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A LOGARITHMIC IMPROVEMENT IN THE
TWO-POINT WEYL LAW FOR MANIFOLDS WITHOUT

CONJUGATE POINTS

by Blake KEELER (*)

Abstract. — In this paper, we study the two-point Weyl Law for the Laplace–
Beltrami operator on a smooth, compact Riemannian manifold M with no con-
jugate points. That is, we find the asymptotic behavior of the Schwartz kernel,
Eλ(x, y), of the projection operator from L2(M) onto the direct sum of eigenspaces
with eigenvalue smaller than λ2 as λ → ∞. In the regime where x, y are restricted
to a compact neighborhood of the diagonal in M × M , we obtain a uniform loga-
rithmic improvement in the remainder of the asymptotic expansion for Eλ and its
derivatives of all orders, which generalizes a result of Bérard, who treated the on-
diagonal case Eλ(x, x). When x, y avoid a compact neighborhood of the diagonal,
we obtain this same improvement in an upper bound for Eλ. Our results imply that
the rescaled covariance kernel of a monochromatic random wave locally converges
in the C∞-topology to a universal scaling limit at an inverse logarithmic rate.
Résumé. — Dans cet article, nous étudions la loi de Weyl à deux points pour

l’opérateur de Laplace–Beltrami sur une variété riemannienne lisse et compacte M
sans points conjugués. Cela veut dire que nous donnons le comportement asymp-
totique du noyau de Schwartz, Eλ(x, y), de l’opérateur de projection de L2(M)
sur la somme directe des espaces propres pour des valeurs propres inférieures à λ2

quand λ → ∞. Dans le régime où x, y sont restreints à un voisinage compact de la
diagonale en M ×M , on obtient une amélioration logarithmique uniforme dans le
reste du développement asymptotique pour Eλ et ses dérivées de tous ordres , ce
qui généralise un résultat de Bérard, qui a traité le cas diagonal Eλ(x, x). Lorsque
x, y évitent un voisinage compact de la diagonale, on obtient cette même améliora-
tion en une majoration de Eλ. Nos résultats impliquent que le noyau de covariance
redimensionné d’une onde aléatoire monochromatique converge localement dans la
topologie C∞ vers une limite d’échelle universelle à un taux logarithmique inverse.
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1. Introduction

Let (M, g) be a smooth, compact Riemannian manifold without bound-
ary, and denote by ∆g its positive definite Laplace–Beltrami operator. Let
{ϕj}∞j=0 be an orthonormal basis of L2(M) consisting of eigenfunctions of
∆g with

∆gϕj = λ2
jϕj , ‖ϕj‖L2(M) = 1,

where 0 = λ0 < λ1 6 λ2 6 · · · are repeated according to multiplicity.
We may, without loss of generality, take the ϕj to be real-valued. We are
interested in the Schwartz kernel of the spectral projection operator

Eλ : L2(M)→
⊕
λj6λ

ker(∆g − λ2
j ),

which, in the above basis, takes the form

Eλ(x, y) =
∑
λj6λ

ϕj(x)ϕj(y)

on M ×M. This kernel is called the spectral function of ∆g. In this article,
we investigate the two-point Weyl law for the spectral function, i.e. the
asymptotic behavior of Eλ(x, y) in the high-frequency limit λ→∞. In the
general case, the “near-diagonal” behavior of Eλ is known to be given by

(1.1) Eλ(x, y) = λn

(2π)n

∫
B∗xM

eiλ〈exp−1
x (y),ξ〉g dξ√

det gx
+Rλ(x, y),

where B∗xM is the unit ball in the cotangent space at x, and for any multi-
indices α, β,

(1.2) sup
dg(x,y)6ε

|∂αx ∂βyRλ(x, y)| = O(λn−1+|α|+|β|),

as λ → ∞ for some ε > 0 sufficiently small. Here dg is the Riemannian
distance function, exp−1

x is the inverse of the exponential map defined on
a sufficiently small neighborhood of x, and gx denotes the metric at x.
We remark that for the purposes of this formula, we regard exp−1

x (y) and
ξ as elements of T ∗xM , rather than TxM to be consistent with standard
conventions in the literature. Throughout this article we will always inter-
pret norms and inner products with the subscript g as operations using the
co-metric on T ∗M , unless otherwise stated.
A more general version of the above asymptotic was proved for the spec-

tral functions of arbitrary positive elliptic pseudodifferential operators by
Hörmander in [12], generalizing earlier results of Avakumovic [1] and Lev-
itan [17, 18] for the on-diagonal behavior in the case of the Laplacian. We
also remark that the original result was not stated to include derivatives of

ANNALES DE L’INSTITUT FOURIER



A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 3

the remainder function, but as mentioned in [7], (1.2) follows directly from
the wave kernel method (e.g. [23, §4], [27]). Complementary to the near-
diagonal result of Hörmander, an estimate on Eλ when x and y are “far
apart” was obtained by Safarov [19], who showed that if K is any compact
set in M ×M which does not intersect the diagonal with the property that
if x, y ∈ K, then x and y are not mutually focal and at least one of x or y
is not a focal point, then

(1.3) sup
x,y∈K

|Eλ(x, y)| = o(λn)

as λ→∞. Safarov and Vassiliev also obtained some results on the precise
form of the second term in the on-diagonal Weyl law, and we direct the
reader to [20] for more information. In this article, we present improvements
in both (1.2) and (1.3), under the assumption that (M, g) has no conjugate
points. In the fully generic case, it is known that (1.2) is sharp, and this is
easily shown by considering the zonal harmonics on the round sphere Sn−1

centered at x and restricting to Eλ(x, x). However, by making assumptions
about the behavior of the geodesic flow, one can often obtain improvements
in the remainder estimate (1.2). For example, Canzani and Hanin showed
that if one assumes that x0 ∈M is non-self focal, i.e. the loopset given by
{ξ ∈ S∗x0

M : expx0(tξ) = x0 for some t > 0} has Liouville measure zero in
the co-sphere fiber S∗x0

M , then one can locally improve (1.2) to

sup
x,y∈B(x0,rλ)

∣∣∂αx ∂βyRλ(x, y)
∣∣ = o(λn−1+|α|+|β|)

as λ → ∞, where λ 7→ rλ is a real-valued function with rλ = o(1) as
λ→∞, and B(x0, rλ) is the geodesic ball of radius rλ centered at x0 [6,7].
This result was an extension of the work of Safarov [19], who proved a
pointwise o(λn−1) estimate for the on-diagonal remainder Rλ(x, x) without
derivatives. The same on-diagonal result was later proved independently by
Sogge and Zelditch with an alternative proof [24]. This on-diagonal esti-
mate was itself a generalization of the Duistermaat–Guillemin Theorem for
the eigenvalue counting function [10,15]. A more quantitative improvement
in the Weyl law was obtained by Bérard [2], who showed that under the
stronger assumption of nonpositive curvature, one can obtain a factor of

1
logλ in (1.2) when x = y and |α| = |β| = 0. This result was extended by
Bonthonneau [5] to apply to the case where (M, g) has no conjugate points,
and this was accomplished by proving that certain technical geometric es-
timates required in [2] still hold in this more general setting. In this article,
we generalize this logarithmic improvement by showing that it also holds in
the more delicate off-diagonal case. We also show that adding derivatives
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4 Blake KEELER

in x, y yields the expected change in the remainder bound, which enables
us to obtain a quantitative rate of convergence for the rescaled covariance
kernels of monochromatic random waves in the C∞ topology.

Theorem 1.1. — Let (M, g) be a smooth, compact Riemannian mani-
fold without boundary, of dimension n > 2. Suppose that (M, g) has no con-
jugate points. Then, for any multiindices α, β, there exist positive constants
Cα,β and λ0 such that the remainder in the asymptotic expansion (1.1) sat-
isfies

sup
dg(x,y)6 1

2 inj(M,g)

∣∣∂αx ∂βyRλ(x, y)
∣∣ 6 Cα,βλ

n−1+|α|+|β|

log λ .

for all λ > λ0.

An outline of the proof of Theorem 1.1 is given in Subsection 1.1. By
modifying the proof slightly, we also obtain an improved upper bound on
derivatives of Eλ itself when x, y are bounded away from each other, in
analogy to Safarov’s estimate (1.3) from [19].

Theorem 1.2. — For (M, g) as in Theorem 1.1 and any ε > 0, there
exist constants Cα,β,ε, λ0 > 0 such that

(1.4) sup
dg(x,y)>ε

∣∣∂αx ∂βyEλ(x, y)
∣∣ 6 Cα,β,ελ

n−1+|α|+|β|

log λ

for all λ > λ0.

The proof of Theorem 1.2 is largely contained within that of Theorem 1.1,
and the necessary modifications are discussed in Remark 4.7.

A straightforward consequence of Theorem 1.1 is an asymptotic for the
spectral cluster kernels defined by

E(λ,λ+1](x, y) =
∑

λj∈(λ,λ+1]

ϕj(x)ϕj(y),

for x, y ∈ M . In Section 5, we show that using polar coordinates and the
fact that ∫

Sn−1
ei〈w,σ〉 dσ = (2π)n2

Jn−2
2

(|w|)

|w|n−2
2

,

where Jν denotes the Bessel function of the first kind of order ν and dσ
is the standard surface measure on Sn−1, one obtains the following conse-
quence.

ANNALES DE L’INSTITUT FOURIER



A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 5

Theorem 1.3. — For (M, g) as in Theorem 1.1 and for any multi-
indices α, β, there exist constants Cα,β , λ0 > 0 such that for any x, y ∈M
with dg(x, y) 6 1

2 inj(M, g),∣∣∣∣∣∂αx ∂βy
(
E(λ,λ+1](x, y)− λn−1

(2π)n2
Jn−2

2
(λdg(x, y))

(λdg(x, y))n−2
2

)∣∣∣∣∣ 6 Cα,βλ
n−1+|α|+|β|

log λ

whenever λ > λ0.

We note that Theorem 1.3 only gives the leading order behavior of
E(λ,λ+1](x, y) when dg(x, y) is very small relative to 1

λ . To illustrate this,
let us take the case where |α| = |β| = 0. By standard properties of Bessel
functions, we have that∣∣∣∣∣λn−1

Jn−2
2

(λdg(x, y))

(λdg(x, y))n−2
2

∣∣∣∣∣ 6 Cλn−1(1 + λdg(x, y))−
n−1

2 .

Hence, if dg(x, y) > (logλ)
2

n−1

λ , then

λn−1(1 + λdg(x, y))−
n−1

2 6 λn−1
(

1 + (log λ)
2

n−1

)−n−1
2 = O

(
λn−1

log λ

)
.

Thus, if dg(x, y) is too large relative to 1
λ , Theorem 1.3 simply gives the

same upper bound on E(λ,λ+1](x, y) that one would obtain by applying
Theorem 1.2 and Cauchy–Schwarz. A similar argument shows that The-
orem 1.1 only gives the leading behavior when dg(x, y) is smaller than
O
(
λ

2
n−1−1(log λ)

2
n−1

)
.

Off-diagonal cluster estimates such as Theorem 1.3 have applications in
the study of monochromatic random waves, which are random fields of the
form

ψλ(x) = λ
1−n

2
∑

λj∈(λ,λ+1]

ajϕj(x),

for x ∈M, where the aj are i.i.d. standard Gaussian random variables with
mean 0 and variance 1. Random waves of this form were first introduced on
Riemannian manifolds in [28] by Zelditch, who was motivated by Berry’s
conjecture, which suggests that on manifolds with chaotic dynamics, high-
frequency eigenfunctions should behave like certain stationary Gaussian
fields in Euclidean space (cf. [3, 14]).
By the Kolmogorov extension theorem, the statistics of monochromatic

random waves are completely characterized by their covariance kernels, or
two-point correlation functions, which can be computed directly as

Cov(ψλ(x), ψλ(y)) = λ1−nE(λ,λ+1](x, y).

TOME 0 (0), FASCICULE 0



6 Blake KEELER

for x, y ∈ M. Theorem 1.3 implies that for any x0 ∈ M , we have the
following convergence result for the covariance kernel in rescaled normal
coordinates.

Corollary 1.4. — Let (M, g) be as in Theorem 1.1, fix x0 ∈ M , and
let λ 7→ rλ be a real-valued function such that rλ = O

(√
λ

logλ

)
as λ→∞.

Then, for all α, β,

Cov
(
ψλ
(
expx0(uλ )

)
, ψλ

(
expx0( vλ )

))
=

Jn−2
2

(|u− v|)

(2π)n2 |u− v|n−2
2

+R(u, v, λ),

where
sup

|u|,|v|6rλ
|∂αu∂βvR(u, v, λ)| = O

(
1

log λ

)
,

as λ → ∞, and we consider u, v as elements of Rn ∼= T ∗x0
M when taking

the supremum.

Here the implicit constant depends on the choices of x0 and rλ, and
on the order of differentiation. Note that although the radius rλ gives a
growing ball in the u, v coordinates, this corresponds to a shrinking ball of

radius rλλ = O
(

1√
λ logλ

)
onM , and, as λ→∞, this is indeed smaller than

1
2 inj(M, g) as required by Theorem 1.3. One can prove this corollary by
Taylor expanding the function F (τ) = Jν(τ)

τν , with ν = n−2
2 , around τ = 0

and using that dg(x, y) − |u−v|λ = O
(
|u−v|2
λ2

)
. Here, x = expx0(u/λ) and

y = expx0(v/λ). In doing this Taylor expansion, we find that if |u− v|2 6
O
(

λ
logλ

)
, then the error is smaller than the proposed O

(
1

logλ

)
bound,

which determines our condition on rλ, although we do not claim that this
is the largest possible radius for which the result holds. Corollary 1.4 shows
that the rescaled covariance kernel of a monochromatic random wave locally
converges to that of a Euclidean random wave of frequency 1 at a rate of

1
logλ in the C∞-topology, and hence the limit is universal in that it depends
only on the dimension n, not on M itself. As an interesting application, we
note that a recent work of Dierickx, Nourdin, Peccati, and Rossi utilizes
the quantitative rate of convergence given in Corollary 1.4 in the proof of
a small-scale central limit theorem for the nodal lengths of monochromatic
random waves on surfaces without conjugate points [9, Theorem 1.5].
Under the assumption that x0 is a non self-focal point, Canzani and

Hanin proved o(1) convergence in the C0-topology in [6], and then in the
C∞ topology in [7]. However, without any further restrictions on the geom-
etry, they were unable to obtain an explicit rate of convergence as λ→∞.

ANNALES DE L’INSTITUT FOURIER



A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 7

Our 1
log � estimate is a �rst step toward obtaining quantitative asymptotic

improvements on the statistics of monochromatic random waves in the
fairly generic setting of manifolds without conjugate points.

1.1. Outline of the Proof of Theorem 1.1

We �rst relate the spectral function E � (x; y) to the Schwartz kernel
K (t; x; y ) of the wave operatorcos(t

p
� g) using the Fourier transform tak-

ing � 7! t, along with an on-diagonal spectral cluster estimate. We are able
to use on-diagonal results here because we only need upper bounds on the
spectral clusters in this piece of the argument. This is done in Section 2,
although the proof of the relevant spectral cluster estimate is postponed to
Appendix C, since the proof technique is largely a repetition of arguments
from Section 4.

The second step is to approximate K (t; x; y ) using the Hadamard
parametrix, which is done in Section 3. The fact that (M; g) has no conju-
gate points allows us to lift to the universal cover ( fM; eg), which is di�eo-
morphic to Rn by the Cartan�Hadamard theorem. We induce a parametrix
on the base manifold by projecting, i.e. by summing over the deck trans-
formation group � , which results in an expansion of the form

(1.5) K (t; x; y ) =
1X

� =0

X

 2 �

F� (t; ex;  ey) mod C1 ;

where ex; ey are some chosen lifts ofx; y, and where eachF� is the product
of a C1 function and a homogeneous distribution of order2� � n. We do
not reproduce the construction of the parametrix, since it has been done in
great detail in other sources (e.g. [2,13,22]). Instead we focus on identifying
the structure of the distributions which comprise the parametrix and on
proving that the error introduced by approximating K (t; x; y ) by a partial
sum in (1.5) is su�ciently small.

Once we have reduced the proof of Theorem 1.1 to estimating an integral
involving the parametrix, we perform some explicit asymptotic analysis on
the individual terms as � ! 1 . This is the content of Section 4. It is here
that our techniques make the most signi�cant departure from the work of
Bérard [2], whereR� (x; x ) is estimated. In [2], the leading order behavior is
obtained from the term in the parametrix corresponding to  = Id , and so
d~g(ex; ex) = 0 . This reduces the relevant oscillatory integrals to a very simple
form. In our case, a notable di�culty is that d~g(ex; ey) may be quite small,
but need not be exactly zero, and so the corresponding singularities of the
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8 Blake KEELER

parametrix at t = � d~g(ex; ey) are very close together, but do not necessarily
coincide. We still obtain the leading order behavior whenex and ey are the
closest possible lifts ofx; y, which we may assume occurs when = Id ;
but we do not get the same simpli�cations as in [2] if the distance between
them is nonzero. This requires us to use a very di�erent formulation of the
parametrix terms F� , so that we can track the dependence on this distance,
which yields a more complicated linear combination of oscillatory integrals
to estimate. We obtain somewhat weaker control on these terms, but the
bounds are all smaller than the claimed estimate in Theorem 1.1, and so
the �nal result still holds. For the case where  6= Id , our proof hinges on
the fact that d~g(ex;  ey) is bounded uniformly away from zero, thus allowing
for improved estimates from applying stationary phase.

1.2. Organization of the Paper

Sections 2, 3, and 4 are devoted to the proof of Theorem 1.1. Theorem 1.2
follows from the same techniques, as discussed in Remark 4.7. Then, in
Section 5, we prove that Theorem 1.1 implies Theorem 1.3.

Appendix A contains an estimate on summations involving factors which
localize the summand to a� -dependent region. This estimate is used in the
proof of Proposition 2.2, but the method of its proof is not particularly
instructive, and so we relegate it to an Appendix. Appendix B contains the
proofs of some technical di�erential geometry results regarding quantities
appearing in the construction of the parametrix, which are essential for
including derivatives in the main result. We rely heavily on Jacobi �eld
techniques similar to those contained in [4, Ÿ3]. Finally, in Appendix C we
prove the on-diagonal spectral cluster estimate used in Section 2. The main
components of the proof are extremely similar to arguments presented in
Section 4, so we simply sketch the key points.
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2. The Spectral Function and the Wave Kernel

Since the spectral functionE � (x; y) is di�cult to work with directly, we
instead study its behavior by relating it to the kernel of cos(t

p
� g) via the

Fourier transform, following techniques similar to those found in [22]. To
accomplish this, let us note that

E � (x; y) =
1X

j =0

1[� �;� ](� j )' j (x)' j (y);

where 1[� �;� ] denotes the characteristic function of the interval [� �; � ].

Since this characteristic function has Fourier transform
R�

� � e� i t� d� =
2 sin( t� )

t , which is even, we can write

(2.1) E � (x; y) =
1X

j =0

1
�

Z 1

�1

sin(t� )
t

cos(t� j ) ' j (x)' j (y) dt;

where we can interpret the above integral as

lim
N !1

1
�

Z 1

�1
� (t=N )

sin(t� )
t

cos(t� j ) dt

for any even function � 2 C1
c (R) with � (0) = 1 : This interpretation tech-

nically requires that � 2 does not belong to the spectrum of� g, since

lim
N !1

Z 1

�1
� (t=N )

sin(t� )
t

cos(t� ) dt =
1
2

;

if � is even, and so the limit does not actually recover1[� �;� ](� ) (cf. [22]).
Thus, we will assume throughout the rest of this argument that � 2 is not
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an eigenvalue. To justify this assumption, let us de�ne the spectral cluster
operator E ( �;� + A ] for 0 < A 6 1 to be the orthogonal projection

E ( �;� + A ] : L 2(M ) !
M

� j 2 ( �;� + A ]

ker(� g � � 2
j )

and so the corresponding Schwartz kernel is

(2.2) E ( �;� + A ] (x; y) =
X

� j 2 ( �;� + A ]

' j (x)' j (y):

We then have the following estimate on derivatives ofE ( �;� + A ] restricted
to the diagonal, which is a generalization of results from [2,22].

Lemma 2.1. � Let (M; g) be as in Theorem 1.1. Then there are con-
stants � 0; C1; C2 > 0 such that

sup
x 2 M

�
�
�@�

x @�
y E ( �;� + A ] (x; y)

�
�
x = y

�
�
�

6 C1� 2j � j
h
A� n � 1 + eC2 =A A maxf �

n � 1
2 ; � n � 3g

i

for all � > � 0 and all 0 < A 6 1: In particular, if A = 1
c log � with c > 0

su�ciently small, then after possibly increasing � 0; we have

sup
x 2 M

�
�
�@�

x @�
y E ( �;� + A ] (x; y)

�
�
y= x

�
�
� 6 C

� n � 1+2 j � j

log �

for all � > � 0 and for someC > 0.

In the case wherej� j = 0 and (M; g) has nonpositive curvature, this
bound was formally stated in terms of spectral clusters in [22], although
the techniques required to prove it were �rst presented in [2]. The result
of [5] can be easily used to extend thej� j = 0 estimate to the case of
manifolds with no conjugate points. The addition of derivatives is a new
result, but we will postpone the proof, since it is largely a repetition of
arguments found in Section 4.

It follows from Lemma 2.1 that if � 2 is in the spectrum of � g, we can shift
to some slightly larger � 2 which is not an eigenvalue. The error introduced
in doing so then satis�es

�
�@�

x @�
y (E � (x; y) � E � (x; y))

�
� 6

0

@
X

� j 2 ( �;� ]

j@�
x ' j (x)j2

1

A

1=20

@
X

� j 2 ( �;� ]

j@�
y ' j (y)j2

1

A

1=2

6
C� n � 1+ j � j+ j � j

log �
;
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A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 11

provided that j� � � j 6 A for A as above, which is always possible since
the spectrum of � g is discrete.

Now, formally interchanging the summation and the integral in (2.1) we
would have

(2.3) E � (x; y) =
1
�

Z 1

�1

sin(t� )
t

K (t; x; y ) dt;

where

K (t; x; y ) =
1X

j =0

cos(t� j ) ' j (x)' j (y)

is the Schwartz kernel of cos(t
p

� g). This interchange is justi�ed at the
level of operator kernels if we allowE � (x; y) to act on a C1 function
f by integration in y. In this case the summation involves the Fourier
coe�cients of f , which have su�cient decay to guarantee that the sum
converges absolutely, and thus we are justi�ed in interchanging the sum
and the integral.

At this point it is convenient to introduce a smooth, even cuto� function
b� which will allow us to restrict the support of the integrand in (2.3) to
a region where we can approximateK (t; x; y ) by a parametrix. The error
introduced in doing so can be controlled as follows.

Proposition 2.2. � Let (M; g) be as in Theorem 1.1 and letb� 2
C1

c (R) be an even function with b� (t) = 1 for all jt j < 1
2 inj( M; g) and

with support in [� L; L ] for some L < inj( M; g). Then, there exist con-
stants c; C; � 0 > 0 so that if A = 1

c log � , we have

(2.4) sup
x;y 2 M

�
�
�
�@

�
x @�

y

�
E � (x; y) �

1
�

Z 1

�1
b� (At )

sin(t� )
t

K (t; x; y ) dt
� �

�
�
�

6
C� n � 1+ j � j+ j � j

log �

for all � > � 0:

Proof. � We prove this result �rst for the case where j� j = j� j = 0 :
Observe that

(2.5) E � (x; y) �
1
�

Z 1

�1
b� (At )

sin(t� )
t

K (t; x; y ) dt

=
1X

j =0

h�;A (� j )' j (x)' j (y);

TOME 0 (0), FASCICULE 0
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where

(2.6) h�;A (� ) = 1[� �;� ](� ) �
1
�

Z 1

�1
b� (At )

sin t�
t

cost� dt

for � 2 R: We claim that h�;A satis�es the bound

(2.7) jh�;A (� )j 6 CN
�
1 + A � 1

�
� j� j � �

�
� � � N

when � > 1, for any N = 1 ; 2; 3; : : : : To prove this, we note that if � is the
inverse Fourier transform of b� , then � is an even Schwartz-class function
with

R
� dt = b� (0) = 1 . Therefore,

1
�

Z 1

�1
b� (At )

sin t�
t

cost� dt =
Z 1

�1

1
A

�
�

� � s
A

�
1[� �;� ](s) ds

=
Z � + �

A

� � �
A

� (s) ds:

When j� j � � , we use the fact that � is rapidly decaying and 1[� �;� ](� )
is zero. When� � j � j, we use that � decays rapidly and integrates to one
and that 1[� �;� ] is identically one on its support. These facts combine to
give (2.7).

We can therefore control the right-hand side of (2.5) using bounds on
h�;A , along with Lemma 2.1. For this we break the summation into intervals
of sizeA as follows. For eachN > 0, there exists aCN > 0 so that

(2.8)

�
�
�
�
�
�

1X

j =0

h�;A (� j )' j (x)' j (y)

�
�
�
�
�
�

6
1X

k=0

X

� j 2 [kA; (k+1) A ]

CN (1 + A � 1
�
� � � � j

�
�) � N j' j (x)' j (y)j

by (2.7). In each interval, we can write � j = As j for somesj 2 [k; k + 1] ,
and hence

(1 + A � 1j� � � j j) � N = (1 + jA � 1� � sj j) � N 6 CN (1 + jA � 1� � kj) � N ;

for some possibly largerCN > 0; so we can use the triangle inequality to
bound the right-hand side of (2.8) by

(2.9)
1X

k=0

0

@CN (1 + jA � 1� � kj) � N
X

� j 2 [kA ; (k+1) A ]

j' j (x)' j (y)j

1

A :

Next, we seek to apply Lemma 2.1 to each of the sums over� j 2 [kA; (k +
1)A] with � = kA. However, we must �rst discard all terms for which
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kA 6 � 0, where � 0 is as in the statement of Lemma 2.1. To see that this is
possible, observe that

(2.10)
X

k2 [0; � 0
A ]

X

� j 2 [kA ; (k+1) A ]

j' j (x)' j (y)j

6
X

k2 [0; � 0
A ]

X

� j 2 [0;� 0 +1]

j' j (x)' j (y)j 6
C
A

;

for some constantC > 0, since(k + 1) A 6 � 0 + 1 , the set f j : � j 6 � 0 + 1g
is �nite, and each ' j is bounded. Note that hereC may depend on� 0, but
not on A.

Then, for all k with k > � 0
A , we have by Lemma 2.1 and Cauchy�Schwarz

that

(2.11)
X

� j 2 [kA; (k+1) A ]

j' j (x)' j (y)j

6 C1

h
An kn � 1 + eC2 =A maxf A

n +1
2 k

n � 1
2 ; An � 2kn � 3g

i
:

By Corollary A.2 we have for su�ciently large N that
1X

k> � 0
A

CN (1 + jA � 1� � kj) � N An kn � 1 6 eCN An (A � 1� )n � 1 = eCN A� n � 1;

for some eCN > 0. This is because the factor of(1 +
�
�A � 1� � k

�
�) � N serves

to localize the sum to the region wherek � A � 1� . Analogously, after
potentially increasing eCN , we have

1X

k> � 0
A

CN (1 + jA � 1� � kj) � N eC2 =A A
n +1

2 k
n � 1

2 6 eCN A eC2 =A �
n � 1

2

and
1X

k> � 0
A

CN (1 + jA � 1� � kj) � N eC2 =A An � 2kn � 3 6 eCN A eC2 =A � n � 3:

Therefore, by the above estimates and (2.11), there is someeCN > 0 so
that

1X

k> � 0
A

0

@CN (1 + jA � 1� � kj) � N
X

� j 2 [kA ; (k+1) A ]

j' j (x)' j (y)j

1

A

6 eCN

h
A� n � 1 + A eC2 =A maxf �

n � 1
2 ; � n � 3g

i
:

TOME 0 (0), FASCICULE 0
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Now, if we take A = 1
c log � for c > 0, we have that eC2 =A = � cC2 . Hence,

if c is chosen small enough, and if we increase� 0 so that A = 1
c log � 6 1

when � > � 0, we have

(2.12)
1X

k> � 0
A

0

@CN (1 + jA � 1� � kj) � N
X

� j 2 [kA ; (k+1) A ]

j' j (x)' j (y)j

1

A 6 eCN
� n � 1

log �
;

for all � > � 0 after possibly once again modifying eCN . Picking some �xed
N large enough and combining (2.12) with (2.10), we obtain

�
�
�
�
�
�

1X

j =0

h�;A (� j )' j (x)' j (y)

�
�
�
�
�
�

6 eCN
� n � 1

log �
+ C log �

when � > � 0, sinceA = 1
c log � . Note that since n > 2, the O

�
� n � 1

log �

�
term

dominates the O(log � ) term as � ! 1 , and hence we can choose some
e� 0 > � 0 such that

�
�
�
�
�
�

1X

j =0

h�;A (� j )' j (x)' j (y)

�
�
�
�
�
�

6
C� n � 1

log �

for all � > e� 0 and someC > 0.
To include @�

x @�
y , we simply apply the estimate from Lemma 2.1 to obtain

the appropriate modi�cation of (2.11), which is given by
X

� j 2 [kA; (k+1) A ]

�
�@�

x ' j (x)@�
y ' j (y)

�
�

6 C1� j � j+ j � j
h
An kn � 1 + eC2 =A maxf A

n +1
2 k

n � 1
2 ; An � 2kn � 3g

i
;

which only serves to increase the relevant powers of� by j� j + j� j, and
hence the proof goes through with no further adjustments. �

With Proposition 2.2 in hand, it now su�ces to show that the integral
in (2.4) has the asymptotic behavior that we claimed in Theorem 1.1. To
accomplish this, we use the Hadamard parametrix to approximate the co-
sine kernel, which we discuss in the following section.

3. Approximation via the Hadamard parametrix

Given Proposition 2.2, the proof of Theorem 1.1 would be complete if
we could show that for every�; � , there exists C; c > 0 such that for all �

ANNALES DE L'INSTITUT FOURIER
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su�ciently large, the remainder

(3.1) RK (x; y; � ) :=
1
�

Z 1

�1
b� (At )

sin t�
t

K (t; x; y ) dt

�
1

(2� )n

Z

j � j
g � 1

x
6 �

e
ihexp � 1

x (y ) ;� i
g � 1

x
d�

p
det gx

satis�es

(3.2) sup
dg (x;y )6 1

2 inj( M;g )

�
�@�

x @�
y RK (x; y; � )

�
� 6

C� n � 1+ j � j+ j � j

log �

when A = 1
c log � . However, since it is not possible to computeK (t; x; y )

exactly, we instead approximate it using the Hadamard parametrix. In fact,
as in [2], we will use the assumption of no conjugate points to lift to the
universal cover of M to ensure that the parametrix exists for large jt j.
Our ability to control the parametrix for timescales on the order of log �
is what will allow us to estimate the integral involving K (t; x; y ) in (3.1)
for A = 1

c log � , since the integrand is supported wheret 2 [� 1=A; 1=A] �
[� log �; log � ]. The �rst part of this section consists of a summary of results
about the Hadamard parametrix which are proved in other works, and we
refer the reader to the appropriate sources which contain the corresponding
details. Afterward, we prove that the error introduced in replacing K (t; x; y )
by a partial sum of the parametrix in (3.1) is su�ciently small, and we
discuss some particular formulas for the parametrix terms which will be
very useful when we wish to do the explicit asymptotic analysis in Section 4.

Since (M; g) has no conjugate points, we know that for a �xed x0 2 M
the exponential map

p := exp x 0
: Tx 0 M ! M

is a covering map, and hencefM := Tx 0 M �= Rn is the universal cover of
M when equipped with the metric eg = p� g: If we denote by � the deck
transformation group of isometries on fM corresponding to p, the work
of [2] shows that the wave kernelK (t; x; y ) on the base manifoldM has an
expansion of the form

(3.3) K (t; x; y ) =
1X

� =0

X

 2 �

u� (ex;  ey)@t W� (t; d~g(ex;  ey)) mod C1 ;

TOME 0 (0), FASCICULE 0



16 Blake KEELER

where ex; ey are any chosen lifts ofx; y 2 M . The coe�cient functions u� are
de�ned for any ex; ey 2 fM by

(3.4)

8
>>><

>>>:

u0(ex; ey) = � � 1
2 (ex; ey)

u� (ex; ey) = � � 1
2 (ex; ey)

Z 1

0
s� � 1� 1=2(ex; � ~x ~y (s))

� � ~g; ~y u� � 1(ex; � ~x ~y (s)) ds; � > 1;

where �( ex; ey) = jdet Dexp � 1
~x (~y) exp~x j and � ~x ~y is the unique minimizing

geodesic in( fM; eg) connecting ex and ey parametrized by arc length, which
exists because the metric onfM is uniquely geodesic. InRn , the distributions
W� for � = 0 ; 1; 2; : : : ; are de�ned by
(3.5)

W� (t; jwj) =
� !

(2� )n +1 lim
" ! 0+

Z

Rn +1
eihw;� i +i t� (j� j2 � (� � i" )2) � � � 1 d� d�;

for w 2 Rn and t > 0. At t = 0 , we have

W� (0+ ; jwj) = lim
t ! 0+

W� (t; jwj) = 0

for all � > 0 by [22, Proposition 1.2.4]. We then extend each distribution
to t 2 R by imposing the condition W� (� t; jwj) = � W� (t; jwj) so that W�

is odd in t. It is clear from the de�nition that W� depends only on the
norm of w, since it is the inverse Fourier transform of a radial distribution
in � . It is also easy to verify from (3.5) that W� is homogeneous of degree
2� � n + 1 . Furthermore, as � increases, the extra decay of the integrand in
(�; � ) results in additional regularity in (t; w). In particular, we have that
if � > k + n � 1

2 for some integerk, then W� is a continuous function whose
derivatives up to order k are continuous [13, Ÿ17.4]. One can then pull back
via geodesic normal coordinates centered atex 2 fM to obtain distributions
W� (t; d~g(ex; ey)) de�ned on R � fM � fM (see [13, Ÿ17.4] and [22, Ÿ2.4] for
details). Note that we use@t W� in (3.3), rather than W� itself. This is due
to the fact that the parametrix construction is generally done �rst for the
kernel of sin( t

p
� g )p

� g
; and then the parametrix for cos(t

p
� g) is obtained by

di�erentiating in t.
The sum over  2 � in (3.3) is �nite for any �xed t, since the wave

equation has �nite speed of propagation. Indeed, is a consequence of the
Paley�Wiener theorem that W� (t; d~g(ex; ey)) is supported in the light cone
f (t; ex; ey) 2 R � fM � fM : d~g(ex; ey) 6 jt jg. Additionally, by [26, Lemma 6],
we have that for any ex; ey 2 fM ,

(3.6) # f  2 � : d~g(ex;  ey) 6 jt jg 6 C1 eC2 j t j ;
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where C1; C2 are positive constants which are independent ofex; ey. There-
fore, at most C1eC2 j t j terms in the sum over  2 � in (3.3) are nonzero for
any �xed t. We note that this result was stated in [26] for (M; g) having
negative sectional curvature, but the proof only depends on the fact that
the Ricci curvature of ( fM; eg) is bounded below.

Since we wish to use the parametrix instead of the exact wave kernel in
the integral in (3.1), we must estimate the di�erence between them. For
any �xed N > 0 and x; y 2 M , de�ne

(3.7) K N (t; x; y ) =
NX

� =0

X

 2 �

u� (ex;  ey)@t W� (t; d~g(ex;  ey)) :

The following proposition estimates the error introduced by usingK N in
place ofK in (3.1), which is generalizes a result from [2] to include deriva-
tives in x and y.

Proposition 3.1. � Let (M; g) be as in Theorem 1, and letb� 2 C1
c (R)

be as in Proposition 2.2. Let K be the kernel of cos(t
p

� g) and let K N

be de�ned by (3.7). If �; � are multi-indices and if N > m + j� j + n +1
2 for

some integerm > n
2 + j� j � 1, then there exist constantsC1; C2 > 0 so that

for any 0 < A 6 1; we have

(3.8) sup
x;y 2 M

�
�
�
�
1
�

Z 1

�1
b� (At )

sin t�
t

@�
x @�

y (K N (t; x; y ) � K (t; x; y )) d t

�
�
�
�

6 C1 eC2 =A

for all � > 0.

Proof. � Since b� (At ) is uniformly bounded and equal to zero outside
the interval t 2 [� 1=A; 1=A], the above estimate would follow immediately
from the bound

(3.9) sup
x;y 2 M

�
�
�
�
1
t
@�

x @�
y (K N (t; x; y ) � K (t; x; y ))

�
�
�
� 6 C1 eC2 j t j :

We prove this bound using some standard energy inequalities for the wave
equation and a Sobolev embedding, along with some pointwise bounds on
derivatives of u� and @t W� which are direct consequences of results from
Appendix B. The Hadamard parametrix construction in [2] shows that the
remainder

RN (t; x; y ) = K N (t; x; y ) � K (t; x; y )

TOME 0 (0), FASCICULE 0
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satis�es an inhomogeneous wave equation of the form
8
>><

>>:

(@2
t + � g;y )RN (t; x; y ) = FN (t; x; y );

RN (0; x; y) = 0

@t RN (0; x; y) = 0 ;

whereFN (t; x; y ) = C
P

 2 � (� ~g; ~y uN (ex;  ey))@t WN (t; d~g(ex;  ey)) for any lifts
ex; ey of x; y and some constantC, and FN is of classCm + j � j , provided
N > m + j� j + n +1

2 . Noting that derivatives in x commute with � g;y , we
have that

8
>><

>>:

(@2
t + � g;y )(@�

x RN (t; x; y )) = @�
x FN (t; x; y )

@�
x RN (0; x; y) = 0

@t (@�
x RN (0; x; y)) = 0 :

A standard energy inequality for wave equations with vanishing initial
data (see [25, Ch. 47]) yields that for anyx 2 M and t > 0,

(3.10) k@�
x RN (t; x; �)kH m +1 (M ) 6 C1 eC2 t

Z t

0
k@�

x FN (s; x; �)kH m (M ) ds;

for some constantsC1; C2 > 0; where H m (M ) is the standard L 2-based
Sobolev space of orderm. By hypothesis, m + 1 > n

2 + j� j, and hence by
Sobolev embedding, we have

(3.11) sup
y2 M

j@�
x @�

y RN (t; x; y )j 6 C1 eC2 t
Z t

0
k@�

x FN (s; x; �)kH m (M ) ds;

for some possibly di�erent C1; C2 > 0:
In order to analyze @�

x FN (t; x; y ), we must �rst identify @�
x with an op-

eration on the cover, which we can accomplish by locally pulling back via
the covering mapp: To be more precise, if we �x ex 2 fM , we can identify a
small enough coordinate patchU~x containing ex with a coordinate patch on
M , sincepjU ~x is an isometry, and therefore invertible, if U~x is small enough.
Thus, if @�

x indicates di�erentiation in the coordinates on M , we can iden-
tify it with an operator P~x involving only di�erentiation in the coordinates
on fM and derivatives of pj � 1

U ~x
. Since p is a local isometry and M is com-

pact, we have that P~x 2 Di�( fM ), where Di�( fM ) denotes the algebra of
C1 -bounded di�erential operators on fM; de�ned as in [21, Appendix A.1].
That is, we say that P~x is a C1 -bounded di�erential operator of order k if
for some �xed r 2 (0; inj( fM )) , we can expressP~x as

X

j � j6 k

a� (ex)@�
~x
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in any canonical coordinate neighborhood of radiusr , where the a� are
smooth functions with j@�

~x a� (ex)j 6 C� for all � , and the constant is inde-
pendent of the choice of coordinate neighborhood. Thus, we may interpret
@�

x FN (t; x; y ) as

C
X

 2 �

P~x [(� ~g; ~y uN (ex;  ey))@t WN (t; d~g(ex;  ey))] :

Recalling (3.6), the de�nition of H m , and the fact that @t WN is supported
where d~g(ex; ey) 6 jt j, we have that for t > 0,

(3.12) k@�
x FN (t; x; �)kH m (M )

6 C
X

 2 �



 (1 + � ~g; ~y )m= 2P~x [(� ~g; ~y u� (ex;  �))@t WN (t; d~g(ex;  �))]





L 2 ( eM )

6 C1 eC2 t


 (1 + � ~g; ~y )m= 2P~x [(� ~g; ~y uN (ex; �))@t WN (t; d~g(ex; �))]





L 2 ( eM )
;

since � ~g; ~y commutes with isometries acting in the ey variable. We claim
that the function inside the L 2 norm on the right-hand side is bounded
pointwise by a constant multiple of eC3 s 1[0;s](d~g(ex; �)) for some C3 > 0:

Since� ~g; ~y 2 Di�( fM ), it will su�ce to show that for any P~x ; Q~y 2 Di�( fM ),

(3.13) jP~x Q~y uN (ex; ey)j 6 C0eC 00d~g (ex; ey) ;

and

(3.14) jP~x Q~y @t WN (s; d~g(ex; ey)) j 6 C0eC 00s 1[0;s](d~g(ex; ey)) ;

for someC0; C00> 0 which may depend onN , P~x , and Q~y . Inequality (3.13)
is exactly the content of Lemma B.1, which is proved in Appendix B, so
we need only show (3.14). For this, we use the observation from [13, Ÿ17.4]

that WN (s; d~g(ex; ey)) is a constant multiple of (s2 � d~g(ex; ey)2)
N � n � 1

2
+ . Our

hypotheses ensure thatN is su�ciently large so that WN remains a con-
tinuous function after applying @t ; P~x , and Q~y . Since factors ofd~g(ex; ey)2

may appear due to the chain rule, we must apply Lemma B.2 to control
the derivatives of these factors. We then have thatP~x Q~y @t WN (s; d~g(ex; ey))
exhibits at most exponential growth in d~g(ex; ey) and depends polynomially
on s. Recalling that WN is supported whered~g(ex; ey) 6 s gives (3.14).

Combining (3.13) and (3.14) with (3.11) and (3.12), we obtain

sup
y2 M

j@�
x @�

y RN (t; x; y )j 6 C1 eC2 t
Z t

0
eC3 s k1[0;s](d~g(ex; �))k

L 2 ( eM )
ds:

Since the curvature of fM is bounded below, the volume of the geodesic
ball centered at ex of radius s can grow at most exponentially fast in s with
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