Actions of automorphism groups of free groups on spaces of Jacobi diagrams. I
Annales de l'Institut Fourier, Online first, 44 p.

We consider an action of the automorphism group Aut(F n ) of the free group F n of rank n on the filtered vector space A d (n) of Jacobi diagrams of degree d on n oriented arcs. This action induces on the associated graded vector space of A d (n), which is identified with the space B d (n) of open Jacobi diagrams, an action of the general linear group GL(n,) and an action of the graded Lie algebra of the IA-automorphism group of F n associated with its lower central series. We use these actions on B d (n) to study the Aut(F n )-module structure of A d (n). In particular, we consider the case where d=2 in detail and give an indecomposable decomposition of A 2 (n). We also construct a polynomial functor A d of degree 2d from the opposite category of the category of finitely generated free groups to the category of filtered vector spaces, which includes the Aut(F n )-module structure of A d (n) for all n0.

Nous considérons une action du groupe d’automorphisme s Aut(F n ) du groupe libre F n de rang n sur l’espace vectoriel filtré A d (n) des diagrammes de Jacobi de degré d sur n arcs orientés. Cette action induit sur l’espace vectoriel gradué associé de A d (n), qui est identifié à l’espace B d (n) des diagrammes de Jacobi ouverts, une action du groupe linéaire général GL(n,) et une action de l’algèbre de Lie graduée du groupe d’automorphismes IA de F n associée à sa série centrale inférieure. Nous utilisons ces actions sur B d (n) pour étudier la structure de Aut(F n )-module de A d (n). En particulier, nous considérons en détail le cas où d=2 et donnons une décomposition indécomposable de A 2 (n). Nous construisons également un foncteur polynomial A d de degré 2d de la catégorie opposée de la catégorie des groupes libres finiment engendrés à la catégorie des espaces vectoriels filtrés, qui inclut la structure de Aut(F n )-module de A d (n) pour tout n0.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/aif.3544
Classification: 20F12,  20F28,  57K16
Keywords: Jacobi diagrams, Automorphism groups of free groups, General linear groups, IA-automorphism groups of free groups.
Katada, Mai 1

1 Department of Mathematics Kyoto University Kyoto 606-8502 (Japan)
@unpublished{AIF_0__0_0_A128_0,
     author = {Katada, Mai},
     title = {Actions of automorphism groups of free groups on spaces of {Jacobi} diagrams. {I}},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2022},
     doi = {10.5802/aif.3544},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Katada, Mai
TI  - Actions of automorphism groups of free groups on spaces of Jacobi diagrams. I
JO  - Annales de l'Institut Fourier
PY  - 2022
DA  - 2022///
PB  - Association des Annales de l’institut Fourier
N1  - Online first
UR  - https://doi.org/10.5802/aif.3544
DO  - 10.5802/aif.3544
LA  - en
ID  - AIF_0__0_0_A128_0
ER  - 
%0 Unpublished Work
%A Katada, Mai
%T Actions of automorphism groups of free groups on spaces of Jacobi diagrams. I
%J Annales de l'Institut Fourier
%D 2022
%I Association des Annales de l’institut Fourier
%Z Online first
%U https://doi.org/10.5802/aif.3544
%R 10.5802/aif.3544
%G en
%F AIF_0__0_0_A128_0
Katada, Mai. Actions of automorphism groups of free groups on spaces of Jacobi diagrams. I. Annales de l'Institut Fourier, Online first, 44 p.

[1] Andreadakis, S. On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. (3), Volume 15 (1965), pp. 239-268 | DOI | MR | Zbl

[2] Bar-Natan, Dror On the Vassiliev knot invariants, Topology, Volume 34 (1995) no. 2, pp. 423-472 | DOI | MR | Zbl

[3] Bar-Natan, Dror Vassiliev homotopy string link invariants, J. Knot Theory Ramifications, Volume 4 (1995) no. 1, pp. 13-32 | DOI | MR | Zbl

[4] Bar-Natan, Dror Some computations related to Vassiliev invariants (1996) (preprint)

[5] Conant, Jim; Kassabov, Martin Hopf algebras and invariants of the Johnson cokernel, Algebr. Geom. Topol., Volume 16 (2016) no. 4, pp. 2325-2363 | DOI | MR | Zbl

[6] Eilenberg, Samuel; Mac Lane, Saunders On the groups H(Π,n). II. Methods of computation, Ann. of Math. (2), Volume 60 (1954), pp. 49-139 | DOI | MR | Zbl

[7] Fulton, William Young tableaux, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997, x+260 pages (With applications to representation theory and geometry) | MR | Zbl

[8] Fulton, William; Harris, Joe Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991, xvi+551 pages (Readings in Mathematics) | DOI | MR | Zbl

[9] Habegger, Nathan; Lin, Xiao-Song The classification of links up to link-homotopy, J. Amer. Math. Soc., Volume 3 (1990) no. 2, pp. 389-419 | DOI | MR | Zbl

[10] Habiro, Kazuo Bottom tangles and universal invariants, Algebr. Geom. Topol., Volume 6 (2006), pp. 1113-1214 | DOI | MR | Zbl

[11] Habiro, Kazuo; Massuyeau, Gwénaël Generalized Johnson homomorphisms for extended N-series, J. Algebra, Volume 510 (2018), pp. 205-258 | DOI | MR | Zbl

[12] Habiro, Kazuo; Massuyeau, Gwénaël The Kontsevich integral for bottom tangles in handlebodies, Quantum Topol., Volume 12 (2021) no. 4, pp. 593-703 | DOI | MR | Zbl

[13] Hartl, Manfred; Pirashvili, Teimuraz; Vespa, Christine Polynomial functors from algebras over a set-operad and nonlinear Mackey functors, Int. Math. Res. Not. IMRN (2015) no. 6, pp. 1461-1554 | DOI | MR | Zbl

[14] Kassel, Christian Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995, xii+531 pages | DOI | MR | Zbl

[15] Katada, Mai Actions of automorphism groups of free groups on spaces of Jacobi diagrams. II., Journal of the Institute of Mathematics of Jussieu (2022), p. 1–69 | DOI

[16] Kawazumi, Nariya Cohomological aspects of Magnus expansions (2005) (https://arxiv.org/abs/math/0505497)

[17] Kielak, Dawid Low-dimensional free and linear representations of Out (F 3 ), J. Group Theory, Volume 18 (2015) no. 6, pp. 913-949 | DOI | MR | Zbl

[18] Kontsevich, Maxim Vassiliev’s knot invariants, I. M. Gelʼfand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 137-150 | MR | Zbl

[19] Magnus, Wilhelm Über n-dimensionale Gittertransformationen, Acta Math., Volume 64 (1935) no. 1, pp. 353-367 | DOI | MR | Zbl

[20] Magnus, Wilhelm; Karrass, Abraham; Solitar, Donald Combinatorial group theory. Presentations of groups in terms of generators and relations, Dover Publications, Inc., New York, 1976, xii+444 pages | MR | Zbl

[21] Nielsen, Jakob Die Gruppe der dreidimensionalen Gittertransformationen, Det Kgl. Danske Videnskabernes Selskab., Mathematisk-fysiske Meddelelser, Volume 5 (1924) no. 12, pp. 1-29

[22] Nielsen, Jakob Die Isomorphismengruppe der freien Gruppen, Math. Ann., Volume 91 (1924) no. 3-4, pp. 169-209 | DOI | MR

[23] Ohtsuki, Tomotada Quantum invariants. A study of knots, 3-manifolds, and their sets, Series on Knots and Everything, 29, World Scientific Publishing Co., Inc., River Edge, NJ, 2002, xiv+489 pages | MR | Zbl

[24] Powell, Geoffrey; Vespa, Christine Higher Hochschild homology and exponential functors (2018) (https://arxiv.org/abs/1802.07574)

[25] Turchin, Victor; Willwacher, Thomas Hochschild–Pirashvili homology on suspensions and representations of Out(F n ), Ann. Sci. Éc. Norm. Supér. (4), Volume 52 (2019) no. 3, pp. 761-795 | DOI | MR | Zbl

Cited by Sources: