On the trace of the wave group and regularity of potentials
Annales de l'Institut Fourier, Online first, 36 p.

We consider the wave equation with a compactly supported, real-valued bounded potential, and show that the relative trace of the associated evolution group admits an asymptotic expansion to order m+2 if and only if the potential belongs to the Sobolev space of order m.

Nous considérons l’équation des ondes avec un potentiel borné, à support compact et à valeurs réelles, et montrons que la trace régularisée de l’opérateur d’évolution associé admet un développement asymptotique à l’ordre m+2 si et seulement si le potentiel appartient à l’espace de Sobolev d’ordre m.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/aif.3538
Classification: 58J45,  58J50,  46E35
Keywords: Trace, wave equation with potential.
Smith, Hart F. 1

1 Department of Mathematics University of Washington Seattle, WA 98195-4350 (USA)
@unpublished{AIF_0__0_0_A127_0,
     author = {Smith, Hart F.},
     title = {On the trace of the wave group and regularity of potentials},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2022},
     doi = {10.5802/aif.3538},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Smith, Hart F.
TI  - On the trace of the wave group and regularity of potentials
JO  - Annales de l'Institut Fourier
PY  - 2022
DA  - 2022///
PB  - Association des Annales de l’institut Fourier
N1  - Online first
UR  - https://doi.org/10.5802/aif.3538
DO  - 10.5802/aif.3538
LA  - en
ID  - AIF_0__0_0_A127_0
ER  - 
%0 Unpublished Work
%A Smith, Hart F.
%T On the trace of the wave group and regularity of potentials
%J Annales de l'Institut Fourier
%D 2022
%I Association des Annales de l’institut Fourier
%Z Online first
%U https://doi.org/10.5802/aif.3538
%R 10.5802/aif.3538
%G en
%F AIF_0__0_0_A127_0
Smith, Hart F. On the trace of the wave group and regularity of potentials. Annales de l'Institut Fourier, Online first, 36 p.

[1] Abramowitz, Milton; Stegun, Irene A. Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, D.C., 1964, xiv+1046 pages | MR | Zbl

[2] Bañuelos, Rodrigo; Sá Barreto, Antônio On the heat trace of Schrödinger operators, Comm. Partial Differential Equations, Volume 20 (1995) no. 11-12, pp. 2153-2164 | DOI | MR | Zbl

[3] Brüning, Jochen On the compactness of isospectral potentials, Comm. Partial Differential Equations, Volume 9 (1984) no. 7, pp. 687-698 | DOI | MR | Zbl

[4] Christiansen, T. J. Resonant rigidity for Schrödinger operators in even dimensions, Ann. Henri Poincaré, Volume 20 (2019) no. 5, pp. 1543-1582 | DOI | MR | Zbl

[5] Donnelly, Harold Compactness of isospectral potentials, Trans. Amer. Math. Soc., Volume 357 (2005) no. 5, p. 1717-1730 (electronic) | DOI | MR | Zbl

[6] Dyatlov, Semyon; Zworski, Maciej Mathematical theory of scattering resonances, Graduate Studies in Mathematics, 200, American Mathematical Society, Providence, RI, 2019, xi+634 pages | DOI | MR | Zbl

[7] Fan, Ky Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Nat. Acad. Sci. U.S.A., Volume 37 (1951), pp. 760-766 | DOI | MR | Zbl

[8] Gilkey, Peter B. Asymptotic formulae in spectral geometry, Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2004, viii+304 pages | MR | Zbl

[9] Hislop, Peter D.; Wolf, Robert Compactness of iso-resonant potentials for Schrödinger operators in dimensions one and three, Trans. Amer. Math. Soc., Volume 374 (2021) no. 6, pp. 4481-4499 | DOI | MR | Zbl

[10] Hitrik, Michael; Polterovich, Iosif Regularized traces and Taylor expansions for the heat semigroup, J. London Math. Soc. (2), Volume 68 (2003) no. 2, pp. 402-418 | DOI | MR | Zbl

[11] Melrose, Richard Scattering theory and the trace of the wave group, J. Functional Analysis, Volume 45 (1982) no. 1, pp. 29-40 | DOI | MR | Zbl

[12] Melrose, Richard B. Geometric scattering theory, Stanford Lectures, Cambridge University Press, Cambridge, 1995, xii+116 pages | MR | Zbl

[13] Sá Barreto, Antônio; Zworski, Maciej Existence of resonances in potential scattering, Comm. Pure Appl. Math., Volume 49 (1996) no. 12, pp. 1271-1280 https://doi/10.1002/(SICI)1097-0312(199612)49:12https://doi/10.1002/(SICI)1097-0312(199612)49:12<1271::AID-CPA2>3.0.CO;2-7 | DOI | MR | Zbl

[14] Smith, Hart On the trace of Schrödinger heat kernels and regularity of potentials, Trans. Amer. Math. Soc., Volume 371 (2019) no. 6, pp. 3857-3875 | DOI | MR | Zbl

[15] Smith, Hart F.; Zworski, Maciej Heat traces and existence of scattering resonances for bounded potentials, Ann. Inst. Fourier (Grenoble), Volume 66 (2016) no. 2, pp. 455-475 http://aif.cedram.org/item?id=AIF_2016__66_2_455_0 | DOI | MR | Zbl

[16] Taylor, Michael E. Partial differential equations III. Nonlinear equations, Applied Mathematical Sciences, 117, Springer, New York, 2011, xxii+715 pages | DOI | MR | Zbl

[17] Colin de Verdière, Yves Une formule de traces pour l’opérateur de Schrödinger dans R 3 , Ann. Sci. École Norm. Sup. (4), Volume 14 (1981) no. 1, pp. 27-39 | DOI | MR | Zbl

[18] Watson, G. N. A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995, viii+804 pages Reprint of the second (1944) edition | MR | Zbl

Cited by Sources: