An argument by Hassell proving the existence of a Bunimovich stadium for which there are semiclassical measures giving positive mass to the submanifold of bouncing ball trajectories uses a notion of non-gliding points. However, this notion is defined only for domains with -boundaries. The purpose of this note is to clarify the argument.
Un argument de Hassell montrant l’existence d’un stade de Bunimovich sur lequel on trouve une mesure semiclassique chargeant la sous-variété des trajectoires de boules rebondissantes fait appel à la notion de points non-gliding. Pourtant, cette notion suppose un domaine lisse . Le but de cette note est de clarifier ce point.
Accepted:
Online First:
Keywords: Bunimovich’s stadium, quantum unique ergodicity, non-smooth boundary, non-gliding
Mot clés : stade de Bunimovich, unique ergodicité quantique, bord non-lisse, non-gliding
@unpublished{AIF_0__0_0_A39_0, author = {Mangoubi, Dan and Weller Weiser, Adi}, title = {A note on the semiclassical measure at singular points of the boundary of the {Bunimovich} stadium}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2023}, doi = {10.5802/aif.3601}, language = {en}, note = {Online first}, }
TY - UNPB AU - Mangoubi, Dan AU - Weller Weiser, Adi TI - A note on the semiclassical measure at singular points of the boundary of the Bunimovich stadium JO - Annales de l'Institut Fourier PY - 2023 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3601 LA - en ID - AIF_0__0_0_A39_0 ER -
%0 Unpublished Work %A Mangoubi, Dan %A Weller Weiser, Adi %T A note on the semiclassical measure at singular points of the boundary of the Bunimovich stadium %J Annales de l'Institut Fourier %D 2023 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3601 %G en %F AIF_0__0_0_A39_0
Mangoubi, Dan; Weller Weiser, Adi. A note on the semiclassical measure at singular points of the boundary of the Bunimovich stadium. Annales de l'Institut Fourier, Online first, 9 p.
[1] The propagation of singularities along gliding rays, Invent. Math., Volume 41 (1977) no. 3, pp. 197-232 | DOI | MR
[2] Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Math. Acad. Sci. Paris, Volume 325 (1997) no. 7, pp. 749-752 | DOI | MR
[3] Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., Volume 71 (1993) no. 2, pp. 559-607 | DOI | MR
[4] Ergodic billiards that are not quantum unique ergodic, Ann. Math., Volume 171 (2010) no. 1, pp. 605-618 (with an appendix by the author and Luc Hillairet) | DOI | MR
[5] Microlocal parametrices for diffractive boundary value problems, Duke Math. J., Volume 42 (1975) no. 4, pp. 605-635 | MR | Zbl
Cited by Sources: