.7)
for H and H◦ but also the Cauchy–Riemann equations (4.2), (4.3) relat-
ing Hs and H◦

s are satisfied.
Note that KerD = {0} while the kernel of D∗ can be two-dimensional

(more precisely, each of the two operators D∗
even and D∗

odd can have a
one-dimensional kernel). Let D∗ = U(DD∗)1/2 be the polar decomposition
of D∗, where

(4.10) U := (D∗D)−1/2D∗ = D∗(DD∗)−1/2

is a (partial) isometry. We are now able to formulate the key proposition
on the construction of solutions to (4.2), (4.3) in the upper quadrant.

Proposition 4.2. — Given H0 ∈ ℓ2, let H◦
0 := UH0. Then, Hs :=

[T (C)]sH0 and H◦
s := [T (C◦)]sH◦

0 are uniformly bounded in ℓ2 and pro-
vide a solution to the Cauchy–Riemann equations (4.2), (4.3) in the upper
quadrant.

Proof. — Since −I ⩽ C,C◦ ⩽ I, we have 0 ⩽ T (C), T (C◦) ⩽ I. There-
fore,Hs andH◦

s are uniformly bounded in ℓ2. Moreover, (4.9) and (4.10) im-
ply that UC = C◦U and hence H◦

s = [T (C◦)]sUH0 = U [T (C)]sH0 = UHs

for all s ⩾ 0. This allows one to write

CHs+1 −Hs = −(I − C2)1/2Hs = −DUHs = −DH◦
s ,(4.11)

Hs+1 − CHs = −(I − C2)1/2Hs+1 = −DH◦
s+1 .(4.12)

It is not hard to see that these equations are equivalent to the Cauchy–
Riemann identities (4.2), (4.3). Indeed, the first entry of the vector-valued
equation (4.11) or (4.12) (depending on the parity of s) gives the rela-
tion (4.3) while the first entry of the other equation gives a linear com-
bination of (4.3) and (4.2) with k = 1. Further, each of the next entries
of (4.11) and (4.12) gives a linear combination of two identities (4.2) with
two consecutive k’s. Therefore, for each s ⩾ 0 one can inductively (in k)
recover all the identities (4.3), (4.2) from (4.11) and (4.12). □

Clearly, the operators D and U can be split into independent components
indexed by odd/even indices, only one of which is relevant for the value of
the magnetization Mm in the even columns C2m, the other component
is responsible for the magnetization in odd columns. In particular, the
relevant block Deven of the operator D is given by (1.2).
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Remark 4.3. — In view of the result provided by Proposition 4.2, the
(partial) isometry Ueven can be thought of as a discrete Hilbert transform
associated with the Cauchy–Riemann equations (4.2), (4.3) in the upper
quadrant: given the values H0 of the real part of a “discrete holomor-
phic” function (H,H◦) on the real line, it returns the boundary values
H◦

0 = UevenH0 of its imaginary part.

We are now able to prove the main result of this section.
Proof of Theorem 1.1. — Let H and H◦ be the values of the half-plane

observable X[v] on west and east corners, respectively. Since H0 is a finite
vector (see (4.6)), it belongs to ℓ2. Therefore, Lemma 4.1 and Proposi-
tion 4.2 imply that

DevenH
◦
0 = DevenUevenH0 = SevenH0 = J1/2 [ ∗ . . . ∗ Mm 0 0 . . . ]⊤,

where we use the symbol ∗ to denote unknown entries of the vector H0 and
Mm is its (m+ 1)-th coordinate. On the other hand, note that

−iH◦(−2m− 2, 0) = X[v]((−2m− 2, 0)) = −E+
H⋄ [σ−2m− 5

2
] = Mm+1.

By definition of the operator D and due to (4.6) one sees that

DevenH
◦
0 = cos θ2m+1 cos θ2m+2 · [ 0 . . . 0 Mm+1 ∗ ∗ . . .]⊤.

Recall that we denote by Pm+1 the orthogonal projection from ℓ2 onto the
subspace generated by the first basis vectors e1, . . . , em+1 of ℓ2. It follows
from the considerations given above that

Pm+1J
1/2Pm+1 : fm+1 = [ ∗ . . . ∗ 1 ]⊤ 7→ βm · [ 0 . . . 0 1 ]⊤ = βmem+1

for a certain vector fm+1 = Pm+1fm+1 such that ⟨fm+1, em+1⟩ = 1, where

βm := cos θ2m+1 cos θ2m+2 ·Mm+1/Mm .

In particular, if we denote by e′
1, e

′
2, . . . the orthogonalization of the vectors

e1, e2, . . . with respect to the scalar product ⟨ · , J1/2· ⟩, then

⟨e′
m+1, J

1/2e′
m+1⟩ = ⟨em+1, J

1/2fm+1⟩ = βm

and hence

detPm+1J
1/2Pm+1 = det[ ⟨e′

p, J
1/2e′

q⟩ ]m+1
p,q=1

=
m∏

k=0
βk = Mm+1 ·

2m+2∏
k=1

cos θk ,

where we also used the fact that M0 = 1; note that this computations
does not require any modification in the case m = 0 (when dealing with
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the magnetization in even columns). This gives the second formula for Mm

in (1.5).
To prove that Mm also equals |detPmUevenPm|, note that

(DevenD
∗
even)1/2 = DevenUeven and PmDeven = PmDevenPm ,

which implies

detPm(DevenD
∗
even)1/2Pm = |detPmUevenPm| · |detPmDevenPm|

= |detPmUevenPm| ·
2m∏
k=1

cos θk.

Finally, to prove the last identity in (1.5), note that

detPmJ
1/2Pm =

det[ ⟨J1/2fp, fq⟩ ]mp,q=1

det[ ⟨fp, fq⟩ ]mp,q=1

for all bases f1, . . . , fm of the m-dimensional space RanPm. Choosing the
basis 1, λ, . . . , λm−1 in the spectral representation of the operator J in
L2(νJ(dλ)) one obtains the identity

detPmJ
1/2Pm = Hm[λ1/2νJ ]

Hm[νJ ] and, similarly, detPmJPm = Hm[λνJ ]
Hm[νJ ]

As detPmJPm = [detPmDevenPm]2 =
∏2n

k=1 cos2 θk, this completes the
proof. □

4.3. Boundary magnetic field and the wetting phase transition

In this section we assume that θk = θ < π
4 for all k ⩾ 2, i.e., that we

work with a fully homogeneous subcritical model but we allow the first
interaction constant to have a different value. This can be trivially refor-
mulated as inducing an additional magnetic field at the first column whose
strength h = 2J1 corresponds to θ1 via (2.1). The main result is the follow-
ing theorem which translates the abstract formula (1.5) into the concrete
language of Toeplitz+Hankel determinants. Let

(4.13)
q := tan θ < 1 , r := 1 − cos2 θ1

cos2 θ
∈ (−q2; 1) ,

w(z) := |1 − q2z| , ξ(z) := (rz − q2)(q2z − 1)
(z − q2)(q2z − r) .

Note that ξ(z)ξ(z−1) = 1.
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Theorem 4.4. — In the setup described above, the following formula
holds:

(4.14) Mm = (1 − r)−3/2 det
[
αk−n − βk+n + (1 − r)3/2γk+n

]m−1
k,n=0 ,

where

αs := 1
2π

∫ π

−π

e−isθ w(eiθ) dθ , βs := 1
2π

∫ π

−π

e−isθ ξ(eiθ)w(eiθ) dθ,

and γs := c · (q2/r)s, c = (r2 − q4)r−3/2(r − q4)−1/2, if r > q2 and γs := 0
otherwise.

Proof. — Denote a := sin2 θ cos2 θ = (q + q−1)−2. The entries of the
Jacobi matrix J (see (1.4)) are given by

b1 = (1 − r)q−2a , a1 = (1 − r)1/2a ; bk = 1 − 2a , ak = a , k ⩾ 2.

Let ϱk := (1 − rδk,0)1/2, where δk,0 is the Kronecker delta. The continuous
spectrum of J has multiplicity 1 and equals to [1 − 4a , 1]. The generalized
eigenfunctions are

ψk(ζ) := ϱ−1
k · [ζk − ξ(ζ)ζ−k], λ(ζ) := 1 − a · (2 + ζ + ζ−1),

where ζ = eiθ and θ ∈ [0, π]. The coefficient ξ(ζ) should satisfy the condition
(b1 − λ(ζ))ψ0(ζ) = a1ψ1(ζ) which leads to the formula (4.13). The matrix
J also has the eigenvalue

λ(ζ0) = (1 − r)(r − q4)
r(1 + q2)2 ∈ (0, 1 − 4a) if ζ0 := q2/r < 1

since ξ(ζ0) = 0. Note that

ϱkϱn

2π

∫ π

0
ψn(e−iθ)ψk(eiθ) dθ = 1

2πi

∮
|ζ|=1

[ ζk−n − ξ(ζ−1)ζk+n ] dζ
ζ

= (1 − rδk+n,0) · δk,n − c0ζ
k+n−1
0 ,

where c0 = 0 if r ⩽ q2 and

c0 := resz=ζ0 ξ(z−1) = q2(1 − r)(r2 − q4)
r2(r − q4) if r > q2.

Thus, the spectral decomposition of the basis vector en = (δk,n)k⩾0 reads
as

δk,n = 1
2π

∫ π

0
ψn(e−iθ)ψk(eiθ) dθ + ϱ−1

n c0ζ
n−1
0 · ψk(ζ0).
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Since λ(eiθ) = (1 + q2)−2(w(eit))2, this gives the identity

ϱkϱn⟨ek, J
1/2en⟩

= ϱkϱn

2π

∫ π

0
ψn(e−iθ)ψk(eiθ)w(eiθ) dθ

1 + q2 + c0ζ
k+n−1
0 (λ(ζ0))1/2

= ϱkϱn · [(1 + q2)−1(αk−n − βk+n) + c0(λ(ζ0))1/2ζk+n−1
0 ] .

It remains to note that the normalizing factor [
∏2n

k=1 cos θk ]−1 in (1.5)
equals to (1 − r)−1/2 · (1 + q2)k and hence (note also the two factors ϱ0 =
(1 − r)−1/2 in the first row and the first column of the matrix J1/2)

Mm = (1 − r)−3/2 det
[
αk−n + βk+n + (1 − r)3/2c · ζk+n−1

0
]m−1

k,n=0,

where

c := r(1 + q2)c0(λ(ζ0))1/2

q2(1 − r)3/2 = r2 − q4

r3/2(r − q4)1/2

as claimed. □

Remark 4.5 (free boundary conditions). — One can pass to the limit r →
1− (which corresponds to J1 → 0+) in the formula (4.14) since αs = α−s =
βs + O(1 − r) and α0 = β0 + O((1 − r)2) as r → 1−. (It is also not hard
to adapt the proofs of Theorems 1.1 and 4.4 for this setup.) In particular,
one can easily see that

E+,0
H⋄ [σ(− 5

2 ,0)] = (1 − q4)1/2, r = 1,

where the sign “+” in the superscript indicates the boundary conditions at
infinity and 0 stands for the value of the magnetic field h at the vertical
boundary (free boundary conditions). Note that M1 does not vanish at
h = 0 provided that q < 1: the “+” boundary conditions at infinity break
the spin-flip symmetry.

Remark 4.6 (wetting phase transition). — In fact, one can analytically
continue the right-hand side of (4.14) to negative values of (1 − r)1/2.
According to [26, 53], this corresponds to a wetting phase transition. In-
formally speaking, for small negative values −h of the boundary magnetic
field, the interface separating “+” boundary conditions at infinity from “−”
ones on the imaginary line iR touches the boundary infinitely often and
the “+” phase dominates in the bulk of the half-plane, while for big neg-
ative values −h this interface “breaks away” from iR and the “−” phase
dominates in the bulk. For instance, one should have

E+,−h
H⋄ [σ(− 5

2 ,0)] = −|1 − r|3/2(α0 − β0) + γ0 = 2γ0 − E+,h
H⋄ [σ(− 5

2 ,0)]
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provided that h is small enough. Due to Theorem 4.4, the mismatch 2γ0
disappears (which means that the boundary conditions at the vertical line
dominate those at infinity) if h ⩾ hcrit(q), where the critical value hcrit(q)
is specified by the condition r = q2.

We refer the interested reader to [26, 53] and [42, Chapter XIII] for a
discussion of this regime of the Ising model. (Note that the interpretation
of the physics behind this effect given in the book [42] differs from the later
work [26, 53].) In particular, [42, Figure 13.7] suggests that

lim
m→∞

E+,−h
H⋄ [σ(−2m− 1

2 ,0)] = (1 − q4)1/8 for all h < hcrit(q)

while, for all m ∈ N0,

E+,−h
H⋄ [σ(−2m− 1

2 ,0)] = −E+,h
H⋄ [σ(−2m− 1

2 ,0)] if h ⩾ hcrit(q)

since γs = 0 in the latter case. This means that the sign of the bulk magne-
tization should flip when the negative boundary magnetic field attains the
value −hcrit(q). It would be interesting to derive this fact as well as to un-
derstand the profile of the function Mm(h) in detail using Toeplitz+Hankel
determinants (4.14).

5. Geometric interpretation: isoradial graphs and
s-embeddings

5.1. Regular homogeneous grids and isoradial graphs

In this section we briefly discuss the geometric interpretation of the pa-
rameters

(5.1) exp[−2βJh] = xh = tan 1
2θ

h, exp[−2βJv] = xv = tan 1
2θ

v

of the homogeneous Ising model on the square grid by putting it into a more
general context of Z-invariant Ising models on isoradial graphs. We refer
the reader interested in historical remarks on Z-invariance to the classical
paper [9] due to Baxter and Enting, a standard source for the detailed
treatment is [6, Sections 6 and 7]. We also refer the interested reader to
the paper [4] and references therein, where the Z-invariance was first (to
the best of our knowledge) discussed in a geometric context, as well as
to the more recent work [43] due to Mercat. The latter paper popularized
statistical mechanics models on rhombic lattices Λ(G) in the probabilistic
community (recall that the vertices of Λ(G) are those of G• and G◦; see
Section 2.1); the name isoradial graphs for the corresponding embeddings
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of the graph G• itself was coined by Kenyon in [33] shortly afterwards.
Below we adopt the notation from the recent paper [11] on this subject due
to Boutillier, de Tilière, and Raschel and refer the interested reader to that
paper for more references. The key idea of this geometric interpretation is
that the combinatorial star-triangle transforms of the Ising model (which
are known as the Yang–Baxter equation in the transfer matrices context)
become local rearrangements of Λ(G), e.g. see [11, Figure 5].

In the notation of [11], one searches for a re-parametrization

(5.2) xv = x(θ | k) :=
cn( 2K

π θ | k)
1 + sn( 2K

π θ | k)
, xh = x

(π
2 − θ

∣∣∣ k)
,

where cn and sn are the Jacobi elliptic functions, θ ∈ (0, π
2 ), k2 ∈ (−∞, 1),

and K = K(k) is the complete elliptic integral of the first kind, see [11,
Section 2.2.2]. Once such a parametrization is found, it becomes useful
to replace the square grid by a rectangular one, with horizontal mesh
steps 2 cos θ and vertical steps 2 sin θ, as the Ising model under consid-
eration fits the framework of [11], with θ and π

2 − θ being the half-angles of
the rhombic lattice; note that in [11] the Ising spins are assigned to vertices
of an isoradial graph while in our paper they live on faces.

It is easy to see that the equations (5.1), (5.2) can be written as

tan θh = sc
(

2K
π
θ

∣∣∣∣ k)
, tan θv = sc

(
K − 2K

π
θ

∣∣∣∣ k)
.

In particular, the parametrization (5.2) is always possible and

tan θh tan θv = (1 − k2)1/2.

Furthermore, the criticality condition θh + θv = 1
2π is equivalent to k2 = 0,

and

(5.3) M(θh, θv) = (1 − (tan θh tan θv)2)1/8 = k1/4 if k2 ∈ [0, 1),

a classical result due to Baxter (see [6, Eq. (7.10.50)]). Moreover, the Z-
invariance allows one to treat the homogeneous Ising model on the trian-
gular/honeycomb lattices on the same foot with the model on the square
grid, see [9, Figure 2]: one has

Mtri(θtri) = Mhex(θhex) = k1/4 if xtri = x
(π

6

∣∣∣ k)
, xhex = x

(π
3

∣∣∣ k)
for k ⩾ 0, where we assume that the Ising model is considered on faces of
the grid and use the same parametrization (2.1) of interaction constants as
usual in our paper.
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The importance of the particular way to draw the lattice becomes fully
transparent at criticality, when θ = θh = π

2 − θv. (Due to Z-invariance, this
condition reads as θtri = π

6 or θhex = π
3 for the homogeneous model on

faces of the triangular or honeycomb lattices.) Indeed, under the isoradial
embedding, the multiplicative factor in the asymptotics

Dm ∼ C2
σ · (2m cos θ)−1/4 as m → ∞

provided by Theorem 3.9 has a clear interpretation: 2m cos θ is nothing but
the geometric distance between the two spins (located at m lattice steps
from each other) under consideration.

Remark 5.1. — Baxter’s formula (5.3) suggests that the spontaneous
magnetization under criticality equals to k 1

4 for the whole family of Ising
models considered in [11] and not only on regular grids. Moreover, in the
critical case k = 0 the asymptotics E[σuσw] ∼ C2

σ·|u−w|−1/4 as |u−w| → ∞
holds on all isoradial graphs, with the universal multiplicative constant C2

σ;
see [17] for further details.

5.2. S-embeddings of the layered zig-zag half-plane in the
periodic case

We now move on from classical rhombic lattices to more general and
flexible setup of s-embeddings suggested in [13] (see also [14] and [34, Sec-
tion 7] for more details) as a tool to study critical Ising models on planar
graphs. We start with discussing a geometric intuition behind the layered
setup with periodic interaction constants θk = θk+2n and conclude by for-
mulating questions on the asymptotic behavior of the truncated determi-
nants (1.5) as m → ∞ in this setup.

The next lemma is a simple corollary of a general result given in [19] on
the criticality condition for the Ising model on a bi-periodic planar graph.

Lemma 5.2. — Let θk = θk+2n for all k ⩾ 1 and some n ⩾ 1. The layered
Ising model in the zig-zag (half-)plane with the interaction constants xk =
tan 1

2θk between the (k − 1)-th and k-th columns is critical (see [19] for a
precise definition) if and only if the following condition holds:

(5.4)
2n∏

k=1
tan θk = 1.

Proof. — According to [19, Theorem 1.1], the criticality condition reads as∑
P ∈E0(G)

x(P ) =
∑

P ∈E1(G)

x(P ) ,
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where G denotes the fundamental domain of the grid drawn on the torus,
E0(G) is the set of even subgraphs of G having the homology type (0, 0)
modulo 2, and E1(G) is the set of all other even subgraphs of G (i.e., those
having the types (0, 1), (1, 0) or (1, 1) modulo 2). In our setup, the funda-
mental domain consists of 2n vertices and one easily sees that each even
subgraph P of G either contains 0 or 2 edges linking the k-th and the
(k + 1)-th vertices, for all k = 1, . . . , 2n, or contains exactly one of the two
edges between these vertices, for all k = 1, . . . , 2n. Therefore,∑

P ∈E0(G)

x(P ) −
∑

P ∈E1(G)

x(P ) =
2n∏

k=1
(1 − x2

k) −
2n∏

k=1
(2xk).

Since tan θk = 2xk/(1 − x2
k), the claim easily follows. □

Recall that the same condition (5.4) describes the fact that the spec-
trum of the non-negative Jacobi matrix J begins at 0. In this case, it is
easy to see that the unique (up to a multiplicative constant) periodic solu-
tion to the equation Jψ◦ = 0 (in other words, a generalized eigenfunction
corresponding to λ = 0) is given by

(5.5) ψ◦
k = (sin θ2k−1)−1 ·

2k−2∏
p=1

cot θp , k ⩾ 1 .

Our next goal is to construct a canonical s-embedding S of the bi-periodic
critical planar Ising model under consideration; see [14, Lemma 2.3] and [34,
Lemma 13] for details. For k ∈ N0 and s ∈ Z, let

S
((

−k − 1
2 , s

))
= (−t•k , s) if k + s ̸∈ 2Z ,

S
((

−k − 1
2 , s

))
= (−t◦k , s) if k + s ∈ 2Z ,

where t◦0 < t•1 < t◦2 < t•3 < · · · and t•0 < t◦1 < t•2 < t◦3 < · · · ; see Figure 5.1.
Since the quadrilaterals with vertices (−t•k, s), (−t◦k, s+ 1), (−t•k+1, s+ 1),
(−t◦k+1, s) should be tangential, we have

t•k+1 − t◦k = 1
2[tanϕk+1 + tanϕk], t◦k+1 − t•k = 1

2[cotϕk+1 + cotϕk],

where ϕk := 1
2arccot(t◦k − t•k) ∈

(
0, 1

2π
)
.

Moreover, the formula [13, Eq. (6.3)] for the value of the Ising interaction
parameter gives the recurrence relation

(5.6) tanϕk+1 = tan2 θk+1 · tanϕk , k ∈ N0 .
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φ0

φ1φ2n−1

φ2n

−t•0
−t◦0−t•1

−t◦1. . .
. . .

−t•2n−1
−t◦2n−1−t•2n

−t◦2n−t•2n+1

−t◦2n+1

1

BS

1

Figure 5.1. Canonical s-embedding of a periodic critical layered Ising
model, see [13, 14]. The slopes ϕk are uniquely determined by the
recurrence (5.6) and by the condition (5.7) coming from the required
periodicity of the function Q in the horizontal direction.

Finally, the condition that the “origami map” function Q associated to S
(or, equivalently, the function LS in the notation of [13, Section 6]) is
periodic in the horizontal direction reads as

(5.7)
2n−1∑
k=0

tanϕk =
2n−1∑
k=0

cotϕk .

It is easy to see that (5.6) and (5.7) define the angles ϕk uniquely and
that the width of the horizontal period

BS := t•k+2n − t•k = t◦k+2n − t◦k, k ∈ N0,
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of thus constructed s-embedding S of the zig-zag half-plane H⋄ equals to

BS = 1
2

[ 2n−1∑
k=0

tanϕk +
2n−1∑
k=0

cotϕk

]

=
[ 2n−1∑

k=0
tanϕk ·

2n−1∑
k=0

cotϕk

]1/2

=
[ 2n−1∑

k=0

k∏
p=1

tan2 θp ·
2n−1∑
k=0

k∏
p=1

cot2 θp

]1/2

.

A straightforward computation based upon (5.5) shows that this expression
coincides with the formula (1.6) for the coefficient CJ in the asymptotics
of the integrated density of states of the matrix J at 0. (For completeness
of the presentation, we also discuss the proof of (1.6) in Section 5.3 below.)
More precisely, one has

n∑
k=1

(ψ◦
k)2 =

n∑
k=1

[
(sin θ2k−1)−2

2k−2∏
p=1

cot2 θp

]
=

2n∑
k=1

k−1∏
p=1

cot2 θp

and
n∑

k=1
(akψ

◦
kψ

◦
k+1)−1 =

n∑
k=1

[
(cos θ2k)−2

2k−1∏
p=1

tan2 θp

]

=
2n∑

k=1

k∏
p=1

tan2 θp .

Therefore,

(5.8) n−1BS =
[
n−2

n∑
k=1

(ψ◦
k)2 ·

n∑
k=1

(akψ
◦
kψ

◦
k+1)−1

]1/2

= CJ .

We conclude this section by coming back to the discussion of the link
between the spectral properties of the matrix J and the asymptotic be-
havior of the magnetization Mm as m → ∞. Contrary to the classical
isoradial setup, in the periodic layered case we do not expect a regular
behavior Mm ∼ const · m−1/8 uniformly over all m. Instead, one should
expect an oscillating prefactor Ap depending on the “type” of the column
under consideration:

Mnm+q ∼ Ap · 21/8Cσ(BSm)−1/8 for 1 ⩽ q ⩽ n and m → ∞,
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where the main factor 21/8Cσ(BSm)−1/8 is universal and accounts the ge-
ometry of the s-embedding, cf. (5.8) and the asymptotics (A.8) in the homo-
geneous case. Note that such oscillating behavior of (1.5) is fully consistent
with the fact that supp νJ has n bands in the periodic setup instead of a
single segment in the homogeneous case. From our perspective, it would be
interesting

• to justify the oscillatory behavior described above and, especially,
to find spectral and geometric interpretations of the coefficients Aq;

• to find a natural definition of the average magnetization over the
period Mm = Mm(Mnm+1, . . . ,Mn(m+1)) such that

Mm ∼ 21/8Cσ(BSm)−1/8 as m → ∞

(i.e., to find a natural average that makes 1 out of A1, . . . , An).

5.3. Proof of the formula (1.6)

For convenience of the readers with a “probabilistic” background we now
sketch a computation of the integrated density of states of a periodic Jacobi
matrix (1.4) at the bottom edge of its spectrum, which is assumed to be
λ = 0; see (1.6) and (5.8). Though this result seems to be quite standard,
we were unable to find an explicit reference in the literature; we thank
Leonid Parnovski for indicating a convenient way of doing the required
computation presented below.

Recall that we assume that θk+2n = θk for all k ⩾ 1 and
∏2n

k=1 tan θk = 1.
Let J [Z] denote the doubly-infinite periodic Jacobi matrix whose entries
−ak and bk, k ∈ Z, are given by (1.4). A straigtforward computation shows
that the n-periodic vector

ψ◦ = (. . . ψ◦
−1 ψ

◦
0 ψ

◦
1 . . .)⊤, ψ◦

pn+q :=
2q∏

k=1

sin θk−1

cos θk
· ψ◦

0 ,

solves the equation J [Z]ψ◦ = 0; let us normalize ψ◦ so that
n∑

q=1
(aqψ

◦
qψ

◦
q+1)−1 = 1.

Denote by J [Nn] the Jacobi matrix of size Nn × Nn with the same
entries −ak, bk and with periodic boundary conditions (i.e., we set J [Nn]

1,Nn =
J

[Nn]
Nn,1 := −a1); note that the choice of boundary conditions (being a rank

two perturbation) is irrelevant when computing the number of eigenvalues
of the truncation PNnJPNn in a small window near λ = 0 as N → ∞.
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The matrix J [Nn] admits a factorization similar to that in the defini-
tion of the original matrix J (see (1.4)); in particular, J [Nn] ⩾ 0. Clearly,
J [Nn]ψ◦ = 0 and (small) eigenvalues of J [Nn] correspond to quasi-periodic
eigenvectors ψs+n = eit ψs, where tN ∈ 2πZ. Let us now introduce an aux-
iliary function

(5.9) gs(t) := exp
[

it
s−1∑
q=1

(aqψ
◦
qψ

◦
q+1)−1

]
and denote

(5.10)
lJ [Nn](t) := (G[Nn](t))−1J [Nn]G[Nn](t) ,

where G[Nn](t) := diag{gs(t)}s=1,...,Nn.

Due to the choice of the multiplicative normalization of the vector ψ◦ made
above, we have gs+n = eit gs. Therefore, studying eigenvalues of the matrix
J [Nn] corresponding to quasi-periodic (i.e., ψs+n = eit ψs) eigenvectors is
equivalent to studying eigenvalues of the family of self-adjoint matrices
J [Nn](t) corresponding to periodic (i.e., ψs+n = ψs) eigenvectors, which are
nothing but the eigenvalues of the n× n matrices J [n](t) with tN ∈ 2πZ.

The question is now reduced to the standard setup of the perturbation
theory of (simple) lowest eigenvalues of matrices J [n](t) as t → 0. It is
well known that both these eigenvalues λ(t) → 0 and the corresponding,
properly normalized, eigenvectors ψ(t) → ψ◦ admit asymptotic expansions

λ(t) = λ(1)t+ λ(2)t2 + · · · ,

ψ(t) = ψ◦ + ψ(1)t+ ψ(2)t2 + · · ·
as t → 0,

where ⟨ψ(1);ψ◦⟩ = 0 and ⟨ψ(2);ψ◦⟩ = − 1
2 ⟨ψ(1);ψ(1)⟩. Moreover, it is easy

to see from (5.10) that J [n](t) = J [n] + J [n],(1)t + J [n],(2)t2 + . . . as t → 0,
where J [n],(1) and J [n],(2) are two-diagonal matrices with entries

J
[n],(1)
q+1,q = −J [n],(1)

q,q+1 = i · (ψ◦
qψ

◦
q+1)−1,

J
[n],(2)
q+1,q = J

[n],(2)
q,q+1 = 1

2a
−1
q · (ψ◦

qψ
◦
q+1)−2.

In particular, we have J [n],(1)ψ◦ = 0; note that this is exactly where a spe-
cial choice of the function (5.9) plays a very important role by simplifying
the computations.

Considering the linear (in t) terms in the identity J [n](t)ψ(t) = λ(t)ψ(t),
we see that J [n]ψ(1) = λ(1)ψ◦, which yields λ(1) = 0 and ψ(1) = 0 since
⟨ψ(1);ψ◦⟩ = 0 and ψ◦ is an eigenvector of J [n] corresponding to the simple
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eigenvalue λ◦ = 0. Expanding the same identity up to the second order in
t we obtain the equation

J [n]ψ(2) + J [n],(2)ψ◦ = λ(2)ψ◦.

Since ⟨J [n]ψ(2), ψ◦⟩ = ⟨ψ(2), J [n]ψ◦⟩ = 0, this allows us to compute

λ(2) = ⟨J [n],(2)ψ◦, ψ◦⟩
⟨ψ◦, ψ◦⟩

=
∑n

q=1(aqψ
◦
qψ

◦
q+1)−1∑n

q=1(ψ◦
q )2

=
[

n∑
q=1

(ψ◦
q )2 ·

n∑
q=1

(aqψ
◦
qψ

◦
q+1)−1

]−1

= (nCJ)−2,

where in the third equality we used the prescribed normalization of the
vector ψ◦; note that the formula (1.6) does not depend on the choice of
this normalization.

Therefore, we have λ(t) = (nCJ)−2t2 + · · · as t → 0, which means that,
for small enough λ0 and N → ∞, the Nn×Nn periodic Jacobi matrix J [Nn]

has approximately NnCJ · π−1√
λ0 eigenvalues λ(t) ⩽ λ0 with tN ∈ 2πZ.

In other words, the integrated density of states of J behaves like CJ ·π−1
√
λ

as λ → 0. The proof of the formula (1.6) is complete.

Appendix A. Critical Ising model θh = θv = π
4 : diagonal

correlations and the half-plane
magnetization via Legendre polynomials

In this appendix we work with the fully homogeneous critical (i.e., θh =
θv = π

4 ) Ising model on the π
4 -rotated square grid of mesh size

√
2. (Note

that this setup is actually more similar to Section 4 rather than to Sec-
tion 3.) We begin with a discussion of the famous result of Wu (see The-
orem A.3 below) that provides an explicit expression of the diagonal spin-
spin correlations in terms of factorials. Using the same approach as in the
core part of our paper, we give a short proof of this theorem by reduc-
ing the computation to the norms of the classical Legendre polynomials.
This derivation was first published in [12, Section 3] based upon an early
version of this paper. (As communicated to the authors by J.H.H. Perk,
a similar link with Legendre functions and Wronskian identities was the
starting point of their joint with H. Au-Yang treatment [51] of the two-
point correlations at criticality via quadratic identities from [50]; see also
Remark 3.10.) We reproduce this short proof of Theorem A.3 below instead
of quoting [12] for two reasons: to keep the presentation self-contained and,
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more importantly, to emphasize its link with similar explicit formulas for
the magnetization Mm in the (2m)-th column of the zig-zag half-plane H⋄.
To obtain the latter, we use a simple Schwarz reflection argument instead
of applying our main result, Theorem 1.1, in the spirit of Section 4.3. This
gives a set of exact identities (see Theorem A.4 and Remark A.5) between
Mm and diagonal correlations in the full plane which appear to be new.

Remark A.1. — The interested reader is also referred to [12, Section 3]
where the non-critical case θ = θh = θv < 1

4π is handled in the same way,
via the OPUC polynomials corresponding to the weight wq(t) = |1− q2 eit |
with q := tan θ < 1. It would be interesting to understand the precise link
between asymptotics of these orthogonal polynomials obtained by Basor,
Chen and Haq in [5] and asymptotics of the diagonal Ising correlations
obtained by Perk and Au-Yang in [52].

Let n ∈ N0 and assume that the π
4 -rotated square grid is shifted so that

its vertices (resp., centers of faces) form the lattice (−n− 1
2 + k, s) (resp.,

(n+ 1
2 + k, s)) with k, s ∈ Z and k + s ∈ 2Z. Let

Dn := E[σ(−n+ 1
2 ,0)σ(n+ 1

2 ,0)]

be the (infinite-volume limit of the) diagonal spin-spin correlation at dis-
tance of n diagonal steps. Denote v := (−n − 1

2 , 0), u := (n + 1
2 , 0) and

let

V (k, s) := X[v,u]((k, s)), k, s ∈ Z, k + s+ n ∈ 2Z,

recall that V is a spinor on the double covers branching over v and u.
It follows from Proposition 2.2 (or, equivalently, Proposition 2.4) that V
satisfies the standard discrete harmonicity condition [∆V ](k, s) = 0 for
all k, s except at the points (±n, 0) near the branchings, where

[∆V ](k, s) := −V (k, s) + 1
4 [V (k − 1, s− 1) + V (k + 1, s− 1)

+ V (k − 1, s+ 1) + V (k + 1, s+ 1)].

It directly follows from the definition of the observable X[v,u] and the self-
duality of the critical model that

(A.1) V (−n, 0) = V (n, 0) = Dn .

Moreover, a straightforward computation similar to the proof of Proposi-
tion 2.2 implies that

(A.2)
[∆V ](±n, 0) = −1

2Dn+1 if n ⩾ 1 ,

[∆V ](0, 0) = −D1 if n = 0 .
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Applying the optional stopping theorem as in the proof of Lemma 3.1, it
is easy to see that the uniformly bounded discrete harmonic spinor V is
uniquely defined by its values (A.1) near the branchings. Following exactly
the same route as in Section 3.2 we now construct V explicitly; a similar
idea was used in [27, Appendix A] to construct the harmonic measure
of the tip in the slit plane, which can be viewed as an analogue of the
function V (k − n, s) for n = ∞.

Lemma A.2. — Let Pn(x) := (2nn!)−1 d
dx [(x2 − 1)n] be the n-th Le-

gendre polynomial. Then, for all k ∈ Z and s ∈ N0 such that n+k+s ∈ 2Z,
one has

(A.3) V (k,±s) = Cn

2π

∫ π

−π

e−ikt(y(t))sPn(cos t) dt,

where y(t) = (1 − | sin t|)/ cos t and Cn is chosen so that V (±n, 0) = Dn.

Proof. — It is easy to see that
• the values V (k, s) defined by (A.3) are uniformly bounded since

|y(t)| ⩽ 1;
• [∆V ](k, s) = 0 if s ̸= 0 since y(t) = 1

2 cos t · (1 + (y(t))2);
• V (k, 0) = 0 if |k| > n, thus one can view (A.3) as a function (spinor)

defined on the double cover branching over v and u and vanishing
over the real line outside the segment [v,u], this spinor satisfies
the discrete harmonicity property at (k, 0) with |k| > n due to
symmetry reasons.

Moreover, the orthogonality (in L2([−1, 1])) of Pn(x) to all monomials
1, x, . . . , xn−1 gives

−[∆V ](k, 0) = V (k, 0) − 1
2 [V (k − 1, 1) + V (k + 1, 1)]

= Cn

2π

∫ π

−π

e−ikt(1 − y(t) cos t)Pn(cos t) dt

= Cn

2π

∫ π

−π

cos(kt)|sin t|Pn(cos t) dt

= Cn

π

∫ 1

−1
T|k|(x)Pn(x) dx = 0

for all |k| < n, where Tk(x) := cos(k arccosx) are the Chebyshev polyno-
mials. Therefore, the Kadanoff–Ceva fermion X[v,u]((k, s)) must coincide
with the right-hand side of (A.3) up to a multiplicative constant. □

The following theorem can be obtained as a simple corollary of Lemma A.2.
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Theorem A.3 (Wu). — The following explicit formula is fulfilled:

(A.4) Dn =
(

2
π

)n

·
n−1∏
k=1

(
1 − 1

4k2

)k−n

, n ⩾ 0.

Proof. — Denote by pn := (2nn!)−1·(2n)!/n! the leading coefficient of the
Legendre polynomial Pn and let tn := 2n−1, n ⩾ 1 be the leading coefficient
of the Chebyshev polynomial Tn, note that the value t0 = 1 does not match
the general case. It follows from (A.3) that Dn = Cn · 2−npn. On the other
hand,

−[∆V ](±n, 0) = Cn

π

∫ 1

−1
Tn(x)Pn(x) dx

= Cntn
πpn

· ∥Pn∥2
L2([−1,1]) = 2Cntn

π(2n+ 1)pn
.

Due to (A.2), we conclude that for all n ⩾ 0 the following recurrence
relation holds:

Dn+1

Dn
= 2n+1Cn

π(2n+ 1)pn
= 22n+1

π(2n+ 1)p2
n

= 2
π

· ((2n)!!)2

(2n− 1)!!(2n+ 1)!! .

This easily gives (A.4) by induction. □

We now move on to an explicit expression for the magnetization in the
(2m)-th column of the zig-zag half-plane H⋄ with “+” boundary conditions:

Mm := E+
H⋄ [σ(−2m− 1

2 ,0)] .

Theorem A.4. — The following identities are fulfilled for all m ∈ N0:

(A.5) Mm+1

Mm
= D2m+2

D2m+1
, Mm =

(
2
π

)m

·
2m−1∏
k=1

(
1 − 1

4k2

)⌊ k
2 ⌋−m

.

Proof. — Similarly to Section 4.1, let v = (−2m− 3
2 , 0) and

H(−k, s) := X[v]((−k, s)), k ∈ N0, s ∈ Z, k + s ̸∈ 2Z

be the half-plane fermionic observable. This is a bounded discrete harmonic
(except at (−2m−1, 0)) spinor on the double cover of H⋄ branching over v
which satisfy the boundary conditions

H(0, s) = 2−1/2 · [H(−1, s− 1) +H(−1, s+ 1)], s ̸∈ 2Z,

on the imaginary line (see (4.3) and (4.4)). Denote

(A.6)
V (±k, s) := CH(k, s) if k ∈ N,

V (0, s) := 2−1/2 · CH(0, s) if k = 0,
s ∈ Z, k + s ̸∈ 2Z,
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where C := D2m+1/Mm; up to a change of the multiplicative normalization,
this is nothing but the extension of H from the left half-plane to the full
plane via the discrete Schwartz reflection. By construction, V is a spinor
on the double cover of the full-plane branching over v and u := (2m+ 3

2 , 0)
which is discrete harmonic everywhere (including points on the imagi-
nary line) except at points (±(2m+ 1), 0) near the branchings, where one
has V (±(2m + 1), 0) = D2m+1. Therefore, it coincides with the full-plane
observable X[v,u]((k, s)) discussed above. In particular, (A.6) implies the
identity

1
2D2m+2 = −[∆V ](−2m− 1, 0) = −C · [∆H](−2m− 1, 0) = C · 1

2Mm+1

which is equivalent to the first identity in (A.5). The explicit formula
for Mm easily follows from the explicit formula (A.4) by induction. □

Remark A.5. — Similarly, let Mm− 1
2

denote the magnetization in the
(2m− 1)-th column of the critical homogeneous Ising model in the zig-zag
plane. It is not hard to repeat the proof of Theorem A.4 in this situation
and to obtain the identity

Mm+ 1
2
/Mm− 1

2
= D2m+1 /D2m, m ∈ N0,

where we formally set M− 1
2

:=
√

2, this convention is the result of the
additional factor relating the values of the half-plane and the full-plane
observables on the imaginary line via (A.6). By induction, one easily gets
the identity

(A.7) Mm+ 1
2
Mm =

√
2 ·D2m+1, m ∈ 1

2N0,

and an explicit formula for Mm+ 1
2
, which is similar to (A.5). Finally, a

straightforward analysis gives the asymptotics

(A.8) Dn ∼ C2
σ · (2n)−1/4, Mm ∼ 21/8Cσ · (2m)−1/8, n,m → ∞,

where Cσ = 2 1
6 e

3
2 ζ′(−1) is the same universal constant as in Theorem 3.9.

Note that we prefer to encapsulate the factors 2n and 2m (rather than
simply n and m), respectively, as they are equal to the geometric dis-
tance between the two spins under consideration and the distance from the
spin σ(−2m− 1

2 ,0) to the boundary of the half-plane H⋄, respectively.
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