We show that there exist closed manifolds with arbitrarily small transcendental simplicial volumes. Moreover, we exhibit an explicit family of (transcendental) real numbers that are not realised as the simplicial volume of a closed manifold.
Nous montrons qu’il existe des variétés fermées avec des volumes simpliciaux transcendants arbitrairement petits. De plus, nous présentons une famille explicite de nombres réels (transcendants) qui ne peuvent pas être obtenus comme le volume simplicial d’une variété fermée.
Revised:
Accepted:
Online First:
Published online:
Keywords: simplicial volume, stable commutator length, right-computable numbers
Mot clés : volume simplicial, longueur stable des commutateurs, nombres réels calculables
@article{AIF_2024__74_2_763_0, author = {Heuer, Nicolaus and L\"oh, Clara}, title = {Transcendental simplicial volumes}, journal = {Annales de l'Institut Fourier}, pages = {763--781}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {2}, year = {2024}, doi = {10.5802/aif.3597}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3597/} }
TY - JOUR AU - Heuer, Nicolaus AU - Löh, Clara TI - Transcendental simplicial volumes JO - Annales de l'Institut Fourier PY - 2024 SP - 763 EP - 781 VL - 74 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3597/ DO - 10.5802/aif.3597 LA - en ID - AIF_2024__74_2_763_0 ER -
%0 Journal Article %A Heuer, Nicolaus %A Löh, Clara %T Transcendental simplicial volumes %J Annales de l'Institut Fourier %D 2024 %P 763-781 %V 74 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3597/ %R 10.5802/aif.3597 %G en %F AIF_2024__74_2_763_0
Heuer, Nicolaus; Löh, Clara. Transcendental simplicial volumes. Annales de l'Institut Fourier, Volume 74 (2024) no. 2, pp. 763-781. doi : 10.5802/aif.3597. https://aif.centre-mersenne.org/articles/10.5802/aif.3597/
[1] On the cohomology of , Geometry and cohomology in group theory (Durham, 1994) (London Math. Soc. Lecture Note Ser.), Volume 252, Cambridge Univ. Press, 1998, pp. 1-9 | DOI | MR | Zbl
[2] Linear forms in the logarithms of algebraic numbers. I, Mathematika, Volume 13 (1966), pp. 204-216 | DOI | MR | Zbl
[3] Linear forms in the logarithms of algebraic numbers. II, Mathematika, Volume 14 (1967), pp. 102-107 | DOI | MR | Zbl
[4] Linear forms in the logarithms of algebraic numbers. III, Mathematika, Volume 14 (1967), pp. 220-228 | DOI | MR | Zbl
[5] Longueur stable des commutateurs, Enseign. Math. (2), Volume 37 (1991) no. 1-2, pp. 109-150 | MR | Zbl
[6] On the linear independence of fractional powers of integers, J. London Math. Soc., Volume 15 (1940), pp. 3-6 | DOI | MR | Zbl
[7] Cohomology of Groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York, 1994, x+306 pages (Corrected reprint of the 1982 original) | MR
[8] A note on semi-conjugacy for circle actions, Enseign. Math., Volume 62 (2016) no. 3-4, pp. 317-360 | DOI | MR | Zbl
[9] The bounded cohomology of over local fields and -integers, Int. Math. Res. Not. (2019) no. 6, pp. 1601-1611 | DOI | MR | Zbl
[10] Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal., Volume 12 (2002) no. 2, pp. 219-280 | DOI | MR | Zbl
[11] On and around the bounded cohomology of , Rigidity in dynamics and geometry (Cambridge, 2000), Springer, Berlin, 2002, pp. 19-37 | DOI | MR | Zbl
[12] scl, MSJ Memoirs, 20, Mathematical Society of Japan, Tokyo, 2009, xii+209 pages | DOI | MR
[13] Stable commutator length is rational in free groups, J. Amer. Math. Soc., Volume 22 (2009) no. 4, pp. 941-961 | DOI | MR | Zbl
[14] Stable commutator length in word-hyperbolic groups, Groups Geom. Dyn., Volume 4 (2010) no. 1, pp. 59-90 | DOI | MR | Zbl
[15] Spectral Gap of scl in graphs of groups and -manifolds (2019) (https://arxiv.org/abs/1910.14146)
[16] Computability. An introduction to recursive function theory, Cambridge University Press, Cambridge-New York, 1980, x+251 pages | MR | Zbl
[17] On the homology theory of central group extensions. I. The commutator map and stem extensions, Comment. Math. Helv., Volume 47 (1972), pp. 102-122 | DOI | MR | Zbl
[18] The fundamental theorem of algebra made effective: an elementary real-algebraic proof via Sturm chains, Amer. Math. Monthly, Volume 119 (2012) no. 9, pp. 715-752 | DOI | MR | Zbl
[19] Groupes d’homéomorphismes du cercle et cohomologie bornée, The Lefschetz centennial conference, Part III (Mexico City, 1984) (Contemp. Math.), Volume 58, Amer. Math. Soc., Providence, RI, 1987, pp. 81-106 | DOI | MR | Zbl
[20] Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv., Volume 62 (1987) no. 2, pp. 185-239 | DOI | MR | Zbl
[21] Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982) no. 56, p. 5-99 (1983) | Numdam | MR | Zbl
[22] The full spectrum of scl on recursively presented groups (2019) (https://arxiv.org/abs/1909.01309)
[23] The spectrum of simplicial volume, Invent. Math., Volume 223 (2021) no. 1, pp. 103-148 | DOI | MR | Zbl
[24] Simplicial volume of one-relator groups and stable commutator length, Algebr. Geom. Topol., Volume 22 (2022) no. 4, pp. 1615-1661 | DOI | MR | Zbl
[25] Foundations of the theory of bounded cohomology, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 143 (1985), p. 69-109, 177–178 (Studies in topology, V) | MR | Zbl
[26] On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 742-749 | DOI | MR | Zbl
[27] Some Transcendence Results from a Harmless Irrationality Theorem, J. Ana. Num. Theor., Volume 5 (2017) no. 2, pp. 91-96 | DOI
[28] Odd manifolds of small integral simplicial volume, Ark. Mat., Volume 56 (2018) no. 2, pp. 351-375 | DOI | MR | Zbl
[29] Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995, x+422 pages (Reprint of the 1975 edition) | MR | Zbl
[30] Homology of , Duke Math. J., Volume 47 (1980) no. 4, pp. 803-818 http://projecteuclid.org/euclid.dmj/1077314337 | DOI | MR | Zbl
[31] Simplices of maximal volume in hyperbolic space, Gromov’s norm, and Gromov’s proof of Mostow’s rigidity theorem (following Thurston), Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979) (Lecture Notes in Math.), Volume 788, Springer, Berlin (1980), pp. 109-124 | DOI | MR | Zbl
[32] Irrational numbers, The Carus Mathematical Monographs, No. 11, The Mathematical Association of America. Distributed by John Wiley and Sons, 1956, xii+164 pages | DOI | MR | Zbl
[33] -Betti Numbers of -Spaces and the Integral Foliated Simplicial Volume, Ph. D. Thesis, Westfälische Wilhelms-Universität Münster (2005) (http://nbn-resolving.de/urn:nbn:de:hbz:6-05699458563)
[34] Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, x+142 pages (Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation) | MR | Zbl
[35] On the homotopy type of compact topological manifolds, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 738-742 | DOI | MR | Zbl
[36] Nicht konstruktiv beweisbare Sätze der Analysis, J. Symbolic Logic, Volume 14 (1949), pp. 145-158 | DOI | MR | Zbl
[37] Computers, rigidity, and moduli, M. B. Porter Lectures, Princeton University Press, 2005, xii+174 pages (The large-scale fractal geometry of Riemannian moduli space) | DOI | MR | Zbl
[38] Weak computability and representation of reals, MLQ Math. Log. Q., Volume 50 (2004) no. 4-5, pp. 431-442 | DOI | MR | Zbl
[39] Irrational stable commutator length in finitely presented groups, J. Mod. Dyn., Volume 2 (2008) no. 3, pp. 499-507 | DOI | MR | Zbl
Cited by Sources: