[Une amélioration logarithmique de la loi de Weyl à deux-points sur les variétés sans points conjugués]
Dans cet article, nous étudions la loi de Weyl à deux points pour l’opérateur de Laplace–Beltrami sur une variété riemannienne lisse et compacte sans points conjugués. Cela veut dire que nous donnons le comportement asymptotique du noyau de Schwartz, , de l’opérateur de projection de sur la somme directe des espaces propres pour des valeurs propres inférieures à quand . Dans le régime où sont restreints à un voisinage compact de la diagonale en , on obtient une amélioration logarithmique uniforme dans le reste du développement asymptotique pour et ses dérivées de tous ordres , ce qui généralise un résultat de Bérard, qui a traité le cas diagonal . Lorsque évitent un voisinage compact de la diagonale, on obtient cette même amélioration en une majoration de . Nos résultats impliquent que le noyau de covariance redimensionné d’une onde aléatoire monochromatique converge localement dans la topologie vers une limite d’échelle universelle à un taux logarithmique inverse.
In this paper, we study the two-point Weyl Law for the Laplace–Beltrami operator on a smooth, compact Riemannian manifold with no conjugate points. That is, we find the asymptotic behavior of the Schwartz kernel, , of the projection operator from onto the direct sum of eigenspaces with eigenvalue smaller than as . In the regime where are restricted to a compact neighborhood of the diagonal in , we obtain a uniform logarithmic improvement in the remainder of the asymptotic expansion for and its derivatives of all orders, which generalizes a result of Bérard, who treated the on-diagonal case . When avoid a compact neighborhood of the diagonal, we obtain this same improvement in an upper bound for . Our results imply that the rescaled covariance kernel of a monochromatic random wave locally converges in the -topology to a universal scaling limit at an inverse logarithmic rate.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Weyl Laws, Spectral Theory, Riemannian Geometry, Random Waves.
Mot clés : Loi de Weyl, théorie spectrale, géométrie riemannienne, ondes aléatoires
Keeler, Blake 1
@article{AIF_2024__74_2_719_0, author = {Keeler, Blake}, title = {A logarithmic improvement in the two-point {Weyl} {Law} for manifolds without conjugate points}, journal = {Annales de l'Institut Fourier}, pages = {719--762}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {2}, year = {2024}, doi = {10.5802/aif.3598}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3598/} }
TY - JOUR AU - Keeler, Blake TI - A logarithmic improvement in the two-point Weyl Law for manifolds without conjugate points JO - Annales de l'Institut Fourier PY - 2024 SP - 719 EP - 762 VL - 74 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3598/ DO - 10.5802/aif.3598 LA - en ID - AIF_2024__74_2_719_0 ER -
%0 Journal Article %A Keeler, Blake %T A logarithmic improvement in the two-point Weyl Law for manifolds without conjugate points %J Annales de l'Institut Fourier %D 2024 %P 719-762 %V 74 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3598/ %R 10.5802/aif.3598 %G en %F AIF_2024__74_2_719_0
Keeler, Blake. A logarithmic improvement in the two-point Weyl Law for manifolds without conjugate points. Annales de l'Institut Fourier, Tome 74 (2024) no. 2, pp. 719-762. doi : 10.5802/aif.3598. https://aif.centre-mersenne.org/articles/10.5802/aif.3598/
[1] Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten, Math. Z., Volume 65 (1956), pp. 327-344 | DOI | MR | Zbl
[2] On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z., Volume 155 (1977) no. 3, pp. 249-276 | DOI | MR | Zbl
[3] Regular and irregular semiclassical wavefronts, J. Phys. A, Volume 10 (1977), pp. 2083-2091 | DOI | Zbl
[4] On logarithmic improvements of critical geodesic restriction bounds in the presence of nonpositive curvature, Israel J. Math., Volume 224 (2018) no. 1, pp. 407-436 | DOI | MR | Zbl
[5] A lower bound for the function on manifolds without conjugate points, Documenta Math., Volume 22 (2017), pp. 1279-1283 | MR | Zbl
[6] Scaling limit for the kernel of the spectral projector and remainder estimates in the pointwise Weyl law, Anal. PDE, Volume 8 (2015) no. 7, pp. 1707-1731 | DOI | MR | Zbl
[7] scaling asymptotics for the spectral projector of the Laplacian, J. Geom. Anal., Volume 28 (2018) no. 1, pp. 111-122 | DOI | MR | Zbl
[8] Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992, xiv+300 pages (translated from the second Portuguese edition by Francis Flaherty) | DOI | MR | Zbl
[9] Small Scale CLTs for the Nodal Length of Monochromatic Waves (2020) (https://arxiv.org/abs/2005.06577)
[10] The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., Volume 29 (1975) no. 1, pp. 39-79 | DOI | MR | Zbl
[11] The multidimensional stationary phase method. The second term of the asymptotic expansions, U.S.S.R. Comput. Maths. Math. Phys., Volume 30 (1990) no. 3, pp. 104-107 | DOI | Zbl
[12] The spectral function of an elliptic operator, Acta Math., Volume 121 (1968), pp. 193-218 | DOI | MR | Zbl
[13] The Analysis of Linear Partial Differential Operators. III, Springer-Verlag, 1985 | DOI | MR
[14] How Lagranian states evolve into random waves (2020) (https://arxiv.org/abs/2011.02943)
[15] The second term of the spectral asymptotics for a Laplace–Beltrami operator on manifolds with boundary, Funktsional. Anal. i Prilozhen., Volume 14 (1980) no. 2, pp. 25-34 | MR
[16] Introduction to Riemannian manifolds, Graduate Texts in Mathematics, 176, Springer, Cham, 2018, xiii+437 pages | DOI | MR | Zbl
[17] On the asymptotic behavior of the spectral function of a self-adjoint differential equation of the second order and on expansion in eigenfunctions, Izvestiya Akad. Nauk SSSR. Ser. Mat., Volume 17 (1953), pp. 331-364 | MR
[18] On the asymptotic behavior of a spectral function and on expansion in eigenfunctions of a self-adjoint differential equation of second order. II, Izv. Akad. Nauk SSSR. Ser. Mat., Volume 19 (1955), pp. 33-58 | MR
[19] Asymptotics of a spectral function of a positive elliptic operator without a nontrapping condition, Funktsional. Anal. i Prilozhen., Volume 22 (1988) no. 3, p. 53-65, 96 | DOI | MR | Zbl
[20] The asymptotic distribution of eigenvalues of partial differential operators, Translations of Mathematical Monographs, 155, American Mathematical Society, Providence, RI, 1997, xiv+354 pages (translated from the Russian manuscript by the authors) | DOI | MR
[21] Spectral theory of elliptic operators on noncompact manifolds, Méthodes semi-classiques, Vol. 1 (Nantes, 1991) (Astérisque), Société mathématique de France, 1992 no. 207, pp. 35-108 | MR | Zbl
[22] Hangzhou lectures on eigenfunctions of the Laplacian, Annals of Mathematics Studies, 188, Princeton University Press, Princeton, NJ, 2014, xii+193 pages | DOI | MR | Zbl
[23] Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, 210, Cambridge University Press, Cambridge, 2017, xiv+334 pages | DOI | MR | Zbl
[24] Riemannian manifolds with maximal eigenfunction growth, Duke Math. J., Volume 114 (2002) no. 3, pp. 387-437 | DOI | MR | Zbl
[25] Basic linear partial differential equations, Pure and Applied Mathematics, 62, Academic Press, 1975, xvii+470 pages | MR | Zbl
[26] Spectre du laplacien et longueurs des géodésiques périodiques I., Compos. Math., Volume 27 (1973), pp. 83-106 | Numdam | Zbl
[27] Derivatives of the spectral function and Sobolev norms of eigenfunctions on a closed Riemannian manifold, Ann. Global Anal. Geom., Volume 26 (2004) no. 3, pp. 231-252 | DOI | MR | Zbl
[28] Real and complex zeros of Riemannian random waves, Spectral analysis in geometry and number theory (Contemporary Mathematics), Volume 484, American Mathematical Society, Providence, RI, 2009, pp. 321-342 | DOI | MR | Zbl
[29] Semiclassical Analysis, Providence: AMS, 2012 | DOI
Cité par Sources :