If a finitely generated group maps epimorphically onto a group , we are interested in the question: When does the semistability of imply is semistable? In this paper, we give an answer within the class of ascending HNN-extensions. More precisely, our main theorem states: Suppose that the -ended finitely generated ascending HNN-extension is semistable at infinity. Let be the kernel of the obvious homomorphism from the free group onto , then there is a finite subset such that those finitely generated ascending HNN-extensions , with , are all -ended and semistable at infinity as well. Furthermore has such a presentation with . Note that there is an obvious epimorphism from to . It is unknown whether all finitely presented ascending HNN-extensions are semistable at infinity.
La question fondamentale de cet article est de savoir sous quelles conditions la semistabilité d’un groupe entraîne la semistabilité d’un groupe qui admet une surjection sur . Nous allons y répondre dans le cadre des extensions HNN ascendantes. Plus précisement, considérons une extension HNN de type fini ayant un seul bout qu’on suppose être semistable à l’infini. Soit le noyau du morphisme tautologique du groupe libre sur . Alors il existe un sous-ensemble fini tel que toute extension HNN de type fini , ayant , n’a qu’un seul bout et est semistable à l’infini. De plus admet une telle présentation avec . Notons qu’il y a un épimorphisme de dans . A l’heure actuelle, nous ne savons pas si toutes les extensions HNN ascendantes sont semistables à l’infini.
Revised:
Accepted:
Online First:
Published online:
Keywords: Proper homotopy, semistability at infinity, ascending HNN-extension, group presentation
Mot clés : homotopie propre, semistabilité à l’infini, extension HNN ascendante, présentation de groupe
Lasheras, Francisco F. 1; Mihalik, Michael 2
@article{AIF_2024__74_1_349_0, author = {Lasheras, Francisco F. and Mihalik, Michael}, title = {Lifting {Semistability} in {Finitely} {Generated} {Ascending} {HNN-Extensions}}, journal = {Annales de l'Institut Fourier}, pages = {349--365}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {1}, year = {2024}, doi = {10.5802/aif.3599}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3599/} }
TY - JOUR AU - Lasheras, Francisco F. AU - Mihalik, Michael TI - Lifting Semistability in Finitely Generated Ascending HNN-Extensions JO - Annales de l'Institut Fourier PY - 2024 SP - 349 EP - 365 VL - 74 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3599/ DO - 10.5802/aif.3599 LA - en ID - AIF_2024__74_1_349_0 ER -
%0 Journal Article %A Lasheras, Francisco F. %A Mihalik, Michael %T Lifting Semistability in Finitely Generated Ascending HNN-Extensions %J Annales de l'Institut Fourier %D 2024 %P 349-365 %V 74 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3599/ %R 10.5802/aif.3599 %G en %F AIF_2024__74_1_349_0
Lasheras, Francisco F.; Mihalik, Michael. Lifting Semistability in Finitely Generated Ascending HNN-Extensions. Annales de l'Institut Fourier, Volume 74 (2024) no. 1, pp. 349-365. doi : 10.5802/aif.3599. https://aif.centre-mersenne.org/articles/10.5802/aif.3599/
[1] Topics in Geometric Group Theory, Chicago Lectures in Mathematics, University of Chicago Press, 2000
[2] Topological Methods in Group Theory, Graduate Texts in Mathematics, 243, Springer, 2008 | DOI
[3] Free abelian cohomology of groups and ends of universal covers, J. Pure Appl. Algebra, Volume 36 (1985), pp. 123-137 | DOI | MR | Zbl
[4] Ascending HNN-extensions and properly -realisable groups, Bull. Aust. Math. Soc., Volume 72 (2005) no. 2, pp. 187-196 | DOI | MR | Zbl
[5] Shape theory. The inverse system approach, North-Holland Mathematical Library, 26, North-Holland, 1982
[6] Ends of groups with the integers as quotient, J. Pure Appl. Algebra, Volume 35 (1985), pp. 305-320 | DOI | MR | Zbl
[7] Ends of Double Extension Groups, Topology, Volume 25 (1986), pp. 45-53 | DOI | MR | Zbl
[8] Semistability at of finitely generated groups, and solvable groups, Topology Appl., Volume 24 (1986), pp. 259-269 | DOI | MR | Zbl
[9] Semistability at , -ended groups and group cohomology, Trans. Am. Math. Soc., Volume 303 (1987), pp. 479-485 | MR | Zbl
[10] Semistability and simple connectivity at of finitely generated groups with a finite series of commensurated subgroups, Algebr. Geom. Topol., Volume 16 (2016) no. 6, pp. 3615-3640 | DOI | MR | Zbl
[11] Bounded depth ascending HNN-extensions and -semistability at infinity, Can. J. Math., Volume 72 (2020) no. 6, pp. 1529-1550 | DOI | MR | Zbl
[12] Near ascending HNN-extensions and a combination result for semistability at infinity (2022) (https://arxiv.org/abs/2206.04152)
[13] On the one-endedness of graphs of groups, Pac. J. Math., Volume 278 (2015) no. 2, pp. 463-478 | DOI | MR | Zbl
Cited by Sources: