A note on the semiclassical measure at singular points of the boundary of the Bunimovich stadium
Annales de l'Institut Fourier, Volume 74 (2024) no. 1, pp. 367-375.

An argument by Hassell proving the existence of a Bunimovich stadium for which there are semiclassical measures giving positive mass to the submanifold of bouncing ball trajectories uses a notion of non-gliding points. However, this notion is defined only for domains with C 2 -boundaries. The purpose of this note is to clarify the argument.

Un argument de Hassell montrant l’existence d’un stade de Bunimovich sur lequel on trouve une mesure semiclassique chargeant la sous-variété des trajectoires de boules rebondissantes fait appel à la notion de points non-gliding. Pourtant, cette notion suppose un domaine lisse C 2 . Le but de cette note est de clarifier ce point.

Received:
Accepted:
Online First:
Published online:
DOI: 10.5802/aif.3601
Classification: 58J51, 37D50, 81Q50
Keywords: Bunimovich’s stadium, quantum unique ergodicity, non-smooth boundary, non-gliding
Mot clés : stade de Bunimovich, unique ergodicité quantique, bord non-lisse, non-gliding

Mangoubi, Dan 1; Weller Weiser, Adi 1

1 Einstein Institute of Mathematics Edmond J. Safra campus The Hebrew University of Jerusalem Jerusalem 9190401 (Israel)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2024__74_1_367_0,
     author = {Mangoubi, Dan and Weller Weiser, Adi},
     title = {A note on the semiclassical measure at singular points of the boundary of the {Bunimovich} stadium},
     journal = {Annales de l'Institut Fourier},
     pages = {367--375},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {74},
     number = {1},
     year = {2024},
     doi = {10.5802/aif.3601},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3601/}
}
TY  - JOUR
AU  - Mangoubi, Dan
AU  - Weller Weiser, Adi
TI  - A note on the semiclassical measure at singular points of the boundary of the Bunimovich stadium
JO  - Annales de l'Institut Fourier
PY  - 2024
SP  - 367
EP  - 375
VL  - 74
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3601/
DO  - 10.5802/aif.3601
LA  - en
ID  - AIF_2024__74_1_367_0
ER  - 
%0 Journal Article
%A Mangoubi, Dan
%A Weller Weiser, Adi
%T A note on the semiclassical measure at singular points of the boundary of the Bunimovich stadium
%J Annales de l'Institut Fourier
%D 2024
%P 367-375
%V 74
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3601/
%R 10.5802/aif.3601
%G en
%F AIF_2024__74_1_367_0
Mangoubi, Dan; Weller Weiser, Adi. A note on the semiclassical measure at singular points of the boundary of the Bunimovich stadium. Annales de l'Institut Fourier, Volume 74 (2024) no. 1, pp. 367-375. doi : 10.5802/aif.3601. https://aif.centre-mersenne.org/articles/10.5802/aif.3601/

[1] Andersson, Karl Gustav; Melrose, Richard B. The propagation of singularities along gliding rays, Invent. Math., Volume 41 (1977) no. 3, pp. 197-232 | DOI | MR | Zbl

[2] Burq, Nicolas; Gérard, Patrick Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Math. Acad. Sci. Paris, Volume 325 (1997) no. 7, pp. 749-752 | DOI | MR | Zbl

[3] Gérard, Patrick; Leichtnam, Éric Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J., Volume 71 (1993) no. 2, pp. 559-607 | DOI | MR | Zbl

[4] Hassell, Andrew Ergodic billiards that are not quantum unique ergodic, Ann. Math., Volume 171 (2010) no. 1, pp. 605-618 (with an appendix by the author and Luc Hillairet) | DOI | MR | Zbl

[5] Melrose, Richard B. Microlocal parametrices for diffractive boundary value problems, Duke Math. J., Volume 42 (1975) no. 4, pp. 605-635 | MR | Zbl

Cited by Sources: