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A LOGARITHMIC IMPROVEMENT IN THE
TWO-POINT WEYL LAW FOR MANIFOLDS WITHOUT

CONJUGATE POINTS

by Blake KEELER (*)

Abstract. — In this paper, we study the two-point Weyl Law for the Laplace–
Beltrami operator on a smooth, compact Riemannian manifold M with no con-
jugate points. That is, we find the asymptotic behavior of the Schwartz kernel,
Eλ(x, y), of the projection operator from L2(M) onto the direct sum of eigenspaces
with eigenvalue smaller than λ2 as λ → ∞. In the regime where x, y are restricted
to a compact neighborhood of the diagonal in M × M , we obtain a uniform loga-
rithmic improvement in the remainder of the asymptotic expansion for Eλ and its
derivatives of all orders, which generalizes a result of Bérard, who treated the on-
diagonal case Eλ(x, x). When x, y avoid a compact neighborhood of the diagonal,
we obtain this same improvement in an upper bound for Eλ. Our results imply that
the rescaled covariance kernel of a monochromatic random wave locally converges
in the C∞-topology to a universal scaling limit at an inverse logarithmic rate.

Résumé. — Dans cet article, nous étudions la loi de Weyl à deux points pour
l’opérateur de Laplace–Beltrami sur une variété riemannienne lisse et compacte M
sans points conjugués. Cela veut dire que nous donnons le comportement asymp-
totique du noyau de Schwartz, Eλ(x, y), de l’opérateur de projection de L2(M)
sur la somme directe des espaces propres pour des valeurs propres inférieures à λ2

quand λ → ∞. Dans le régime où x, y sont restreints à un voisinage compact de la
diagonale en M × M , on obtient une amélioration logarithmique uniforme dans le
reste du développement asymptotique pour Eλ et ses dérivées de tous ordres , ce
qui généralise un résultat de Bérard, qui a traité le cas diagonal Eλ(x, x). Lorsque
x, y évitent un voisinage compact de la diagonale, on obtient cette même améliora-
tion en une majoration de Eλ. Nos résultats impliquent que le noyau de covariance
redimensionné d’une onde aléatoire monochromatique converge localement dans la
topologie C∞ vers une limite d’échelle universelle à un taux logarithmique inverse.

Keywords: Weyl Laws, Spectral Theory, Riemannian Geometry, Random Waves.
2020 Mathematics Subject Classification: 35P20.
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1. Introduction

Let (M, g) be a smooth, compact Riemannian manifold without bound-
ary, and denote by ∆g its positive definite Laplace–Beltrami operator. Let
{φj}∞

j=0 be an orthonormal basis of L2(M) consisting of eigenfunctions of
∆g with

∆gφj = λ2
jφj , ∥φj∥L2(M) = 1,

where 0 = λ0 < λ1 ⩽ λ2 ⩽ · · · are repeated according to multiplicity.
We may, without loss of generality, take the φj to be real-valued. We are
interested in the Schwartz kernel of the spectral projection operator

Eλ : L2(M) →
⊕
λj⩽λ

ker(∆g − λ2
j ),

which, in the above basis, takes the form

Eλ(x, y) =
∑
λj⩽λ

φj(x)φj(y)

on M ×M. This kernel is called the spectral function of ∆g. In this article,
we investigate the two-point Weyl law for the spectral function, i.e. the
asymptotic behavior of Eλ(x, y) in the high-frequency limit λ → ∞. In the
general case, the “near-diagonal” behavior of Eλ is known to be given by

(1.1) Eλ(x, y) = λn

(2π)n

∫
B∗

xM

eiλ⟨exp−1
x (y),ξ⟩g

dξ√
det gx

+Rλ(x, y),

where B∗
xM is the unit ball in the cotangent space at x, and for any multi-

indices α, β,

(1.2) sup
dg(x,y)⩽ε

|∂αx ∂βyRλ(x, y)| = O(λn−1+|α|+|β|),

as λ → ∞ for some ε > 0 sufficiently small. Here dg is the Riemannian
distance function, exp−1

x is the inverse of the exponential map defined on
a sufficiently small neighborhood of x, and gx denotes the metric at x.
We remark that for the purposes of this formula, we regard exp−1

x (y) and
ξ as elements of T ∗

xM , rather than TxM to be consistent with standard
conventions in the literature. Throughout this article we will always inter-
pret norms and inner products with the subscript g as operations using the
co-metric on T ∗M , unless otherwise stated.

A more general version of the above asymptotic was proved for the spec-
tral functions of arbitrary positive elliptic pseudodifferential operators by
Hörmander in [12], generalizing earlier results of Avakumovic [1] and Lev-
itan [17, 18] for the on-diagonal behavior in the case of the Laplacian. We
also remark that the original result was not stated to include derivatives of
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A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 3

the remainder function, but as mentioned in [7], (1.2) follows directly from
the wave kernel method (e.g. [23, §4], [27]). Complementary to the near-
diagonal result of Hörmander, an estimate on Eλ when x and y are “far
apart” was obtained by Safarov [19], who showed that if K is any compact
set in M ×M which does not intersect the diagonal with the property that
if x, y ∈ K, then x and y are not mutually focal and at least one of x or y
is not a focal point, then

(1.3) sup
x,y∈K

|Eλ(x, y)| = o(λn)

as λ → ∞. Safarov and Vassiliev also obtained some results on the precise
form of the second term in the on-diagonal Weyl law, and we direct the
reader to [20] for more information. In this article, we present improvements
in both (1.2) and (1.3), under the assumption that (M, g) has no conjugate
points. In the fully generic case, it is known that (1.2) is sharp, and this is
easily shown by considering the zonal harmonics on the round sphere Sn−1

centered at x and restricting to Eλ(x, x). However, by making assumptions
about the behavior of the geodesic flow, one can often obtain improvements
in the remainder estimate (1.2). For example, Canzani and Hanin showed
that if one assumes that x0 ∈ M is non-self focal, i.e. the loopset given by
{ξ ∈ S∗

x0
M : expx0(tξ) = x0 for some t > 0} has Liouville measure zero in

the co-sphere fiber S∗
x0
M , then one can locally improve (1.2) to

sup
x,y∈B(x0,rλ)

∣∣∂αx ∂βyRλ(x, y)
∣∣ = o(λn−1+|α|+|β|)

as λ → ∞, where λ 7→ rλ is a real-valued function with rλ = o(1) as
λ → ∞, and B(x0, rλ) is the geodesic ball of radius rλ centered at x0 [6,7].
This result was an extension of the work of Safarov [19], who proved a
pointwise o(λn−1) estimate for the on-diagonal remainder Rλ(x, x) without
derivatives. The same on-diagonal result was later proved independently by
Sogge and Zelditch with an alternative proof [24]. This on-diagonal esti-
mate was itself a generalization of the Duistermaat–Guillemin Theorem for
the eigenvalue counting function [10,15]. A more quantitative improvement
in the Weyl law was obtained by Bérard [2], who showed that under the
stronger assumption of nonpositive curvature, one can obtain a factor of

1
logλ in (1.2) when x = y and |α| = |β| = 0. This result was extended by
Bonthonneau [5] to apply to the case where (M, g) has no conjugate points,
and this was accomplished by proving that certain technical geometric es-
timates required in [2] still hold in this more general setting. In this article,
we generalize this logarithmic improvement by showing that it also holds in
the more delicate off-diagonal case. We also show that adding derivatives
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4 Blake KEELER

in x, y yields the expected change in the remainder bound, which enables
us to obtain a quantitative rate of convergence for the rescaled covariance
kernels of monochromatic random waves in the C∞ topology.

Theorem 1.1. — Let (M, g) be a smooth, compact Riemannian mani-
fold without boundary, of dimension n ⩾ 2. Suppose that (M, g) has no con-
jugate points. Then, for any multiindices α, β, there exist positive constants
Cα,β and λ0 such that the remainder in the asymptotic expansion (1.1) sat-
isfies

sup
dg(x,y)⩽ 1

2 inj(M,g)

∣∣∂αx ∂βyRλ(x, y)
∣∣ ⩽ Cα,βλ

n−1+|α|+|β|

log λ .

for all λ ⩾ λ0.

An outline of the proof of Theorem 1.1 is given in Subsection 1.1. By
modifying the proof slightly, we also obtain an improved upper bound on
derivatives of Eλ itself when x, y are bounded away from each other, in
analogy to Safarov’s estimate (1.3) from [19].

Theorem 1.2. — For (M, g) as in Theorem 1.1 and any ε > 0, there
exist constants Cα,β,ε, λ0 > 0 such that

(1.4) sup
dg(x,y)⩾ε

∣∣∂αx ∂βyEλ(x, y)
∣∣ ⩽ Cα,β,ελ

n−1+|α|+|β|

log λ

for all λ ⩾ λ0.

The proof of Theorem 1.2 is largely contained within that of Theorem 1.1,
and the necessary modifications are discussed in Remark 4.7.

A straightforward consequence of Theorem 1.1 is an asymptotic for the
spectral cluster kernels defined by

E(λ,λ+1](x, y) =
∑

λj∈(λ,λ+1]

φj(x)φj(y),

for x, y ∈ M . In Section 5, we show that using polar coordinates and the
fact that ∫

Sn−1
ei⟨w,σ⟩ dσ = (2π) n

2
Jn−2

2
(|w|)

|w| n−2
2

,

where Jν denotes the Bessel function of the first kind of order ν and dσ
is the standard surface measure on Sn−1, one obtains the following conse-
quence.

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.3. — For (M, g) as in Theorem 1.1 and for any multi-
indices α, β, there exist constants Cα,β , λ0 > 0 such that for any x, y ∈ M

with dg(x, y) ⩽ 1
2 inj(M, g),∣∣∣∣∣∂αx ∂βy

(
E(λ,λ+1](x, y) − λn−1

(2π) n
2

Jn−2
2

(λdg(x, y))

(λdg(x, y)) n−2
2

)∣∣∣∣∣ ⩽ Cα,βλ
n−1+|α|+|β|

log λ

whenever λ ⩾ λ0.

We note that Theorem 1.3 only gives the leading order behavior of
E(λ,λ+1](x, y) when dg(x, y) is very small relative to 1

λ . To illustrate this,
let us take the case where |α| = |β| = 0. By standard properties of Bessel
functions, we have that∣∣∣∣∣λn−1

Jn−2
2

(λdg(x, y))

(λdg(x, y)) n−2
2

∣∣∣∣∣ ⩽ Cλn−1(1 + λdg(x, y))− n−1
2 .

Hence, if dg(x, y) ⩾ (logλ)
2

n−1

λ , then

λn−1(1 + λdg(x, y))− n−1
2 ⩽ λn−1

(
1 + (log λ)

2
n−1

)− n−1
2 = O

(
λn−1

log λ

)
.

Thus, if dg(x, y) is too large relative to 1
λ , Theorem 1.3 simply gives the

same upper bound on E(λ,λ+1](x, y) that one would obtain by applying
Theorem 1.2 and Cauchy–Schwarz. A similar argument shows that The-
orem 1.1 only gives the leading behavior when dg(x, y) is smaller than
O
(
λ

2
n−1 −1(log λ)

2
n−1

)
.

Off-diagonal cluster estimates such as Theorem 1.3 have applications in
the study of monochromatic random waves, which are random fields of the
form

ψλ(x) = λ
1−n

2
∑

λj∈(λ,λ+1]

ajφj(x),

for x ∈ M, where the aj are i.i.d. standard Gaussian random variables with
mean 0 and variance 1. Random waves of this form were first introduced on
Riemannian manifolds in [28] by Zelditch, who was motivated by Berry’s
conjecture, which suggests that on manifolds with chaotic dynamics, high-
frequency eigenfunctions should behave like certain stationary Gaussian
fields in Euclidean space (cf. [3, 14]).

By the Kolmogorov extension theorem, the statistics of monochromatic
random waves are completely characterized by their covariance kernels, or
two-point correlation functions, which can be computed directly as

Cov(ψλ(x), ψλ(y)) = λ1−nE(λ,λ+1](x, y).
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6 Blake KEELER

for x, y ∈ M. Theorem 1.3 implies that for any x0 ∈ M , we have the
following convergence result for the covariance kernel in rescaled normal
coordinates.

Corollary 1.4. — Let (M, g) be as in Theorem 1.1, fix x0 ∈ M , and
let λ 7→ rλ be a real-valued function such that rλ = O

(√
λ

logλ

)
as λ → ∞.

Then, for all α, β,

Cov
(
ψλ
(
expx0(uλ )

)
, ψλ

(
expx0( vλ )

))
=

Jn−2
2

(|u− v|)

(2π) n
2 |u− v| n−2

2
+R(u, v, λ),

where
sup

|u|,|v|⩽rλ

|∂αu∂βvR(u, v, λ)| = O
(

1
log λ

)
,

as λ → ∞, and we consider u, v as elements of Rn ∼= T ∗
x0
M when taking

the supremum.

Here the implicit constant depends on the choices of x0 and rλ, and
on the order of differentiation. Note that although the radius rλ gives a
growing ball in the u, v coordinates, this corresponds to a shrinking ball of

radius rλ

λ = O
(

1√
λ logλ

)
on M , and, as λ → ∞, this is indeed smaller than

1
2 inj(M, g) as required by Theorem 1.3. One can prove this corollary by
Taylor expanding the function F (τ) = Jν (τ)

τν , with ν = n−2
2 , around τ = 0

and using that dg(x, y) − |u−v|
λ = O

(
|u−v|2

λ2

)
. Here, x = expx0(u/λ) and

y = expx0(v/λ). In doing this Taylor expansion, we find that if |u− v|2 ⩽

O
(

λ
logλ

)
, then the error is smaller than the proposed O

(
1

logλ

)
bound,

which determines our condition on rλ, although we do not claim that this
is the largest possible radius for which the result holds. Corollary 1.4 shows
that the rescaled covariance kernel of a monochromatic random wave locally
converges to that of a Euclidean random wave of frequency 1 at a rate of

1
logλ in the C∞-topology, and hence the limit is universal in that it depends
only on the dimension n, not on M itself. As an interesting application, we
note that a recent work of Dierickx, Nourdin, Peccati, and Rossi utilizes
the quantitative rate of convergence given in Corollary 1.4 in the proof of
a small-scale central limit theorem for the nodal lengths of monochromatic
random waves on surfaces without conjugate points [9, Theorem 1.5].

Under the assumption that x0 is a non self-focal point, Canzani and
Hanin proved o(1) convergence in the C0-topology in [6], and then in the
C∞ topology in [7]. However, without any further restrictions on the geom-
etry, they were unable to obtain an explicit rate of convergence as λ → ∞.
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A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 7

Our 1
logλ estimate is a first step toward obtaining quantitative asymptotic

improvements on the statistics of monochromatic random waves in the
fairly generic setting of manifolds without conjugate points.

1.1. Outline of the Proof of Theorem 1.1

We first relate the spectral function Eλ(x, y) to the Schwartz kernel
K(t, x, y) of the wave operator cos(t

√
∆g) using the Fourier transform tak-

ing λ 7→ t, along with an on-diagonal spectral cluster estimate. We are able
to use on-diagonal results here because we only need upper bounds on the
spectral clusters in this piece of the argument. This is done in Section 2,
although the proof of the relevant spectral cluster estimate is postponed to
Appendix C, since the proof technique is largely a repetition of arguments
from Section 4.

The second step is to approximate K(t, x, y) using the Hadamard
parametrix, which is done in Section 3. The fact that (M, g) has no conju-
gate points allows us to lift to the universal cover (M̃, g̃), which is diffeo-
morphic to Rn by the Cartan–Hadamard theorem. We induce a parametrix
on the base manifold by projecting, i.e. by summing over the deck trans-
formation group Γ, which results in an expansion of the form

(1.5) K(t, x, y) =
∞∑
ν=0

∑
γ∈Γ

Fν(t, x̃, γỹ) mod C∞,

where x̃, ỹ are some chosen lifts of x, y, and where each Fν is the product
of a C∞ function and a homogeneous distribution of order 2ν − n. We do
not reproduce the construction of the parametrix, since it has been done in
great detail in other sources (e.g. [2,13,22]). Instead we focus on identifying
the structure of the distributions which comprise the parametrix and on
proving that the error introduced by approximating K(t, x, y) by a partial
sum in (1.5) is sufficiently small.

Once we have reduced the proof of Theorem 1.1 to estimating an integral
involving the parametrix, we perform some explicit asymptotic analysis on
the individual terms as λ → ∞. This is the content of Section 4. It is here
that our techniques make the most significant departure from the work of
Bérard [2], where Rλ(x, x) is estimated. In [2], the leading order behavior is
obtained from the term in the parametrix corresponding to γ = Id, and so
dg̃(x̃, x̃) = 0. This reduces the relevant oscillatory integrals to a very simple
form. In our case, a notable difficulty is that dg̃(x̃, ỹ) may be quite small,
but need not be exactly zero, and so the corresponding singularities of the
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8 Blake KEELER

parametrix at t = ±dg̃(x̃, ỹ) are very close together, but do not necessarily
coincide. We still obtain the leading order behavior when x̃ and ỹ are the
closest possible lifts of x, y, which we may assume occurs when γ = Id,
but we do not get the same simplifications as in [2] if the distance between
them is nonzero. This requires us to use a very different formulation of the
parametrix terms Fν , so that we can track the dependence on this distance,
which yields a more complicated linear combination of oscillatory integrals
to estimate. We obtain somewhat weaker control on these terms, but the
bounds are all smaller than the claimed estimate in Theorem 1.1, and so
the final result still holds. For the case where γ ̸= Id, our proof hinges on
the fact that dg̃(x̃, γỹ) is bounded uniformly away from zero, thus allowing
for improved estimates from applying stationary phase.

1.2. Organization of the Paper

Sections 2, 3, and 4 are devoted to the proof of Theorem 1.1. Theorem 1.2
follows from the same techniques, as discussed in Remark 4.7. Then, in
Section 5, we prove that Theorem 1.1 implies Theorem 1.3.

Appendix A contains an estimate on summations involving factors which
localize the summand to a λ-dependent region. This estimate is used in the
proof of Proposition 2.2, but the method of its proof is not particularly
instructive, and so we relegate it to an Appendix. Appendix B contains the
proofs of some technical differential geometry results regarding quantities
appearing in the construction of the parametrix, which are essential for
including derivatives in the main result. We rely heavily on Jacobi field
techniques similar to those contained in [4, §3]. Finally, in Appendix C we
prove the on-diagonal spectral cluster estimate used in Section 2. The main
components of the proof are extremely similar to arguments presented in
Section 4, so we simply sketch the key points.
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2. The Spectral Function and the Wave Kernel

Since the spectral function Eλ(x, y) is difficult to work with directly, we
instead study its behavior by relating it to the kernel of cos(t

√
∆g) via the

Fourier transform, following techniques similar to those found in [22]. To
accomplish this, let us note that

Eλ(x, y) =
∞∑
j=0

1[−λ,λ](λj)φj(x)φj(y),

where 1[−λ,λ] denotes the characteristic function of the interval [−λ, λ].
Since this characteristic function has Fourier transform

∫ λ
−λ e−itτ dτ =

2 sin(tλ)
t , which is even, we can write

(2.1) Eλ(x, y) =
∞∑
j=0

1
π

∫ ∞

−∞

sin(tλ)
t

cos(tλj)φj(x)φj(y) dt,

where we can interpret the above integral as

lim
N→∞

1
π

∫ ∞

−∞
β(t/N) sin(tλ)

t
cos(tλj) dt

for any even function β ∈ C∞
c (R) with β(0) = 1. This interpretation tech-

nically requires that λ2 does not belong to the spectrum of ∆g, since

lim
N→∞

∫ ∞

−∞
β(t/N) sin(tλ)

t
cos(tλ) dt = 1

2 ,

if β is even, and so the limit does not actually recover 1[−λ,λ](λ) (cf. [22]).
Thus, we will assume throughout the rest of this argument that λ2 is not
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an eigenvalue. To justify this assumption, let us define the spectral cluster
operator E(λ,λ+A] for 0 < A ⩽ 1 to be the orthogonal projection

E(λ,λ+A] : L2(M) →
⊕

λj∈(λ,λ+A]

ker(∆g − λ2
j )

and so the corresponding Schwartz kernel is

(2.2) E(λ,λ+A](x, y) =
∑

λj∈(λ,λ+A]

φj(x)φj(y).

We then have the following estimate on derivatives of E(λ,λ+A] restricted
to the diagonal, which is a generalization of results from [2,22].

Lemma 2.1. — Let (M, g) be as in Theorem 1.1. Then there are con-
stants λ0, C1, C2 > 0 such that

sup
x∈M

∣∣∣∂αx ∂αyE(λ,λ+A](x, y)
∣∣
x=y

∣∣∣
⩽ C1λ

2|α|
[
Aλn−1 + eC2/AAmax{λ

n−1
2 , λn−3}

]
for all λ ⩾ λ0 and all 0 < A ⩽ 1. In particular, if A = 1

c logλ with c > 0
sufficiently small, then after possibly increasing λ0, we have

sup
x∈M

∣∣∣∂αx ∂αyE(λ,λ+A](x, y)
∣∣
y=x

∣∣∣ ⩽ C
λn−1+2|α|

log λ

for all λ ⩾ λ0 and for some C > 0.

In the case where |α| = 0 and (M, g) has nonpositive curvature, this
bound was formally stated in terms of spectral clusters in [22], although
the techniques required to prove it were first presented in [2]. The result
of [5] can be easily used to extend the |α| = 0 estimate to the case of
manifolds with no conjugate points. The addition of derivatives is a new
result, but we will postpone the proof, since it is largely a repetition of
arguments found in Section 4.

It follows from Lemma 2.1 that if λ2 is in the spectrum of ∆g, we can shift
to some slightly larger µ2 which is not an eigenvalue. The error introduced
in doing so then satisfies

∣∣∂αx ∂βy (Eµ(x, y)−Eλ(x, y))
∣∣⩽
 ∑
λj∈(λ,µ]

|∂αxφj(x)|2
1/2 ∑

λj∈(λ,µ]

|∂βyφj(y)|2
1/2

⩽
Cλn−1+|α|+|β|

log λ ,
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A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 11

provided that |µ − λ| ⩽ A for A as above, which is always possible since
the spectrum of ∆g is discrete.

Now, formally interchanging the summation and the integral in (2.1) we
would have

(2.3) Eλ(x, y) = 1
π

∫ ∞

−∞

sin(tλ)
t

K(t, x, y) dt,

where

K(t, x, y) =
∞∑
j=0

cos(tλj)φj(x)φj(y)

is the Schwartz kernel of cos(t
√

∆g). This interchange is justified at the
level of operator kernels if we allow Eλ(x, y) to act on a C∞ function
f by integration in y. In this case the summation involves the Fourier
coefficients of f , which have sufficient decay to guarantee that the sum
converges absolutely, and thus we are justified in interchanging the sum
and the integral.

At this point it is convenient to introduce a smooth, even cutoff function
ρ̂ which will allow us to restrict the support of the integrand in (2.3) to
a region where we can approximate K(t, x, y) by a parametrix. The error
introduced in doing so can be controlled as follows.

Proposition 2.2. — Let (M, g) be as in Theorem 1.1 and let ρ̂ ∈
C∞
c (R) be an even function with ρ̂(t) = 1 for all |t| < 1

2 inj(M, g) and
with support in [−L,L] for some L < inj(M, g). Then, there exist con-
stants c, C, λ0 > 0 so that if A = 1

c logλ , we have

(2.4) sup
x,y∈M

∣∣∣∣∂αx ∂βy (Eλ(x, y) − 1
π

∫ ∞

−∞
ρ̂(At) sin(tλ)

t
K(t, x, y) dt

)∣∣∣∣
⩽
Cλn−1+|α|+|β|

log λ

for all λ ⩾ λ0.

Proof. — We prove this result first for the case where |α| = |β| = 0.
Observe that

(2.5) Eλ(x, y) − 1
π

∫ ∞

−∞
ρ̂(At) sin(tλ)

t
K(t, x, y) dt

=
∞∑
j=0

hλ,A(λj)φj(x)φj(y),
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where

(2.6) hλ,A(τ) = 1[−λ,λ](τ) − 1
π

∫ ∞

−∞
ρ̂(At) sin tλ

t
cos tτ dt

for τ ∈ R. We claim that hλ,A satisfies the bound

(2.7) |hλ,A(τ)| ⩽ CN
(
1 +A−1∣∣|τ | − λ

∣∣)−N

when λ ⩾ 1, for any N = 1, 2, 3, . . . . To prove this, we note that if ρ is the
inverse Fourier transform of ρ̂, then ρ is an even Schwartz-class function
with

∫
ρdt = ρ̂(0) = 1. Therefore,

1
π

∫ ∞

−∞
ρ̂(At) sin tλ

t
cos tτ dt =

∫ ∞

−∞

1
A
ρ

(
τ − s

A

)
1[−λ,λ](s) ds

=
∫ τ+λ

A

τ−λ
A

ρ(s) ds.

When |τ | ≫ λ, we use the fact that ρ is rapidly decaying and 1[−λ,λ](τ)
is zero. When λ ≫ |τ |, we use that ρ decays rapidly and integrates to one
and that 1[−λ,λ] is identically one on its support. These facts combine to
give (2.7).

We can therefore control the right-hand side of (2.5) using bounds on
hλ,A, along with Lemma 2.1. For this we break the summation into intervals
of size A as follows. For each N > 0, there exists a CN > 0 so that

(2.8)

∣∣∣∣∣∣
∞∑
j=0

hλ,A(λj)φj(x)φj(y)

∣∣∣∣∣∣
⩽

∞∑
k=0

∑
λj∈[kA,(k+1)A]

CN (1 +A−1∣∣λ− λj
∣∣)−N |φj(x)φj(y)|

by (2.7). In each interval, we can write λj = Asj for some sj ∈ [k, k + 1],
and hence

(1 +A−1|λ− λj |)−N = (1 + |A−1λ− sj |)−N ⩽ CN (1 + |A−1λ− k|)−N ,

for some possibly larger CN > 0, so we can use the triangle inequality to
bound the right-hand side of (2.8) by

(2.9)
∞∑
k=0

CN (1 + |A−1λ− k|)−N
∑

λj∈[kA , (k+1)A]

|φj(x)φj(y)|

 .

Next, we seek to apply Lemma 2.1 to each of the sums over λj ∈ [kA, (k+
1)A] with λ = kA. However, we must first discard all terms for which
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kA ⩽ λ0, where λ0 is as in the statement of Lemma 2.1. To see that this is
possible, observe that

(2.10)
∑

k∈[0,λ0
A ]

∑
λj∈[kA , (k+1)A]

|φj(x)φj(y)|

⩽
∑

k∈[0,λ0
A ]

∑
λj∈[0,λ0+1]

|φj(x)φj(y)| ⩽ C

A
,

for some constant C > 0, since (k+ 1)A ⩽ λ0 + 1, the set {j : λj ⩽ λ0 + 1}
is finite, and each φj is bounded. Note that here C may depend on λ0, but
not on A.

Then, for all k with k ⩾ λ0
A , we have by Lemma 2.1 and Cauchy–Schwarz

that

(2.11)
∑

λj∈[kA,(k+1)A]

|φj(x)φj(y)|

⩽ C1

[
Ankn−1 + eC2/A max{A

n+1
2 k

n−1
2 , An−2kn−3}

]
.

By Corollary A.2 we have for sufficiently large N that
∞∑

k⩾λ0
A

CN (1 + |A−1λ− k|)−NAnkn−1 ⩽ C̃NA
n(A−1λ)n−1 = C̃NAλ

n−1,

for some C̃N > 0. This is because the factor of (1 +
∣∣A−1λ− k

∣∣)−N serves
to localize the sum to the region where k ≈ A−1λ. Analogously, after
potentially increasing C̃N , we have

∞∑
k⩾λ0

A

CN (1 + |A−1λ− k|)−N eC2/AA
n+1

2 k
n−1

2 ⩽ C̃NA eC2/A λ
n−1

2

and
∞∑

k⩾λ0
A

CN (1 + |A−1λ− k|)−N eC2/AAn−2kn−3 ⩽ C̃NA eC2/A λn−3.

Therefore, by the above estimates and (2.11), there is some C̃N > 0 so
that

∞∑
k⩾λ0

A

CN (1 + |A−1λ− k|)−N
∑

λj∈[kA , (k+1)A]

|φj(x)φj(y)|


⩽ C̃N

[
Aλn−1 +A eC2/A max{λ

n−1
2 , λn−3}

]
.
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Now, if we take A = 1
c logλ for c > 0, we have that eC2/A = λcC2 . Hence,

if c is chosen small enough, and if we increase λ0 so that A = 1
c logλ ⩽ 1

when λ ⩾ λ0, we have

(2.12)
∞∑

k⩾λ0
A

CN (1 + |A−1λ− k|)−N
∑

λj∈[kA , (k+1)A]

|φj(x)φj(y)|

 ⩽ C̃N
λn−1

log λ ,

for all λ ⩾ λ0 after possibly once again modifying C̃N . Picking some fixed
N large enough and combining (2.12) with (2.10), we obtain∣∣∣∣∣∣

∞∑
j=0

hλ,A(λj)φj(x)φj(y)

∣∣∣∣∣∣ ⩽ C̃N
λn−1

log λ + C log λ

when λ ⩾ λ0, since A = 1
c logλ . Note that since n ⩾ 2, the O

(
λn−1

logλ

)
term

dominates the O(log λ) term as λ → ∞, and hence we can choose some
λ̃0 ⩾ λ0 such that ∣∣∣∣∣∣

∞∑
j=0

hλ,A(λj)φj(x)φj(y)

∣∣∣∣∣∣ ⩽ Cλn−1

log λ

for all λ ⩾ λ̃0 and some C > 0.
To include ∂αx ∂βy , we simply apply the estimate from Lemma 2.1 to obtain

the appropriate modification of (2.11), which is given by∑
λj∈[kA,(k+1)A]

∣∣∂αxφj(x)∂βyφj(y)
∣∣

⩽ C1λ
|α|+|β|

[
Ankn−1 + eC2/A max{A

n+1
2 k

n−1
2 , An−2kn−3}

]
,

which only serves to increase the relevant powers of λ by |α| + |β|, and
hence the proof goes through with no further adjustments. □

With Proposition 2.2 in hand, it now suffices to show that the integral
in (2.4) has the asymptotic behavior that we claimed in Theorem 1.1. To
accomplish this, we use the Hadamard parametrix to approximate the co-
sine kernel, which we discuss in the following section.

3. Approximation via the Hadamard parametrix

Given Proposition 2.2, the proof of Theorem 1.1 would be complete if
we could show that for every α, β, there exists C, c > 0 such that for all λ
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A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 15

sufficiently large, the remainder

(3.1) RK(x, y, λ) := 1
π

∫ ∞

−∞
ρ̂(At) sin tλ

t
K(t, x, y) dt

− 1
(2π)n

∫
|ξ|

g
−1
x

⩽λ
ei⟨exp−1

x (y),ξ⟩
g

−1
x

dξ√
det gx

satisfies

(3.2) sup
dg(x,y)⩽ 1

2 inj(M,g)

∣∣∂αx ∂βyRK(x, y, λ)
∣∣ ⩽ Cλn−1+|α|+|β|

log λ

when A = 1
c logλ . However, since it is not possible to compute K(t, x, y)

exactly, we instead approximate it using the Hadamard parametrix. In fact,
as in [2], we will use the assumption of no conjugate points to lift to the
universal cover of M to ensure that the parametrix exists for large |t|.
Our ability to control the parametrix for timescales on the order of log λ
is what will allow us to estimate the integral involving K(t, x, y) in (3.1)
for A = 1

c logλ , since the integrand is supported where t ∈ [−1/A, 1/A] ≈
[− log λ, log λ]. The first part of this section consists of a summary of results
about the Hadamard parametrix which are proved in other works, and we
refer the reader to the appropriate sources which contain the corresponding
details. Afterward, we prove that the error introduced in replacingK(t, x, y)
by a partial sum of the parametrix in (3.1) is sufficiently small, and we
discuss some particular formulas for the parametrix terms which will be
very useful when we wish to do the explicit asymptotic analysis in Section 4.

Since (M, g) has no conjugate points, we know that for a fixed x0 ∈ M

the exponential map

p := expx0 : Tx0M → M

is a covering map, and hence M̃ := Tx0M
∼= Rn is the universal cover of

M when equipped with the metric g̃ = p∗g. If we denote by Γ the deck
transformation group of isometries on M̃ corresponding to p, the work
of [2] shows that the wave kernel K(t, x, y) on the base manifold M has an
expansion of the form

(3.3) K(t, x, y) =
∞∑
ν=0

∑
γ∈Γ

uν(x̃, γỹ)∂tWν(t, dg̃(x̃, γỹ)) mod C∞,
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16 Blake KEELER

where x̃, ỹ are any chosen lifts of x, y ∈ M . The coefficient functions uν are
defined for any x̃, ỹ ∈ M̃ by

(3.4)


u0(x̃, ỹ) = Θ− 1

2 (x̃, ỹ)

uν(x̃, ỹ) = Θ− 1
2 (x̃, ỹ)

∫ 1

0
sν−1Θ1/2(x̃, αx̃ỹ(s))

× ∆g̃,ỹuν−1(x̃, αx̃ỹ(s)) ds, ν ⩾ 1,

where Θ(x̃, ỹ) = |detDexp−1
x̃ (ỹ) expx̃| and αx̃ỹ is the unique minimizing

geodesic in (M̃, g̃) connecting x̃ and ỹ parametrized by arc length, which
exists because the metric on M̃ is uniquely geodesic. In Rn, the distributions
Wν for ν = 0, 1, 2, . . . , are defined by
(3.5)
Wν(t, |w|) = ν!

(2π)n+1 lim
ε→0+

∫
Rn+1

ei⟨w,ξ⟩+itτ (|ξ|2 − (τ − iε)2)−ν−1 dξ dτ,

for w ∈ Rn and t > 0. At t = 0, we have

Wν(0+, |w|) = lim
t→0+

Wν(t, |w|) = 0

for all ν ⩾ 0 by [22, Proposition 1.2.4]. We then extend each distribution
to t ∈ R by imposing the condition Wν(−t, |w|) = −Wν(t, |w|) so that Wν

is odd in t. It is clear from the definition that Wν depends only on the
norm of w, since it is the inverse Fourier transform of a radial distribution
in ξ. It is also easy to verify from (3.5) that Wν is homogeneous of degree
2ν−n+ 1. Furthermore, as ν increases, the extra decay of the integrand in
(τ, ξ) results in additional regularity in (t, w). In particular, we have that
if ν > k+ n−1

2 for some integer k, then Wν is a continuous function whose
derivatives up to order k are continuous [13, §17.4]. One can then pull back
via geodesic normal coordinates centered at x̃ ∈ M̃ to obtain distributions
Wν(t, dg̃(x̃, ỹ)) defined on R × M̃ × M̃ (see [13, §17.4] and [22, §2.4] for
details). Note that we use ∂tWν in (3.3), rather than Wν itself. This is due
to the fact that the parametrix construction is generally done first for the
kernel of sin(t

√
∆g)√

∆g
, and then the parametrix for cos(t

√
∆g) is obtained by

differentiating in t.
The sum over γ ∈ Γ in (3.3) is finite for any fixed t, since the wave

equation has finite speed of propagation. Indeed, is a consequence of the
Paley–Wiener theorem that Wν(t, dg̃(x̃, ỹ)) is supported in the light cone
{(t, x̃, ỹ) ∈ R × M̃ × M̃ : dg̃(x̃, ỹ) ⩽ |t|}. Additionally, by [26, Lemma 6],
we have that for any x̃, ỹ ∈ M̃ ,

(3.6) #{γ ∈ Γ : dg̃(x̃, γỹ) ⩽ |t|} ⩽ C1 eC2|t|,
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A LOGARITHMIC IMPROVEMENT IN THE TWO-POINT WEYL LAW 17

where C1, C2 are positive constants which are independent of x̃, ỹ. There-
fore, at most C1e

C2|t| terms in the sum over γ ∈ Γ in (3.3) are nonzero for
any fixed t. We note that this result was stated in [26] for (M, g) having
negative sectional curvature, but the proof only depends on the fact that
the Ricci curvature of (M̃, g̃) is bounded below.

Since we wish to use the parametrix instead of the exact wave kernel in
the integral in (3.1), we must estimate the difference between them. For
any fixed N ⩾ 0 and x, y ∈ M , define

(3.7) KN (t, x, y) =
N∑
ν=0

∑
γ∈Γ

uν(x̃, γỹ)∂tWν(t, dg̃(x̃, γỹ)).

The following proposition estimates the error introduced by using KN in
place of K in (3.1), which is generalizes a result from [2] to include deriva-
tives in x and y.

Proposition 3.1. — Let (M, g) be as in Theorem 1, and let ρ̂ ∈ C∞
c (R)

be as in Proposition 2.2. Let K be the kernel of cos(t
√

∆g) and let KN

be defined by (3.7). If α, β are multi-indices and if N > m+ |α| + n+1
2 for

some integer m > n
2 + |β|−1, then there exist constants C1, C2 > 0 so that

for any 0 < A ⩽ 1, we have

(3.8) sup
x,y∈M

∣∣∣∣ 1π
∫ ∞

−∞
ρ̂(At) sin tλ

t
∂αx ∂

β
y (KN (t, x, y) −K(t, x, y)) dt

∣∣∣∣
⩽ C1 eC2/A

for all λ > 0.

Proof. — Since ρ̂(At) is uniformly bounded and equal to zero outside
the interval t ∈ [−1/A, 1/A], the above estimate would follow immediately
from the bound

(3.9) sup
x,y∈M

∣∣∣∣1t ∂αx ∂βy (KN (t, x, y) −K(t, x, y))
∣∣∣∣ ⩽ C1 eC2|t| .

We prove this bound using some standard energy inequalities for the wave
equation and a Sobolev embedding, along with some pointwise bounds on
derivatives of uν and ∂tWν which are direct consequences of results from
Appendix B. The Hadamard parametrix construction in [2] shows that the
remainder

RN (t, x, y) = KN (t, x, y) −K(t, x, y)
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satisfies an inhomogeneous wave equation of the form
(∂2
t + ∆g,y)RN (t, x, y) = FN (t, x, y),

RN (0, x, y) = 0
∂tRN (0, x, y) = 0,

where FN (t, x, y) = C
∑
γ∈Γ(∆g̃,ỹuN (x̃, γỹ))∂tWN (t, dg̃(x̃, γỹ)) for any lifts

x̃, ỹ of x, y and some constant C, and FN is of class Cm+|α|, provided
N > m + |α| + n+1

2 . Noting that derivatives in x commute with ∆g,y, we
have that 

(∂2
t + ∆g,y)(∂αxRN (t, x, y)) = ∂αxFN (t, x, y)

∂αxRN (0, x, y) = 0
∂t (∂αxRN (0, x, y)) = 0.

A standard energy inequality for wave equations with vanishing initial
data (see [25, Ch. 47]) yields that for any x ∈ M and t > 0,

(3.10) ∥∂αxRN (t, x, ·)∥Hm+1(M) ⩽ C1 eC2t

∫ t

0
∥∂αxFN (s, x, ·)∥Hm(M) ds,

for some constants C1, C2 > 0, where Hm(M) is the standard L2-based
Sobolev space of order m. By hypothesis, m + 1 > n

2 + |β|, and hence by
Sobolev embedding, we have

(3.11) sup
y∈M

|∂αx ∂βyRN (t, x, y)| ⩽ C1 eC2t

∫ t

0
∥∂αxFN (s, x, ·)∥Hm(M) ds,

for some possibly different C1, C2 > 0.
In order to analyze ∂αxFN (t, x, y), we must first identify ∂αx with an op-

eration on the cover, which we can accomplish by locally pulling back via
the covering map p. To be more precise, if we fix x̃ ∈ M̃ , we can identify a
small enough coordinate patch Ux̃ containing x̃ with a coordinate patch on
M , since p|Ux̃

is an isometry, and therefore invertible, if Ux̃ is small enough.
Thus, if ∂αx indicates differentiation in the coordinates on M , we can iden-
tify it with an operator Px̃ involving only differentiation in the coordinates
on M̃ and derivatives of p|−1

Ux̃
. Since p is a local isometry and M is com-

pact, we have that Px̃ ∈ Diff(M̃), where Diff(M̃) denotes the algebra of
C∞-bounded differential operators on M̃, defined as in [21, Appendix A.1].
That is, we say that Px̃ is a C∞-bounded differential operator of order k if
for some fixed r ∈ (0, inj(M̃)), we can express Px̃ as∑

|σ|⩽k

aσ(x̃)∂σx̃
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in any canonical coordinate neighborhood of radius r, where the aσ are
smooth functions with |∂αx̃ aσ(x̃)| ⩽ Cα for all α, and the constant is inde-
pendent of the choice of coordinate neighborhood. Thus, we may interpret
∂αxFN (t, x, y) as

C
∑
γ∈Γ

Px̃ [(∆g̃,ỹuN (x̃, γỹ))∂tWN (t, dg̃(x̃, γỹ))] .

Recalling (3.6), the definition of Hm, and the fact that ∂tWN is supported
where dg̃(x̃, ỹ) ⩽ |t|, we have that for t > 0,

(3.12) ∥∂αxFN (t, x, ·)∥Hm(M)

⩽ C
∑
γ∈Γ

∥∥∥(1 + ∆g̃,ỹ)m/2Px̃ [(∆g̃,ỹuν(x̃, γ·))∂tWN (t, dg̃(x̃, γ·))]
∥∥∥
L2(M̃)

⩽ C1 eC2t
∥∥∥(1 + ∆g̃,ỹ)m/2Px̃ [(∆g̃,ỹuN (x̃, ·))∂tWN (t, dg̃(x̃, ·))]

∥∥∥
L2(M̃)

,

since ∆g̃,ỹ commutes with isometries acting in the ỹ variable. We claim
that the function inside the L2 norm on the right-hand side is bounded
pointwise by a constant multiple of eC3s 1[0,s](dg̃(x̃, ·)) for some C3 > 0.
Since ∆g̃,ỹ ∈ Diff(M̃), it will suffice to show that for any Px̃, Qỹ ∈ Diff(M̃),

(3.13) |Px̃QỹuN (x̃, ỹ)| ⩽ C ′ eC
′′dg̃(x̃,ỹ),

and

(3.14) |Px̃Qỹ∂tWN (s, dg̃(x̃, ỹ))| ⩽ C ′ eC
′′s 1[0,s](dg̃(x̃, ỹ)),

for some C ′, C ′′ > 0 which may depend on N , Px̃, and Qỹ. Inequality (3.13)
is exactly the content of Lemma B.1, which is proved in Appendix B, so
we need only show (3.14). For this, we use the observation from [13, §17.4]
that WN (s, dg̃(x̃, ỹ)) is a constant multiple of (s2 − dg̃(x̃, ỹ)2)N− n−1

2
+ . Our

hypotheses ensure that N is sufficiently large so that WN remains a con-
tinuous function after applying ∂t, Px̃, and Qỹ. Since factors of dg̃(x̃, ỹ)2

may appear due to the chain rule, we must apply Lemma B.2 to control
the derivatives of these factors. We then have that Px̃Qỹ∂tWN (s, dg̃(x̃, ỹ))
exhibits at most exponential growth in dg̃(x̃, ỹ) and depends polynomially
on s. Recalling that WN is supported where dg̃(x̃, ỹ) ⩽ s gives (3.14).

Combining (3.13) and (3.14) with (3.11) and (3.12), we obtain

sup
y∈M

|∂αx ∂βyRN (t, x, y)| ⩽ C1 eC2t

∫ t

0
eC3s ∥1[0,s](dg̃(x̃, ·))∥L2(M̃) ds.

Since the curvature of M̃ is bounded below, the volume of the geodesic
ball centered at x̃ of radius s can grow at most exponentially fast in s with
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constants independent of x̃, and hence we have

sup
x,y∈M

|∂αx ∂βyRN (t, x, y)| ⩽ C1 eC2t

after possibly increasing C1 and C2. Recalling that RN and ∂tRN vanish
as t → 0+ and that RN is even with respect to t, we can also write

sup
x,y∈M

∣∣∣∣1t ∂αx ∂βyRN (t, x, y)
∣∣∣∣ ⩽ C1 eC2|t|,

for t ∈ R, which is exactly (3.9), and so the proof is complete. □

Before we explicitly estimate the integral involving K(t, x, y) in (3.1),
we take note of another formula for ∂tWν . By (3.5) and standard Fourier
transform techniques, we have that W0(t, |w|) for w ∈ Rn solves

(∂2
t + ∆Rn)W0(t, |w|) = 0

with initial conditions W0(0, |w|) = 0, ∂tW0(0, |w|) = δ(w), where δ is the
Dirac distribution centered at w = 0. Since W0(t, |w|) is supported in the
union of the forward and backward light cones, we have by uniqueness of
solutions to the wave equation that

W0(t, |w|) = 1
(2π)n

∫
Rn

ei⟨w,ξ⟩ sin(t|ξ|)
|ξ|

dξ

and thus

(3.15) ∂tW0(t, |w|) = 1
(2π)n

∫
Rn

ei⟨w,ξ⟩ cos(t|ξ|) dξ.

It is a straightforward calculation to see from (3.5) that ∂tWν = t
2Wν−1

for any ν ⩾ 1, and hence one can use integration by parts and induction to
show that

(3.16) ∂tWν(t, |w|) =
∑

j+k=ν−1

∑
±

C±
j,k

(2π)n

∫
Rn

ei⟨w,ξ⟩±it|ξ| tj+1|ξ|−ν−k dξ,

where j, k are nonnegative integers, the C±
j,k are some constants depending

only on j, k, and ν [22, Remark 1.2.5]. Here we interpret each term in
the sense of Fourier integral operators. We note that the above formula is
singular at ξ = 0, but this is of little consequence for our application. To
see this, we may introduce a smooth cutoff function χ ∈ C∞

c (R) such that
χ ≡ 0 on [−1, 1] and χ ≡ 1 outside [−2, 2]. Then

(3.17)
∫
Rn

ei⟨w,ξ⟩±it|ξ|(1 − χ(|ξ|))|ξ|−ν−k dξ

is the inverse Fourier transform of a family of compactly supported dis-
tributions in ξ which depends in a smooth and bounded way on t ∈ R.
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Recall that the Fourier transform maps E ′(Rn) → C∞(Rn) and S ′(Rn) →
S ′(Rn), where E ′(Rn) denotes the space of compactly supported distri-
butions and S ′(Rn) denotes the space of tempered distributions. Since
e±it|ξ|(1 − χ(|ξ|))|ξ|−ν−k lies in the intersection of E ′ and S ′, we see
that (3.17) is therefore a smooth and tempered function of (t, w). Thus,
we can write

(3.18) ∂tWν(t, |w|) =
∑

j+k=ν−1

∑
±

C±
j,k

(2π)n

×
∫
Rn

ei⟨w,ξ⟩±it|ξ| tj+1|ξ|−ν−kχ(|ξ|) dξ + fν(t, w),

for some fν : R × Rn → C which is smooth and tempered as a function
of (t, w). Pulling back via the inverse exponential map exp−1

x̃ : M̃ → T ∗
x̃M̃

then gives

(3.19) ∂tWν(t, dg̃(x̃, ỹ))

=
∑

j+k=ν−1

∑
±

C±
j,k

(2π)n

∫
T∗

x̃M

ei⟨exp−1
x̃ (ỹ),ξ⟩g̃±it|ξ| tj+1|ξ|−ν−k

g̃

χ(|ξ|) dξ√
det g̃x̃

+ fν(t, exp−1
x̃ (ỹ)).

Here we recall that ⟨·, ·⟩g̃ and | · |g̃ are taken to mean the inner product
and norm on the cotangent fibers, respectively. Similarly pulling back the
formula for ∂tW0, we obtain

(3.20) ∂tW0(t, dg̃(x̃, ỹ)) = 1
(2π)n

∫
T∗

x̃M

ei⟨exp−1
x̃ (ỹ),ξ⟩g̃ cos(t|ξ|g̃)

dξ√
|g̃x|

.

We make extensive use of formulas (3.19) and (3.20) in Section 4.

4. Explicit Asymptotics

By taking A = 1
c logλ in Proposition 3.1 for c small enough and com-

bining it with Proposition 2.2, we have reduced the proof of Theorem 1.1
to showing that the following estimate holds. This is because the C1 eC2/A =
C1λ

cC2 error bound in Proposition 3.1 is much smaller than O
(
λn−1+|α|+|β|

logλ

)
for c small and λ large.

Proposition 4.1. — Let (M, g) be as in Theorem 1.1 and fix ρ̂ ∈
C∞
c (R) as in Proposition 2.2. Then, for any integer N ⩾ 0 and any multi-

indices α, β, there exist positive constants c, C, λ0 so that if A = 1
c logλ ,
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then

(4.1) 1
π

∫ ∞

−∞
ρ̂(At) sin(tλ)

t
KN (t, x, y) dt

= λn

(2π)n

∫
B∗

xM

eiλ⟨exp−1
x (y),ξ⟩g̃

dξ√
det gx

+RN,A(x, y, λ),

where

sup
dg(x,y)⩽ 1

2 inj(M,g)
|∂αx ∂βyRN,A(x, y, λ)| ⩽ Cλn−1+|α|+|β|

log λ

for all λ ⩾ λ0.

Recalling the definition of KN from (3.7), we have that the left-hand side
of (4.1) can be written as

(4.2)
∑
γ∈Γ

N∑
ν=0

π−1uν(x̃, γỹ)
∫ ∞

−∞
ρ̂(At) sin tλ

t
∂tWν(t, dg̃(x̃, γỹ)) dt,

for any choice of lifts x̃, ỹ ∈ M̃ of x, y ∈ M. To prove Proposition 4.1,
we show that as long as dg(x, y) is small enough, there is one term in the
above summation which contributes the leading order asymptotics, and
the rest are smaller than the claimed remainder bound. In particular, the
leading term will be the one for which ν = 0 and dg̃(x̃, γỹ) = dg(x, y).
The following lemma demonstrates that when x and y are close enough
together, this occurs for a unique γ, and that by choosing the lifts x̃, ỹ
properly, we may assume that this occurs exactly when γ = Id .

Lemma 4.2. — Let x, y ∈ M with dg(x, y) ⩽ 1
2 inj(M, g), and fix a lift

x̃ ∈ M̃ of x. Then, there exists a unique lift ỹ ∈ M̃ for which dg̃(x̃, ỹ) =
dg(x, y). Additionally, if γ is a nonidentity element of the deck transforma-
tion group, then dg̃(x̃, γỹ) > 1

2 inj(M, g).

Proof. — The existence of such a lift ỹ follows immediately from the
fact that p is a local isometry in a ball of radius 1

2 inj(M, g) around x̃. To
show uniqueness, let x, y, ỹ be as above, and note that any other lift of
y must be of the form γỹ for some γ ̸= Id . Then dg̃(ỹ, γỹ) is the length
of a nontrivial closed geodesic in M starting and ending at y. Since M is
compact, there exists a positive minimum of the lengths of such geodesics
which is independent of y. In fact, we have that 0 < inj(M, g) < dg̃(ỹ, γỹ).
Thus, by the triangle inequality, we have

0 < inj(M, g) ⩽ dg̃(ỹ, γỹ) ⩽ dg̃(ỹ, x̃) + dg̃(x̃, γỹ) = dg(x, y) + dg̃(x̃, γỹ),
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since dg̃(x̃, ỹ) = dg(x, y). Using that dg(x, y) ⩽ 1
2 inj(M, g), we have

0 < dg(x, y) ⩽ 1
2 inj(M, g) < dg̃(x̃, γỹ),

which demonstrates that dg̃(x̃, γỹ) ̸= dg(x, y), and also verifies the claimed
lower bound on dg̃(x̃, γỹ). □

Next, we obtain the asymptotics of the term in (4.2), where ν = 0 and
γ = Id. Recalling (3.20) and (3.4), this term is given by

(4.3) 1
π(2π)nΘ− 1

2 (x, y)
∫ ∞

−∞

∫
T∗

xM

ei⟨exp−1
x (y),ξ⟩g

× ρ̂(At) sin tλ
t

cos (t|ξ|g)
dξ dt√
det gx

,

where we can use x, y ∈ M instead of their lifts in M̃ since p is an isom-
etry in a neighborhood containing x̃, ỹ. We seek to show that this term
contributes the leading order behavior in (4.1). To accomplish this, we first
study the behavior of its derivative with respect to λ, since it is more
straightforward to study and will prove useful in later arguments.

Lemma 4.3. — Fix ρ̂ as in Proposition 2.2. Then for any 0 < A < 1, we
have

(4.4) 1
π(2π)n

∫ ∞

−∞

∫
T∗

xM

ei⟨exp−1
x (y),ξ⟩g ρ̂(At) cos(tµ) cos(t|ξ|g−1

x
) dξ dt√

det gx

= µn−1

(2π)n

∫
S∗

xM

eiµ⟨exp−1
x (y),ξ⟩g

dξ√
det gx

+RA(x, y, µ),

where S∗
xM is the co-sphere fiber at x, and

sup
dg(x,y)⩽ 1

2 inj(M,g)

∣∣∂αx ∂βyRA(x, y, µ)
∣∣ = O

(
µn−3+|α|+|β|

)
uniformly in A.

Proof. — For this we argue in close analogy to the proof of [6, Proposi-
tion 12], although we must be cautious about the dependence on A through-
out the argument. Let us write the left hand side of (4.4) as

1
π(2π)n

∫ ∞

−∞

∫
T∗

xM

ei⟨exp−1
x (y),ξ⟩g ρ̂(At) cos(tµ) cos(t|ξ|g)

dξ dt√
det gx

.

Using that cos(a) cos(b) = 1
2 (cos(a+ b) + cos(a− b)) and ρ̂ is even, we can

write the above as
1

(2π)n+1

∫ ∞

−∞

∫
T∗

xM

ei⟨exp−1
x (y),ξ⟩g

(
eit(µ−|ξ|g) + eit(µ+|ξ|g)

)
ρ̂(At) dξ dt√

det gx
.
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We will concern ourselves only with the term involving eit(µ−|ξ|g), because
it can be seen by repeating the following argument that the other term
yields only rapidly decreasing terms in µ, due to the fact that the phase
is nonstationary for µ > 0. Making the change of variables ξ = µrω for
r ∈ R+ and ω ∈ S∗

xM , it suffices to estimate

(4.5) µn

(2π)n+1

∫ ∞

−∞

∫ ∞

0

∫
S∗

xM

eiµr⟨exp−1
x (y),ω⟩g+itµ(1−r)

× ρ̂(At)rn−1 dσx(ω) dr dt,

where dσx is the induced surface measure on S∗
xM . By [23, Theorem 1.2.1],

we can write

(4.6)
∫
S∗

xM

eiµr⟨exp−1
x (y),ω⟩g dσx(ω) =

∑
±

e±iµrdg(x,y) a±(µr exp−1
x (y)),

where |∂αa±(ζ)| ⩽ C(1 + |ζ|)− n−1
2 −|α|. Hence, (4.5) can be expressed as

(4.7)
∑

±

µn

(2π)n+1

∫ ∞

−∞

∫ ∞

0
eiµψ±(x,y,t,r) a±(µr exp−1

x (y))ρ̂(At)rn−1 dr dt,

where ψ±(x, y, t, r) = t(1 − r) ± rdg(x, y). Motivated by the form of this
phase function, we introduce a cutoff β ∈ C∞

c (R+) with β ≡ 1 on small
neighborhood of r = 1 and supported in

( 1
2 ,

3
2
)

. We then have that (4.7)
equals

(4.8)
∑

±

µn

π(2π)n

∫ ∞

−∞

∫ ∞

0
eiµψ±(x,y,t,r) a±(µr exp−1

x (y))

× ρ̂(At)rn−1β(r) dr dt+ O
(
µ−N)

for any N > 2n− 1, uniformly in 0 < A ⩽ 1 and all x, y ∈ M . To see that
the remainder is O(µ−N ), note that if we introduce a factor of 1 − β(r)
in (4.7), we can integrate by parts arbitrarily many times in t using the
operator 1

µ(1−r)∂t, which is well defined on the support of β. This results
in an expression of the form

(4.9) (−1)NAN

µN

∫ ∞

0
e±iµrdg(x,y)(1 − r)−Nrn−1(1 − β(r))

×
∫ ∞

−∞
eit(1−r) ρ̂(N)(At) dtdr.

Since ρ̂(N)(At) vanishes for |t| ⩾ L/A, we have that (4.9) is bounded in
absolute value by a constant times AN−1µ−N , provided that N > 2n−1 so
that the integral in the r variable is absolutely convergent. Recalling that
A ⩽ 1 shows that the asymptotic in (4.8) is uniform with respect to A.
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Next, we seek to apply stationary phase to the first term in (4.8) (see [29,
Theorem 3.16] and [11] ). For this we set

b±
A(t, r, x, y, µ) = a±(µr exp−1

x (y))ρ̂(At)rn−1β(r)

and note that the phase functions ψ± each have a unique critical point at
(t±0 , r

±
0 ) = (±dg(x, y), 1). Therefore, we have that the first term in (4.8)

equals

(4.10) µn−1

(2π)n e±iµdg(x,y)
∑

±

(
b±
A(t±0 , r

±
0 , x, y, µ)+ 1

iµ∂t∂rb
±
A(t±0 , r

±
0 , x, y, µ)

)
+ µn−3

(2π)n e±iµdg(x,y)
∑

±
F±
A (x, y, µ),

where
|F±
A (x, y, µ)| ⩽ sup

k+ℓ⩽7
sup

(t,r)∈supp b±
A

∣∣∂kt ∂ℓrb±
A(t, r, x, y, µ)

∣∣
⩽ C(1 + µdg(x, y))− n−1

2 ,

with C independent of A by our estimates on a±, the fact that ρ̂ is uniformly
bounded, and the fact that β is supported where r ≈ 1. For dg(x, y) ⩽
1
2 inj(M, g) and A ⩽ 1, we have that ρ̂(Adg(x, y)) = 1 and ∂tρ̂(Adg(x, y)) =
0, and hence we see that (4.10) is equal to

µn−1

(2π)n
∑

±
e±iµdg(x,y) a±(µ exp−1

x (y)) + O
(
µn−3)

= µn−1

(2π)n

∫
S∗

xM

eiµ⟨exp−1
x (y),ω⟩g dσx(ω) + O(µn−3),

after recalling the decomposition (4.6). This completes the proof in the case
where we take no derivatives of the remainder. To include derivatives, we
note that the dependence on x, y in (4.5) only appears in the quantity∫

S∗
xM

eiµr⟨exp−1
x (y),ω⟩g dσx,

and hence each differentiation in x or y yields at most one additional power
of µ in the asymptotic expansion. More precisely, by the linear change of
variables θ = g

−1/2
x ω, we have∫

S∗
xM

eiµr⟨exp−1
x (y),ω⟩g dσx(ω) =

∫
Sn−1

eiµr⟨g−1/2
x exp−1

x (y),θ⟩Rn dS(θ),

where dS is the surface measure on the round sphere Sn−1 ⊂ Rn, and so
the dependence on x, y only appears in the exponent. Therefore, applying
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∂αx ∂
β
y yields a finite linear combination of terms of the form

(iµr)kf(x, y)
∫
S∗

xM

eiµr⟨exp−1
x (y),ω⟩g h(ω) dσx(ω)

for k ⩽ |α| + |β| and some smooth, bounded functions f, h. Repeating the
preceding argument on each of these terms yields the desired result. □

If it were not for the factor of Θ− 1
2 which appears in the ν = 0 term

of (4.3), we could simply integrate (4.4) with respect to µ to obtain the
leading term in (4.1) with a remainder bounded by O(λn−2+|α|+|β|). The
following lemma handles this difficulty at the expense of weakening the
remainder bound.

Lemma 4.4. — For ρ̂ as in Proposition 2.2, there exist constants
c, C, λ0 > 0 such that if A = 1

c logλ , then

(4.11) Θ− 1
2 (x, y)

(2π)n

∫ ∞

−∞

∫
T∗

xM

ei⟨exp−1
x (y),ξ⟩g ρ̂(At) sin tλ

t
cos(t|ξ|g)

dξ dt√
det gx

= λn

(2π)n

∫
B∗

xM

eiλ⟨exp−1
x (y),ξ⟩g

dξ√
det gx

+RA(x, y, λ),

where

sup
dg(x,y)⩽ 1

2 inj(M,g)

∣∣∂αx ∂βyRA(x, y, λ)
∣∣ ⩽ Cλn−1+|α|+|β|

log λ

for all λ ⩾ λ0.

Proof. — We first handle the case where |α| = |β| = 0. Since the differ-
ential of Θ− 1

2 vanishes at (x, x) ∈ M ×M , we know that

Θ− 1
2 (x, y) = 1 + dg(x, y)2f(x, y)

for some smooth, bounded function f . Thus, we need only show that

(4.12) dg(x, y)2
∫ ∞

−∞

∫
T∗

xM

ei⟨exp−1
x (y),ξ⟩g ρ̂(At) sin tλ

t
cos(t|ξ|g)

dξ dt√
det gx

= O
(
λn−1

log λ

)
,

since we can integrate (4.4) with respect to µ from 0 to λ to obtain the
claimed leading order term with an O(λn−2) error. Observe that

dg(x, y)2 ei⟨exp−1
x (y),ξ⟩g = 1

i
⟨exp−1

x (y),∇ξ ei⟨exp−1
x (y),ξ⟩g ⟩g
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where ∇ξ denotes the induced gradient on the cotangent fiber T ∗
xM . Thus,

we may integrate by parts in ξ on the left-hand side of (4.12) to obtain

(4.13) 1
i

∫ ∞

−∞

∫
T∗

xM

ei⟨exp−1
x (y),ξ⟩g ρ̂(At)

〈
exp−1

x (y), ξ

|ξ|g

〉
g

× sin(tλ) sin(t|ξ|) dξ dt√
det gx

.

Since ⟨exp−1
x (y), ξ/|ξ|⟩ can be written as dg(x, y) times a bounded function

of x, y, and ξ/|ξ|, and since sin(a) sin(b) = 1
2 (cos(a− b) − cos(a+ b)), we

may repeat arguments from the proof of Proposition 4.3 to see that (4.13)
is bounded by a constant times

(4.14) dg(x, y)λn−1(1 + λdg(x, y))− n−1
2 .

In the regime where dg(x, y) ⩽ 1
logλ , (4.14) is clearly bounded by

O
(
λn−1/ log λ

)
. If 1

logλ ⩽ dg(x, y) ⩽ 1
2 inj(M, g), then we have that

dg(x, y)λn−1(1 + λdg(x, y))− n−1
2 ⩽ Cλ

n−1
2 (log λ)

n−1
2 ⩽

Cλn−1

log λ ,

since n ⩾ 2. This completes the proof in the case of no x, y derivatives.
To include ∂αx ∂

β
y , we must consider a few cases. As discussed in the

proof of Proposition 4.3, each derivative which falls on the integral in the
left-hand side of (4.11) yields one additional power of λ in the asymp-
totic expansion. If every derivative falls on the integral, then we have pre-
cisely the claimed leading order term plus a remainder on the order of
λn−1+|α|+|β|/ log λ by combining Proposition 4.3, an integration from 0 to
λ in µ, and a repetition of the above argument. Alternatively, if two or
more of the derivatives fall on the Θ− 1

2 factor, then Proposition 4.3 shows
that the contributions from the integral itself are at most λn−2+|α|+|β|,
and then we simply use that all derivatives of Θ− 1

2 are bounded when x, y
are restricted to a compact set. The only remaining case is the scenario in
which exactly one derivative falls on the Θ− 1

2 factor. Here we must use the
fact that the differential of Θ− 1

2 (x, y) vanishes on the diagonal in M ×M,

and hence both ∂xj

(
Θ− 1

2 (x, y)
)

and ∂yj

(
Θ− 1

2 (x, y)
)

are O (dg(x, y)) for
any j. Combining this with previous arguments, we have that if α′ is a
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multiindex of length |α| − 1, then

(4.15)

∣∣∣∣∣∂xj
(Θ− 1

2 (x, y))∂α
′

x ∂
β
y

∫ ∞

−∞

∫
T∗

xM

ei⟨exp−1
x (y),ξ⟩g

× ρ̂(At) sin tλ
t

cos(t|ξ|g)
dξ dt√
det gx

∣∣∣∣
⩽ Cdg(x, y)λn−1+|α|+|β|(1 + λdg(x, y))− n−1

2 .

Arguing as before, we see that the right-hand side of (4.15) is bounded by
O
(
λn−1+|α|+|β|/ log λ

)
by considering the regions where dg(x, y) ⩽ 1

logλ
and dg(x, y) ⩾ 1

logλ separately. An analogous estimate holds with ∂yj re-
placing ∂xj

. □

Next, we estimate the terms in (4.2) with γ = Id and ν ⩾ 1.

Lemma 4.5. — For ν = 1, 2, . . . , and any δ > 0, there exist constants
c, Cν , λ0 > 0 such that if A = 1

c logλ ,

(4.16) sup
dg(x,y)⩽ 1

2 inj(M,g)

∣∣∣∣∂αx ∂βy (uν(x, y)

×
∫ ∞

−∞

sin tλ
t

ρ̂(At)∂tWν(t, dg(x, y)) dt
)∣∣∣∣

⩽ Cν max{λn−ν−1+|α|+|β|, λδ}

for all λ ⩾ λ0.

Proof. — Since uν is C∞ and x, y are restricted to a compact set, deriva-
tives of uν are uniformly bounded by some constant depending only on ν

and the order of differentiation. Next, we recall that by (3.19), it suffices
to estimate

(4.17) ∂αx ∂
β
y

(∫ ∞

−∞

∫
T∗

xM

ei⟨exp−1
x (y),ξ⟩g+it(λ±|ξ|g)

× ρ̂(At)χ(|ξ|g)tj |ξ|−ν−k
g

dξ dt√
det gx

)
for any nonnegative integers j, k with j+k = ν− 1, where χ ≡ 0 on [−1, 1]
and χ ≡ 1 outside [−2, 2]. To see that this is sufficient, we must show that
the error term in (3.19) contributes only negligible terms to the asymptotics
in λ. Let fν : R × T ∗

xM → C be a smooth, tempered function. Then∣∣∣∣∫ ∞

−∞
ρ̂(At) eitλ fν(t, exp−1

x (y)) dt
∣∣∣∣ ⩽ C

∫ ∞

−∞
|ρ̂(At)|(1+dg(x, y))p(1+|t|)q dt
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for some p, q ⩾ 0 since fν is tempered. Since dg(x, y) is bounded, we have
that the above is dominated by a constant times∫ ∞

−∞
|ρ̂(At)|(1 + |t|)q dt ⩽ C

∫ 1/A

−1/A
(1 + |t|)q dt,

which is certainly bounded by C1 eC2/A for some C1, C2 > 0. For A = 1
c logλ

with c sufficiently small, we then have that this contributes at most λδ with
δ > 0 small. The same is true if we introduce derivatives of f with respect
to x, y. Therefore, the proof will be complete once we show that (4.17)
satisfies the correct bound.

Changing to polar coordinates via ξ = rω , we have that (4.17) equals

(4.18)
∫ ∞

−∞

∫ ∞

0

∫
S∗

xM

eir⟨exp−1
x (y),ω⟩g+it(λ±r)

× ρ̂(At)χ(r)tjrn−1−ν−k dσx(ω) dr dt.

Noting that tj e±itr = (± 1
i ∂r)

j e±itr, we may integrate by parts j times in
r. This is justified in the sense of distributions, even if the integral in r

is not absolutely convergent. If any derivatives fall on the χ(r) factor, the
resulting integrand will be compactly supported in r, and so combining the
preceding argument with the discussion prior to (3.19), we see that modulo
an O

(
λδ
)

error, (4.18) can be written as a finite linear combination of
terms of the form

(4.19)
∫ ∞

−∞

∫ ∞

0

∫
S∗

xM

eir⟨exp−1
x (y),ω⟩g+it(λ±r) ρ̂(At)χ(r)

× ⟨exp−1
x (y), ω⟩ℓgrn−1−ν−k−j+ℓ dσx(ω) dr dt

for 0 ⩽ ℓ ⩽ j. Rescaling via r 7→ λr, and recalling that j + k = ν − 1, we
obtain

(4.20) λn−2ν+ℓ+1
∫ ∞

−∞

∫ ∞

0

∫
S∗

xM

eiλr⟨exp−1
x (y),ω⟩g+itλ(1±r) ρ̂(At)χ(λr)

× ⟨exp−1
x (y), ω⟩ℓgrn−2ν+ℓ dσx(ω) dr dt.

We now wish to apply the stationary phase argument from the proof of
Lemma 4.3. One potential difficulty that arises is that the cutoff χ is scaled
by λ, and so it appears that in the corresponding analogue of (4.10), one
may have extra factors of λ which appear due to differentiating χ(λr) with
respect to r. However, we recall that the β from the proof of Lemma 4.3 was
supported in

( 1
2 ,

3
2
)
, and χ(λr) is identically 1 for r ⩾ 2

λ . Thus, ∂krχ(λr)
is zero for r > 2

λ . So, for large enough λ, the derivatives of χ will vanish
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on the support of β, and the problem is avoided. We may therefore apply
the exact same argument as in the proof of Lemma 4.3 to see that (4.20) is
bounded by λn−2ν+ℓ(1 +λdg(x, y))− n−1

2 . Since ℓ ⩽ j ⩽ ν− 1, we have that
n− 2ν + ℓ ⩽ n− ν − 1, giving the exponent we claimed in Lemma 4.5. As
discussed previously, adding derivatives ∂αx ∂βy simply adds at most |α|+ |β|
additional powers of λ from the eiλr⟨exp−1

x (y),ω⟩g factor, and so the proof is
complete. □

Finally, we must control the terms in (4.2) for which γ ̸= Id. Here we
must work in the universal cover and take advantage of the fact that the
lifts x̃ and γỹ are bounded away from each other. This allows us to improve
our estimates on the corresponding terms by a power of n−1

2 by exploiting
the factors of (1+λdg̃(x̃, γỹ))− n−1

2 which appear when we apply stationary
phase.

Lemma 4.6. — Given any δ > 0, there exist constants c, Cν , λ0 > 0
such that if A = 1

c logλ and x̃, ỹ ∈ M̃ are such that dg̃(x̃, ỹ) ⩾ ε for some
ε > 0, then∣∣∣∣∂αx̃ ∂βỹ (uν(x̃, ỹ)

∫ ∞

−∞

sin tλ
t

ρ̂(At)∂tWν(t, dg̃(x̃, ỹ)) dt
)∣∣∣∣

⩽ Cν max{λ
n−1

2 −ν+|α|+|β|+δ, λδ}

for λ ⩾ λ0.

Proof. — The argument proceeds in much the same way as the proof
of Lemma 4.5, although we must be cautious about the fact that the x̃, ỹ
need not be restricted to a fixed compact set. However, we may recall that
∂tWν vanishes when dg̃(x̃, ỹ) > |t| and that ρ̂(At) vanishes when |t| ⩾ L/A.

Hence, we may assume that dg̃(x̃, ỹ) ⩽ L
A . By Lemma B.1, we have that

under this restriction on dg̃(x̃, ỹ),

(4.21) |Px̃Qỹuν(x̃, ỹ)| ⩽ C1 eC2dg̃(x̃,ỹ) ⩽ C1 eC2/A = C1λ
C2c

if A = 1
c logλ . We can then choose c small enough so that (4.21) is bounded

by O
(
λδ/2). Note that this choice of c depends only on δ, ν, and the order

of differentiation. Therefore, it suffices to prove that

(4.22) sup
ε⩽dg̃(x̃,ỹ)⩽ L

A

∣∣∣∣Px̃Qỹ (∫ ∞

−∞

sin tλ
t

ρ̂(At)∂tWν(t, dg̃(x̃, ỹ)) dt
)∣∣∣∣

⩽ Cν max{λ
n−1

2 −ν+|α|+|β|+ δ
2 , λ

δ
2 }.
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We argue as in the beginning of the proof of Lemma 4.5 to show that it is
in fact enough to estimate

(4.23) Px̃Qỹ

(∫ ∞

−∞

∫
T∗

x̃ M̃

ei⟨exp−1
x̃ (ỹ),ξ⟩g+it(λ±|ξ|g)

×ρ̂(At)χ(|ξ|g)tj |ξ|−ν−k
g

dξ dt√
|g̃x̃|

)
.

To reduce to this case, we must show that the smooth, tempered error
fν(t, exp−1

x̃ (ỹ)) in (3.19) introduces a negligible contribution to the growth
in λ as before. The new concern is that the x̃ and ỹ are not restricted to
a compact set, and so if we differentiate fν(t, exp−1

x̃ (ỹ)) with respect to x̃
or ỹ, we must be able to control the derivatives of exp−1

x̃ (ỹ) which appear
due to the chain rule. It is here that we must apply Lemma B.2, which
states that all derivatives of the inverse exponential map are bounded at
most exponentially in dg̃(x̃, γỹ). Combining this with the fact that fν is a
tempered function, we have that∣∣∣∂αx̃ ∂βỹ fν(t, exp−1

x̃ (ỹ))
∣∣∣ ⩽ C1 eC2dg̃(x̃,ỹ)(1 + |t|)p

for some constants C1, C2, p > 0 which depend only on ν and the order of
differentiation. Hence, for |dg̃(x̃, ỹ)| ⩽ L

A , we have∣∣∣∣∫ ∞

−∞
ρ̂(At) eitλ ∂αx̃ ∂

β
ỹ fν(t, exp−1

x̃ (ỹ)) dt
∣∣∣∣ ⩽ C1 eC2/A

∫ L/A

−L/A
(1 + |t|)p dt

⩽ C1 eC2/A

after potentially increasing C1 and C2. As discussed previously, we can then
choose c small enough so that the above is bounded by O

(
λδ/2). Therefore,

we only need to show that (4.23) is bounded by O
(
λ

n−1
2 −ν+|α|+|β|+ δ

2

)
for

dg̃(x̃, ỹ) ⩽ L
A . For the case where we take no derivatives, we may repeat the

proof of Lemma 4.5 to obtain a linear combination of terms, each with a
bound of the form Cνλ

n−2ν+ℓ(1+λdg̃(x̃, ỹ))− n−1
2 for 0 ⩽ ℓ ⩽ ν−1. However,

in this case, the distance between x̃, ỹ is bounded below by 1
2 inj(M, g), and

so the previously mentioned terms are all bounded by Cνλ
n−1

2 −ν uniformly
in x̃, ỹ under our conditions on ℓ. In order to include derivatives, we may
again repeat previous arguments to show that we obtain at most |α| + |β|
extra powers of λ, but we must take into account the possibility that we
obtain a factor involving derivatives of exp−1

x̃ (ỹ). In such a case, we simply
apply Lemma B.2 and previous discussions to see that this contributes at
worst an extra O

(
λδ/2) factor. □
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In light of the three preceding lemmas, the proof of Proposition 4.1 is
nearly complete. The final step is to recall that by (3.6) and finite speed of
propagation, the number of nonzero terms in (4.2) with γ ̸= Id is bounded
by a constant times eC/A, and hence is bounded by λδ with δ small if we
choose A = 1

c logλ with c small enough. Therefore, by Lemma 4.6 and the
triangle inequality we have that for any P,Q ∈ Diff(M̃) of orders |α| and
|β|, respectively,

∑
γ ̸=Id

N∑
ν=0

∣∣∣∣Px̃Qỹ ( 1
π
uν(x̃, γỹ)

∫ ∞

−∞
ρ̂(At) sin tλ

t
∂tWν(t, dg̃(x̃, γỹ)) dt

)∣∣∣∣
⩽ C max{λ

n−1
2 −ν+|α|+|β|+2δ, λ2δ}

for some C > 0. Combining this with Lemmas 4.4 and 4.5, the proof of
Proposition 4.1 is complete. In combination with Propositions 2.2 and 3.1,
we can see that this completes the proof of Theorem 1.1.

Remark 4.7 (Proof of Theorem 1.2). — We note that throughout the
entire proof of Theorem 1.1, the only reason we needed dg(x, y) to be small
was so that we could uniquely determine which term in the parametrix
expansion gives the leading order behavior, which allows us to write the
asymptotic (1.1). However, if one assumes that dg(x, y) ⩾ ε for some ε > 0,
then the only issues that arise are that there may be a finite collection
of γ ∈ Γ for which dg̃(x̃, γỹ) = dg(x, y), and that exp−1

x (y) is no longer
necessarily well-defined. However, in such a case, exp−1

x̃ (ỹ) still makes sense
on M̃ , and we have that dg̃(x̃, γỹ) is bounded below by a positive constant
for every γ, since it is impossible for the distance between any two lifts x̃, ỹ
to be smaller than dg(x, y). This is due to the fact that geodesics on M̃

project to geodesics on M via the covering map. Hence, one could apply
Lemma 4.6 to all the terms in the parametrix to obtain that the integral
on the left-hand side of (4.1) satisfies∣∣∣∣ 1π

∫ ∞

−∞

sin tλ
t

ρ̂(At)∂αx ∂βyKN (t, x, y) dt
∣∣∣∣ ⩽ Cλ

n−1
2 +|α|+|β|+δ

for some small δ > 0. Since this bound is smaller than O
(
λn−1+|α|+|β|

logλ

)
, we

can combine this with Propositions 2.2 and 3.1 to see that we obtain an
upper bound of the form

sup
dg(x,y)⩾ε

∣∣∂αx ∂βyEλ(x, y)
∣∣ ⩽ Cλn−1+|α|+|β|

log λ

for any ε > 0, which is exactly the content of Theorem 1.2.
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5. Proof of Theorem 1.3

In this section, we show that Theorem 1.3 follows from Theorem 1.1 in
a straightforward manner.

Proof of Theorem 1.3. — Recalling the definition of E(λ,λ+1](x, y) in (2.2),
Theorem 1.1 implies that

(5.1) E(λ,λ+1](x, y)

= 1
(2π)n

∫
λ<|ξ|⩽λ+1

ei⟨exp−1
x (y),ξ⟩g

dξ√
det gx

+R(λ,λ+1](x, y),

where R(λ,λ+1](x, y) = Rλ+1(x, y) −Rλ(x, y) satisfies

sup
dg(x,y)⩽ε

∣∣∂αx ∂βyR(λ,λ+1](x, y)
∣∣ ⩽ O

(
λn−1+|α|+|β|

log λ

)
.

We then define

F (τ) = 1
(2π)n

∫ τ

0

∫
S∗

xM

eir⟨exp−1
x (y),ω⟩g rn−1 dr dσx(ω),

where dσx denotes the induced measure on S∗
xM , so that the first term on

the right-hand side of (5.1) equals F (λ+ 1) − F (λ). By Taylor’s theorem,
we see that

F (λ+ 1) − F (λ) = F ′(λ) + 1
2F

′′(τ),

for some τ ∈ (λ, λ+ 1). Since

F ′(λ) = λn−1

(2π)n

∫
S∗

xM

eiλ⟨exp−1
x (y),ω⟩g dσx(ω) = λn−1

(2π)n/2

Jn−2
2

(λdg(x, y))

(λdg(x, y)) n−2
2

,

it suffices to show that F ′′(τ) is smaller than the remainder bound claimed
in Theorem 1.3. By direct computation, we see that

(5.2) F ′′(τ) = (n− 1)τn−2
∫
S∗

xM

eiτ⟨exp−1
x (y),ω⟩g dσx(ω)

+ τn−1
∫
S∗

xM

i⟨exp−1
x (y), ω⟩g eiτ⟨exp−1

x (y),ω⟩g dσx(ω).

For the first term, we can simply use that the integral is a uniformly
bounded function of τ to obtain a bound of size O

(
λn−2) for τ ∈ (λ, λ+1),

which is certainly smaller than O
(
λn−1/ log λ

)
. To estimate the second

term in (5.2), we can simply repeat arguments from the proof of Lemma 4.4
to see that it is bounded by a constant times

dg(x, y)λn−1(1 + λdg(x, y))− n−1
2 ,
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for our range of τ. By considering the regions where dg(x, y) ⩽ 1
logλ and

dg(x, y) ⩾ 1
logλ separately as before, we obtain that the above is indeed

bounded by O
(
λn−1/ log λ

)
. As discussed in previous arguments, we may

include derivatives in x, y by simply noting that each differentiation yields
at most one additional power of τ in (5.2). Thus, the proof of Theorem 1.3
is complete. □

Appendix A. Localized Summations and Integrals

In this appendix we prove a technical estimate on summations of the
form

∞∑
k=1

(1 + |λ− k|)−Nkp,

where N is large, so that the summand is localized to where k ≈ λ. The
estimate was used in the proof of Proposition 2.2, but the proof of the
estimate itself is not particularly instructive, so we present the argument
here. In order to prove the estimate for sums, it is convenient to first prove
an estimate for integrals with a similar form. The version for sums then
follows from a comparison argument.

Lemma A.1. — Let p ∈ R . Then there exists an integer N0 > 0 and a
constant C > 0 such that

(A.1)
∫ ∞

1
(1 +

∣∣λ− r
∣∣)−N (1 + r)p dr ⩽ C max{λp, 1}

for all λ ⩾ 1 and for all N ⩾ N0. In addition, if p ⩾ 0, then the above
estimate holds for the integral over 0 ⩽ r < ∞.

Proof. — First note that it is natural to consider the integrals over [1, λ)
and (λ,∞) separately. Observe that

(A.2)
∫ λ

0
(1 + λ− r)−N (1 + r)p dr ⩽ C max{λp, 1}

∫ λ

0
(1 + λ− r)−N dr.

Then, by the change of variables y = 1 + λ− r, we get that∫ λ

0
(1 + λ− r)−N dr =

∫ 1+λ

1
y−N dy ⩽

∫ ∞

1
y−N dy

and
∫∞

1 y−N dy is bounded by a uniform constant for all N ⩾ 2. Combining
the above with (A.2), we have∫ λ

0
(1 + λ− r)−N (1 + r)p dr ⩽ C (max{λp, 1}) .
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Now, consider the integral over [λ,∞). Here, we make the analogous
change of variables y = 1 + r − λ to obtain

(A.3)
∫ ∞

λ

(1 + r − λ)−N (1 + r)p dr =
∫ ∞

1
y−N (λ+ y)p dy.

If p ⩽ 0, then we can bound the integrand by y−N since λ+ y ⩾ 1, and we
immediately see that the right-hand side of (A.3) is bounded by a constant.
In the case where p > 0, we have that∫ ∞

1
y−N (λ+ y)p dy ⩽ λp

∫ ∞

1
y−N dy ⩽ Cλp

for some C > 0, which completes the proof. □

By a simple comparison argument, one can prove the analogous result
for sums.

Corollary A.2. — If p ⩾ 0, then there exist N0, C, λ0 > 0 large
enough so that

(A.4)
∞∑
k=0

(1 +
∣∣λ− k

∣∣)−Nkp ⩽ Cλp

for all λ ⩾ λ0 and all N ⩾ N0.

Appendix B. Geometric Estimates

In this section, we prove growth estimates on derivatives of the Hadamard
coefficients uν , the inverse exponential map (x̃, ỹ) 7→ exp−1

x̃ (ỹ), and the
squared-distance function dg̃(x̃, ỹ) on the universal cover of a manifold with-
out conjugate points. These estimates were used repeatedly in Sections 3
and 4 in order to include derivatives in the statement of Theorem 1.1. As in
Theorem 1.1, let (M, g) be a smooth, compact Riemannian manifold with-
out boundary and with no conjugate points. Denote by (M̃, g̃) its universal
cover, which is diffeomorphic to Rn by the Hadamard–Cartan Theorem.

Proposition B.1. — Let P,Q be elements of Diff(M̃), the algebra of
C∞-bounded differential operators on M̃ , defined in the sense of [21, Ap-
pendix A.1]. Then, we have that

(B.1) |Px̃Qỹuν(x̃, ỹ)| ⩽ C1 eC2dg̃(x̃,ỹ)

for some C1, C2 > 0 which may depend on ν, P, and Q. Here the subscripts
on P and Q indicate the variable of differentiation.
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Proof. — By induction and (3.4), it suffices to prove the bound for
derivatives of the first Hadamard coefficient, u0(x̃, ỹ) = Θ(x̃, ỹ)− 1

2 . Re-
calling the definition of the Θ-function, we have

Θ(x̃, ỹ) = |det (D expx̃)exp−1
x̃ (ỹ) |.

By [5, Lemma 3] we have that this function is uniformly bounded below by
a constant times dg̃(x̃, ỹ)1−n when dg̃(x̃, ỹ) is bounded away from zero, and
hence Θ− 1

2 is bounded above by Cdg̃(x̃, ỹ) n−1
2 off the diagonal. Hence, by

the chain rule, it suffices to estimate the derivatives of Θ in order to obtain
the bound on u0. Fix x̃0, ỹ0 ∈ M̃ and assume without loss of generality
that dg̃(x̃0, ỹ0) ⩾ 1. Let U, V be small open neighborhoods of 0 in Rn and
let φ : U → M̃ and ψ : V → M̃ be geodesic normal coordinate charts near
x̃0 and ỹ0, respectively, with φ(0) = x̃0 and ψ(0) = ỹ0. That is, the maps
wj 7→ φ(0, . . . , wj , . . . , 0) and zj 7→ ψ(0, . . . , zj , . . . , 0) are geodesics in M̃

passing through x̃0 and ỹ0, respectively. Then, since P,Q ∈ Diff(M̃), they
can be expressed in the w and z coordinates as

P =
∑

|α|⩽j

pα(w)∂αw and Q =
∑

|β|⩽k

qβ(z)∂βz

for some j, k ⩾ 0, where the coefficient functions pα, qβ are uniformly
bounded in the C∞ topology on any canonical coordinate patch of fixed
radius [21, Appendix A.1]. Therefore, it suffices to estimate iterated appli-
cations of ∂w and ∂z to Θ in these coordinates. To accomplish this, we will
consider a 2n-dimensional variation through geodesics, motivated by the ar-
gument in [4, §3]. Set ρ0 = dg̃(x̃0, ỹ0) and define the map F : U×V×R → M̃

by

F (w, z, t) = expφ(w)

(
t

ρ0
exp−1

φ(w)(ψ(z))
)
,

which is a 2n-dimensional variation through geodesics in the sense that the
map t 7→ F (w, z, t) is a geodesic parametrized with speed dg̃(φ(w), ψ(z))/ρ0
for each fixed w, z. Observe that in the w, z coordinates (D expx̃0)exp−1

x̃0
(ỹ0)

is a matrix whose columns are given by ∂zj
F (0, 0, ρ0), and hence it suffices

to show that the lengths of the vector fields ∂zjF
∣∣
t=ρ0

and their covariant
derivatives in the w, z coordinate directions are bounded exponentially in
ρ0. Since F is a variation through geodesics, we have that for each fixed
j, ∂zj

F is a Jacobi field along the geodesic t 7→ F (w, z, t) (cf. [16]). To
estimate the covariant derivatives of these Jacobi fields, one may argue in
close analogy to the proof of [4, Lemma 3.3] with some small modifications.
Since the proof is so similar, we will not reproduce it in its entirety; we will
instead sketch the argument and point out the places where the differences
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occur. One notable difference is that we use [5, Lemma 4] to obtain certain
lower bounds without relying on the nonpositive curvature assumption of [4,
Lemma 3.3].

The precise estimate we seek to prove is as follows. For any integer k ⩾ 0,
let Dk denote some iterated combination of elements of the set

D = {Dw1 , . . . , Dwn
, Dz1 , . . . , Dzn

}

of order k, where Dwj and Dzj denote covariant differentiation along the
wj and zj coordinate directions, respectively. Then for any j = 1, . . . , n,
and all t ∈ [0, ρ0], we claim that

(B.2) |Dk∂zj
F (0, 0, t)|g̃ + |DtDk∂zj

F (0, 0, t)|g̃ ⩽ C1 eC2ρ0 ,

for some constants C1, C2 > 0 which may depend on the particular combi-
nation of derivatives which make up Dk. The same estimate holds if ∂zj

F

is replaced by ∂wjF , although we will not need this fact.
To prove the claim in (B.2), we begin by noting some facts about general

Jacobi fields on manifolds without conjugate points. In the notation of [5],
let us fix a geodesic γ emanating from x̃0 ∈ M̃ and let A(t) be the matrix
Jacobi field along γ satisfying A(0) = 0 and DtA(0) = I. Given that the
tangential component of such a Jacobi field is linear in t, it suffices to
only consider the component which acts on the orthogonal complement of
γ′(t), which we will again denote by A(t) in a slight abuse of notation.
Then, since the curvature of M̃ is bounded below by some κ < 0, one
has that ∥A(t)∥ ⩽ sinh(κt) by the Rauch Comparison Theorem (cf. [8,
Theorem 2.3]). To obtain a lower bound, we appeal to [5, Lemma 4], which
shows that if M̃ has no conjugate points, then for any ε > 0, there exists
a constant C > 0 such that ∥A(t)−1∥ ⩽ C for all t > ε, or equivalently
∥A(t)∥ ⩾ C−1. Hence, for any orthogonal Jacobi vector field J(t) along γ
such that J(0) = 0, we have that

(B.3) C−1|DtJ(0)|g̃ ⩽ |J(t)|g̃ ⩽ sinh(κt)|DtJ(0)|g̃
for t > ε. Since we have assumed that ρ0 = dg̃(x̃0, ỹ0) ⩾ 1, we may make
the choice of ε ≪ 1 independently of x̃0, ỹ0.

The next step in the proof is to observe that Dk∂zj
F satisfies an inho-

mogeneous Jacobi equation of the form

(B.4) D2
t (Dk∂zj

F ) +R(Dk∂zj
F, ∂tF )∂tF + Sk = 0

where R is the Riemannian curvature tensor, and Sk is a vector field along
the variation F which is induced by the pullback of a sum of tensors on
M , evaluated on a subcollection of the vector fields Dk−1∂zj

F , Dk−1∂zj
F ,

∂tF, where Dk−1 is some iterated combination of elements of D of order
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k − 1. This statement is nearly identical to equation (3.17) of [4] and it
is proved in exactly the same way. To obtain the estimate (B.2), we will
induct on k. For k = 0, one can use that ∂zj

F satisfies the homogeneous
Jacobi equation and argue as in [4] to see that there is a uniform constant
C0 > 0 so that

1
2∂t

(
|∂zjF |2g̃ + |Dt∂zjF |2g̃

)
⩽ C0

(
|∂zjF |2g̃ + |Dt∂zjF |2g̃

)
.

Since F (w, z, 0) = φ(w), it is clear that ∂zjF vanishes at t = 0, and hence
by (B.3) and Gronwall’s inequality, we obtain

(B.5) |∂zj
F (0, 0, t)|2g̃ + |Dt∂zj

F (0, 0, t)|2g̃ ⩽ C1 eC2t

for some C1, C2 > 0 and for all t ∈ [0, ρ0]. Assume now that k ⩾ 1, and set
Xt = Dk∂zj

F (0, 0, t). We claim that Xt solves the boundary value problem

(B.6)
{
D2
tXt +R(Xt, σ̇t)σ̇t + Sk = 0

X0 = 0, Xρ0 = f(y0),

where σt = F (0, 0, t) is the geodesic connecting x̃0 and ỹ0, and f is a vector
field which is uniformly bounded. To see that Xt satisfies these boundary
conditions, note that

F (w, z, 0) = φ(w) and F (w, z, ρ0) = ψ(z),

and so Xt always vanishes at t = 0, since its definition involves applying
∂zj

to F . Furthermore, if Dk consists of any derivatives in w, then Xt also
vanishes at t = ρ0. If Dk consists only of derivatives in z, then Xρ0 is
computed by repeatedly differentiating the canonical chart map ψ, and is
therefore uniformly bounded since M̃ has bounded geometry. We then de-
compose Xt = Yt+Zt, where Yt satisfies the same inhomogeneous equation
as Xt but with Y0 = DtY0 = 0, and Zt solves the corresponding homoge-
neous equation with Z0 = 0, Zρ0 = f(y0) − Yρ0 . It is shown in the proof
of [4, Lemma 3.3] that Yt satisfies

(B.7) |Yt|g̃ + |DtYt|g̃ ⩽ C1 eC2ρ0

for all t ∈ [0, ρ0]. It is this step which utilizes the induction hypothesis
that (B.2) holds when taking fewer than k covariant derivatives of ∂zj

F .
If f(y0) − Yρ0 = 0, then Zt is identically zero by the no conjugate points
assumption. Otherwise, we apply (B.3) to obtain that |DtZ0|g̃ ⩽ |Zt|g̃ for
all t ∈ [ε, ρ0]. Evaluating at t = ρ0 gives |DtZ0|g̃ ⩽ |f(y0) − Yρ0 |g̃, and
so repeating the argument for the k = 0 case and using the boundedness
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of f along with (B.7) shows that |Zt|g̃ + |DtZt|g̃ ⩽ C1 eC2ρ0 after possibly
increasing C1, C2. Thus, we have shown that

|Xt|g̃ + |DtXt|g̃ ⩽ C1 eC2ρ0 .

Recalling the definition of Xt, we have completed the proof of (B.2), and
therefore Proposition B.1 is proved. A similar argument holds if one replaces
∂zj

F by ∂wj
F with the boundary conditions reversed, but our result does

not require it. □

To prove Lemma 4.6, we also required similar estimates on the inverse
exponential map and squared distance function, stated below.

Lemma B.2. — In the notation of Lemma B.1, we have

(B.8)
∣∣Px̃Qỹ (exp−1

x̃ (ỹ)
)∣∣
g̃
⩽ C1 eC2dg̃(x̃,ỹ) .

Here, C1, C2 > 0 may depend on ν, P, and Q. Moreover, we have

(B.9)
∣∣Px̃Qỹ (dg̃(x̃, ỹ)2)∣∣ ⩽ C1 eC2dg̃(x̃,ỹ) .

Proof. — First let us note that (B.9) follows immediately from (B.8) and
the fact that M̃ has bounded geometry, since dg̃(x̃, ỹ)2 = | exp−1

x̃ (ỹ)|2g̃. So
we only need to show (B.8). Since the metric on M̃ is uniquely geodesic,
the map exp−1

x̃ (ỹ) is globally defined and C∞. We can write the action of
this map as

(x̃, ỹ) 7→ (r(x̃, ỹ), ω(x̃, ỹ)) ∈ R+ × S∗M̃,

provided that we avoid a neighborhood of the diagonal in M̃ × M̃. We
claim that the x̃, ỹ derivatives of this map are bounded exponentially in
dg̃(x̃, ỹ). Furthermore, we may recall that by discussions from the proof
of Proposition B.1, it suffices to prove this in canonical coordinates. For
this, we take note of the following general fact. If G ∈ C∞(Rn × Rn) and
b ∈ C∞(Rn) are such that G(a, b(a)) = 0 and ∂bG(a, b(a)) is invertible, we
have that ∂aG(a, b(a)) + ∂bG(a, b(a))∂ab(a) = 0, and hence

(B.10) ∂ab(a) = −∂bG(a, b(a))−1∂aG(a, b(a)).

By repeated differentiation of the equation G(a, b(a)) = 0 with respect to
a, one obtains that for any multiindex α, we can express ∂αa b(a) in terms of
∂bG(a, b(a))−1 times a finite linear combination of terms involving factors
of ∂βa ∂

γ
bG(a, b(a)) for |β| + |γ| ⩽ |α| and factors of the form ∂α

′

a b(a) for
|α′| ⩽ |α| − 1. One can then use induction and (B.10) to show that if
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|α| = N , then there exists a constant CN , kN > 0 so that

(B.11) |∂αa b(a)| ⩽ CN
∑

|β|+|γ|⩽N

|∂βa ∂
γ
bG(a, b(a))|N

×
[∥∥∂bG(a, b(a))−1∥∥ (1 + ∥∂bG(a, b(a))−1∥kN

)]
,

where ∥ · ∥ here denotes the usual matrix norm. We now consider, in some
chosen canonical coordinates (x̃, ỹ) on M̃ and standard polar coodinates
(r, ω) on T ∗

x̃M̃ , the function

G(x̃, ỹ; r, ω) = expx̃(rω) − ỹ.

So in the notation of the preceding discussion, we would have a = (x̃, ỹ)
and b(a) = (r(x̃, ỹ), ω(x̃, ỹ)) = exp−1

x̃ (ỹ). By Lemma B.2, we have that
derivatives of G are bounded exponentially in r. Restricted to the set where
G = 0, we know that r = dg̃(x̃, ỹ), and hence for any N , there exist
constants CN , cN > 0 such that

(B.12) |∂NG| ⩽ CN ecNdg̃(x̃,ỹ) .

Here ∂N denotes any combination of derivatives in x̃, ỹ, r, ω with total order
N . In what follows, we will assume that all quantities are evaluated where
rω = exp−1

x̃ (ỹ), unless otherwise specified. By (B.11) and (B.12), it only
remains to bound the inverse matrix ∂r,ωG−1. We achieve this by expressing
it in terms of Jacobi fields between x̃ and ỹ. In particular, ∂rG is exactly
the velocity of the geodesic connecting x̃ and ỹ, and therefore has norm
1. Also, we have that ∂ωG is an orthogonal matrix whose columns are
normal Jacobi fields {Jk}nk=2 along the geodesic connecting x̃ and ỹ which
vanish at x̃. Thus, the elements of ∂ωG are bounded exponentially in r,
and since the columns are orthogonal, ∂r,ωGT∂r,ωG is a diagonal matrix D
whose entries are the norms |Jk|2g (setting J1 = ∂rG), which vanish only
at r = 0 and are otherwise bounded away from zero [5, Lemma 4]. Thus,
∂r,ωG

−1 = D−1∂r,ωG
T is also bounded exponentially in r, provided we

avoid a neighborhood of r = 0. Combining this with (B.11) and (B.12), the
proof is complete. □

Appendix C. Proof of Lemma 2.1

A key component in the proof of Theorem 1.1 with the inclusion of
derivatives in x, y was the spectral cluster estimate

(C.1)
∑

λj∈[λ,λ+A]

|∂αxφj(x)|2 ⩽C1λ
2|α|
(
Aλn−1 +A eC2/Amax{λ

n−1
2 , λn−3}

)
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for 0 < A ⩽ 1. We provide a summary of the proof here, but the techniques
are mostly a repetition of arguments presented in Section 4, so we do not
give all the details. We begin in a manner analogous to the exposition
of [22, §3.2]. We introduce a Schwartz function β ∈ S (R) such that β ⩾ 0,
β(0) = 1, and β̂(t) = 0 for |t| ⩾ 1

2 inj(M). This function will serve a similar
role to that of ρ throughout the previous sections of this article, but the
key difference is the nonnegativity assumption, which is critical in what
follows. Since β(0) = 1, there exists some δ > 0 such that β(τ) ⩾ 1

2 for
|τ | ⩽ δ. Then,

∑
|λj−λ|⩽Aδ

|∂αxφj(x)|2 ⩽ 2
∞∑
j=0

β

(
λ− λj
A

)
|∂αxφj(x)|2,

where we are able to write the summation over all j by the nonnegativity
of β. Since [λ, λ + A] can be covered by a fixed, finite number of intervals
of the form |λ− λj | ⩽ Aδ, we have that

∑
λj∈[λ,λ+A]

|∂αxφj(x)|2 ⩽ C

∞∑
j=0

β

(
λ− λj
A

)
|∂αxφj(x)|2

for some constant C > 0. By Fourier inversion, we have

β

(
λ− λj
A

)
= 1

2π

∫ ∞

−∞
Aβ̂(At) eit(λ−λj) dt

= 1
π

∫ ∞

−∞
Aβ̂(At) eitλ cos(tλj) dt− β

(
λ+ λj
A

)
.

Since β is Schwartz, we have an estimate of the form∣∣∣∣β(λ+ λj
A

)∣∣∣∣ ⩽ CN (1 +A−1|λ+ λj |)−N

for any N . Recalling that A−1 ⩾ 1 and λj ⩾ 0 for all j, we have that∑
λj∈[λ,λ+A]

|∂αxφj(x)|2

⩽
1
π

∣∣∣∣∫ ∞

−∞
Aβ̂(At) eitλ ∂αx ∂

α
yK(t, x, y)

∣∣
x=y dt

∣∣∣∣+ O
(
λ−N) ,

for any N as λ → ∞, where the implicit constant in the O(λ−N ) term is
independent of A ∈ (0, 1]. By Proposition 3.1, the proof of (C.1) can be

TOME 0 (0), FASCICULE 0



42 Blake KEELER

reduced to showing that

1
π

∣∣∣∣∫ ∞

−∞
Aβ̂(At) eitλ ∂αx ∂

α
yKN (t, x, y)

∣∣
x=y dt

∣∣∣∣
⩽ C1λ

2|α|
(
Aλn−1 +A eC2/A max{λ

n−1
2 , λn−3}

)
,

whereKN (t, x, y) is theN partial sum of the Hadamard parametrix, defined
by (3.7). This is proved by repeating the arguments from Section 4 with
sin tλ
t replaced by eitλ, yielding an integrand which is one degree less singular

in t, which then produces one lower power of λ in the asymptotic expansion.
In particular, by the proof of Lemma 4.3, we have

(C.2)

∣∣∣∣∣∂αx ∂αy
(
u0(x, y)

∫ ∞

−∞
Aβ̂(At) eitλ ∂tW0(t, dg(x, y)) dt

) ∣∣∣∣
x=y

∣∣∣∣∣
⩽ CAλn−1+2|α|.

For ν ⩾ 1, we can repeat the proof of Lemma 4.5 to obtain

(C.3)

∣∣∣∣∣∂αx ∂αy
(
uν(x, y)

∫ ∞

−∞
Aβ̂(At) eitλ ∂tWν(t, dg(x, y))

) ∣∣∣∣
x=y

∣∣∣∣∣
⩽ Cν max{λn−2ν+2|α|, eC/A}.

That the exponent here is n− 2ν + 2|α| rather than n− ν − 1 + 2|α| is due
to the fact that in the integration by parts used to obtain (4.19), we only
obtain the term where ℓ = 0, since exp−1

x (x) = 0. Also, recall that in the
proof of Lemma 4.5, the eC/A term yielded a factor of λδ for some small
δ > 0, but this was due to the fact that we chose A = 1

c logλ . Since we have
stated the lemma for arbitrary A, we leave the above as is. Finally, for the
terms arising from the non-identity elements of the deck transformation
group, we have

(C.4)

∣∣∣∣∣Px̃Qỹ
(
uν(x̃, γỹ)

∫ ∞

−∞
Aβ̂(At) eitλ ∂tWν(t, dg̃(x̃, γỹ))

) ∣∣∣∣
x̃=ỹ

∣∣∣∣∣
⩽ Cν eC/A max{λ

n−1
2 −ν+2|α|, 1}

for any P,Q ∈ Diff(M̃) of orders |α| and |β|, respectively, by the arguments
in the proof of Lemma 4.6. Combining these estimates with the fact that
there are at most O

(
eC/A

)
deck transformations γ for which the corre-

sponding term is nonzero, we thus obtain (C.1).
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