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ACTIONS OF AUTOMORPHISM GROUPS OF FREE
GROUPS ON SPACES OF JACOBI DIAGRAMS. I

by Mai KATADA

Abstract. — We consider an action of the automorphism group Aut(Fn) of
the free group Fn of rank n on the filtered vector space Ad(n) of Jacobi diagrams
of degree d on n oriented arcs. This action induces on the associated graded vector
space of Ad(n), which is identified with the space Bd(n) of open Jacobi diagrams, an
action of the general linear group GL(n,Z) and an action of the graded Lie algebra
of the IA-automorphism group of Fn associated with its lower central series. We
use these actions on Bd(n) to study the Aut(Fn)-module structure of Ad(n). In
particular, we consider the case where d = 2 in detail and give an indecomposable
decomposition of A2(n). We also construct a polynomial functor Ad of degree 2d
from the opposite category of the category of finitely generated free groups to the
category of filtered vector spaces, which includes the Aut(Fn)-module structure of
Ad(n) for all n ⩾ 0.

Résumé. — Nous considérons une action du groupe d’automorphisme s Aut(Fn)
du groupe libre Fn de rang n sur l’espace vectoriel filtré Ad(n) des diagrammes
de Jacobi de degré d sur n arcs orientés. Cette action induit sur l’espace vectoriel
gradué associé de Ad(n), qui est identifié à l’espace Bd(n) des diagrammes de
Jacobi ouverts, une action du groupe linéaire général GL(n,Z) et une action de
l’algèbre de Lie graduée du groupe d’automorphismes IA de Fn associée à sa série
centrale inférieure. Nous utilisons ces actions sur Bd(n) pour étudier la structure
de Aut(Fn)-module de Ad(n). En particulier, nous considérons en détail le cas où
d = 2 et donnons une décomposition indécomposable de A2(n). Nous construisons
également un foncteur polynomial Ad de degré 2d de la catégorie opposée de la
catégorie des groupes libres finiment engendrés à la catégorie des espaces vectoriels
filtrés, qui inclut la structure de Aut(Fn)-module de Ad(n) pour tout n ⩾ 0.

1. Introduction

The Kontsevich integral is a universal finite type invariant for links [3,
18], which unifies all quantum invariants of links. The Kontsevich integral

Keywords: Jacobi diagrams, Automorphism groups of free groups, General linear groups,
IA-automorphism groups of free groups.
2020 Mathematics Subject Classification: 20F12, 20F28, 57K16.
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takes values in the space of Jacobi diagrams, which are uni-trivalent graphs
encoding the algebraic structures of Lie algebras and their representations.

String links and bottom tangles are special kinds of tangles in a cube
consisting of finitely many arc components. Since any links can be obtained
by closing string links or bottom tangles, it is natural to consider the Kont-
sevich integral for string links [2, 9] and bottom tangles [10].

The Kontsevich integral for n-component bottom tangles takes values in
a vector space A(n) of Jacobi diagrams on n oriented arcs over a field k
of characteristic 0. The degree d part of A(n), denoted by Ad(n), has a
filtration whose associated graded vector space is isomorphic to a k-vector
space Bd(n) of open Jacobi diagrams of degree d colored by an element of
an n-dimensional k-vector space.

Bar-Natan [4] studied an action of the symmetric group on the space of
open Jacobi diagrams colored by distinct integers and computed irreducible
decompositions for small degrees.

Habiro and Massuyeau [12] extended the Kontsevich integral to construct
a functor from the category of bottom tangles in handlebodies to the cat-
egory of Jacobi diagrams in handlebodies. By using the restriction of this
functor to the degree 0 part, we construct a functor Ad from the opposite
category of the category of finitely generated free groups to the category of
filtered vector spaces. By restricting the functor Ad to the automorphism
group Aut(Fn) of the free group Fn of rank n, we obtain an action of
Aut(Fn) on the space Ad(n).

The Aut(Fn)-action on Ad(n) induces an action of the general linear
group GL(n;Z) on the space Bd(n), which is an extension of the ac-
tion of the symmetric group considered by Bar-Natan. Geometrically, the
Aut(Fn)-action on Ad(n) can be interpreted as a restriction of an action
of the handlebody group of genus n on the set of n-component bottom
tangles.

The aim of the present paper is to give a way of studying the Aut(Fn)-
module structure of Ad(n) and the functor Ad and to study the case where
d = 2. The action of Aut(Fn) on Ad(n) induces an action on Bd(n) of the
graded Lie algebra gr(IA(n)) of the IA-automorphism group IA(n) of Fn

associated with its lower central series. We use an irreducible decomposi-
tion of the GL(n;Z)-module Bd(n) and the gr(IA(n))-action on Bd(n) to
study the Aut(Fn)-module structure of Ad(n). In particular, we give an
indecomposable decomposition of the Aut(Fn)-module A2(n) and of the
functor A2.
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1.1. The space Ad(n) of Jacobi diagrams

We work over a fixed field k of characteristic 0. We consider here the k-
vector space Ad(n) of Jacobi diagrams on oriented arcs, which is the main
object of the present paper.

For n ⩾ 0, let Xn =
1 n

· · ·
2

denote the oriented 1-manifold con-

sisting of n arc components. The k-vector space Ad(n) is spanned by Jacobi
diagrams on Xn of degree d modulo the STU relations. Here the degree of
Jacobi diagrams is defined to be half the number of vertices as usual. (See
Section 2.1 for further details.)

We consider a filtration for Ad(n)

Ad(n) = Ad,0(n) ⊃ Ad,1(n) ⊃ · · · ⊃ Ad,2d−2(n) ⊃ Ad,2d−1(n) = 0,

such that Ad,k(n) ⊂ Ad(n) is the subspace spanned by Jacobi diagrams
with at least k trivalent vertices. Hence, Ad(n) is a filtered vector space.
For example,

1 2 n
· · ·

3
∈ A2,0(n),

1 2 n
· · ·

3
∈ A2,1(n),

1 2 n
· · · ∈ A2,2(n).

1.2. A functor Ad and an Aut(Fn)-action on Ad(n)

We construct a functor

Ad : Fop → fVect

from the opposite category Fop of the category F of finitely generated free
groups to the category fVect of filtered vector spaces over k, which maps
Fn to the filtered vector space Ad(n).

Proposition 1.1 (see Proposition 8.1). — The functor Ad is a polyno-
mial functor of degree 2d.

Polynomial degrees measure complexity of functors. Eilenberg and Mac
Lane [6] introduced polynomial functors on finitely generated free modules
over a ring in the study of the homology of the Eilenberg–MacLane spaces.
Hartl–Pirashvili–Vespa [13] considered polynomial functors on finitely gen-
erated free groups. Proposition 1.1 gives a new family of polynomial func-
tors on finitely generated free groups.

The functor Ad gives a map

Hom(Fm, Fn) × Ad(n) → Ad(m)

TOME 73 (2023), FASCICULE 4



1492 Mai KATADA

for m, n ⩾ 0. (See Section 3.2 for the definition.) For example, for an
element f ∈ Hom(F2, F3) defined by f(x1) = x1x2, f(x2) = x2x3, we have

f ·
1 32

=
1 2

=
1 2

+
1 2

+
1 2

+
1 2

.

When n = m, we have an action of the opposite End(Fn)op of the endo-
morphism monoid End(Fn) on Ad(n)

End(Fn)op × Ad(n) → Ad(n).

By restricting this action to the opposite Aut(Fn)op of the automorphism
group Aut(Fn), we obtain a right action of Aut(Fn) on Ad(n). In fact, we
have the following.

Theorem 1.2 (see Theorem 5.1). — The Aut(Fn)-action on Ad(n) in-
duces an action on Ad(n) of the outer automorphism group Out(Fn) of Fn.

1.3. A functor Bd and a GL(n;Z)-action on Bd(n)

The associated graded vector space gr(Ad(n)) of the filtered vector space
Ad(n) can be identified via the PBW map [2, 3] with the vector space Bd(n)
of colored open Jacobi diagrams, which we explain below. The Aut(Fn)-
action on Ad(n) induces an action of GL(n;Z) on Bd(n).

For n ⩾ 0, let Vn =
⊕n

i=1 kvi be an n-dimensional k-vector space. The
k-vector space Bd(n) is spanned by Vn-colored open Jacobi diagrams of
degree d modulo the AS, IHX and multilinearity relations, where “Vn-
colored” means that each univalent vertex is colored by an element of Vn.
(See Section 3.3 for further details.) We consider a grading for Bd(n) such
that the degree k part Bd,k(n) ⊂ Bd(n) is spanned by open Jacobi diagrams
with exactly k trivalent vertices. For example,

v1 v2 v3v1 ∈ B2,0(n),
v1 v2 v3

∈ B2,1(n), v1 v2 ∈ B2,2(n).

We construct a functor

Bd : FAbop → gVect

from the opposite category FAbop of the category FAb of finitely generated
free abelian groups to the category gVect of graded vector spaces over k,
which maps each object Zn of FAbop to the graded vector space Bd(n).
Here, we have a map

Hom(Zm,Zn) × Bd(n) → Bd(m)

ANNALES DE L’INSTITUT FOURIER
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for m, n ⩾ 0, which is given by matrix multiplication on each coloring. (See
Section 3.3 for the definition.)

By restricting this map to the opposite group GL(n;Z)op of GL(n;Z), we
obtain a right action of GL(n;Z) on Bd(n). Moreover, the GL(n;Z)-action
on Bd(n) extends to an action of GL(n;k) ∼= GL(Vn) on Bd(n).

Let Dc
d,k be the k-vector space spanned by connected open Jacobi di-

agrams of degree d with 2d − k univalent vertices each of which is col-
ored by a different element of {1, . . . , 2d − k}. The symmetric group S2d−k

acts on the space Dc
d,k. Bar-Natan [4] computed the dimensions and ir-

reducible decompositions of the S2d−k-modules Dc
d,k for d ⩽ 7. By using

irreducible decompositions of Dc
d,k, we obtain an irreducible decomposition

of the GL(n;Z)-module Bd(n), which we use to study the Aut(Fn)-module
structure of Ad(n).

Recall that for any partition λ of N ⩾ 0 with at most n rows, the
Schur functor Sλ gives a simple GL(Vn)-module SλVn = V ⊗N

n · cλ, where
cλ ∈ kSN is the Young symmetrizer corresponding to λ.

Proposition 1.3 (see Propositions 4.1 and 7.2). — We have irreducible
decompositions of GL(Vn)-modules

B1(n) = B1,0(n) ∼= S(2)Vn,(1.1)
B2(n) = B2,0(n) ⊕ B2,1(n) ⊕ B2,2(n)

∼= (S(4)Vn ⊕ S(2,2)Vn) ⊕ S(1,1,1)Vn ⊕ S(2)Vn.
(1.2)

We observe that the functor Ad induces the functor Bd. Let ab : F →
FAb denote the abelianization functor, and abop : Fop → FAbop its op-
posite functor. Let gr : fVect → gVect denote the functor that sends a
filtered vector space to its associated graded vector space.

Proposition 1.4 (see Proposition 3.2). — For d ⩾ 0, there is a natural
isomorphism

θd : gr ◦ Ad

∼=⇒ Bd ◦ abop.

1.4. The functor A1

Here we consider the functors A1 and B1. By Proposition 1.4, we have
A1 ∼= B1 ◦ abop. Since we have isomorphisms of Aut(Fn)-modules

A1(n) ∼= B1(n) ∼= S(2)Vn

by (1.1), the Aut(Fn)-module A1(n) is simple for any n ⩾ 1. It follows that
the functor A1 is indecomposable.

TOME 73 (2023), FASCICULE 4
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1.5. An action of gr(IA(n)) on the space Bd(n)

Let IA(n) denote the IA-automorphism group of Fn, which is the kernel
of the canonical homomorphism Aut(Fn) → Aut(H1(Fn;Z)) ∼= GL(n;Z).
Let Γ∗(IA(n)) = (Γr(IA(n)))r⩾1 denote the lower central series of IA(n),
and gr(IA(n)) =

⊕
r⩾1 grr(IA(n)) the associated graded Lie algebra, where

grr(IA(n)) = Γr(IA(n))/Γr+1(IA(n)).
To study the Aut(Fn)-module structure of Ad(n), we use a right action

of gr(IA(n)) on the graded vector space Bd(n) ∼= gr(Ad(n)).

Theorem 1.5 (see Proposition 5.9 and Theorem 5.10). — There is an
action of the graded Lie algebra gr(IA(n)) on the graded vector space
Bd(n), which consists of GL(n;Z)-module homomorphisms

Bd,k(n) ⊗Z grr(IA(n)) → Bd,k+r(n)

for k ⩾ 0 and r ⩾ 1.

1.6. Aut(Fn)-module structure of A2(n) and indecomposable
decomposition of A2

Here, we consider the right Aut(Fn)-module structure of A2(n) and give
an indecomposable decomposition of the functor A2.

We use the graphical notation =
1 2

∈ A1(2). Set

P ′ = sym4 , P ′′ = alt2 alt2 ∈ A2(4),

where sym4 corresponds to the Young symmetrizer c(4) and alt2 corre-
sponds to the Young symmetrizer c(1,1). (See Section 7.2 for further details.)
Let

A′
2, A′′

2 : Fop → fVect
be the subfunctors of the functor A2 such that

A′
2(n) := Spank{A2(f)(P ′) : f ∈ Fop(4, n)} ⊂ A2(n),

A′′
2(n) := Spank{A2(f)(P ′′) : f ∈ Fop(4, n)} ⊂ A2(n).

We use the GL(Vn)-module structure (1.2) of B2(n) and the gr(IA(n))-
action on B2(n) to study the Aut(Fn)-module structure of A2(n).

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.6 (see Proposition 7.5 and Theorem 7.9). — For n ⩾ 3, we
have an indecomposable decomposition of Aut(Fn)-modules

A2(n) = A′
2(n) ⊕ A′′

2(n).

Here, A′
2(n) is simple, and A′′

2(n) admits a unique composition series of
length 3

A′′
2(n) ⊋ A2,1(n) ⊋ A2,2(n) ⊋ 0;

that is, A′′
2(n) has no nonzero proper Aut(Fn)-submodules other than

A2,1(n) and A2,2(n). (For n = 1, 2, see Theorem 7.9.)

By using Theorem 1.6, we obtain an indecomposable decomposition of
the functor A2.

Theorem 1.7 (see Proposition 7.5 and Theorem 7.14). — We have an
indecomposable decomposition

A2 = A′
2 ⊕ A′′

2

in the functor category fVectFop
.

In the subsequent paper [15], we will study the case where d ⩾ 3 to obtain
an indecomposable decomposition and the radical filtration of Ad(n). For
d ⩾ 3, it is rather difficult to compute the gr(IA(n))-action on Bd(n) di-
rectly. In order to simplify computation of the gr(IA(n))-action on Bd(n),
we will reconstruct the action in a different way. We will also study the
Johnson filtration E∗(n) of the endomorphism monoid End(Fn), which is
an enlargement of the Johnson filtration A∗(n) of Aut(Fn) and the lower
central series Γ∗(IA(n)) of IA(n). We will show that E∗(n) acts on Ad(n)
and therefore the extended N-series A∗(n) acts on the filtered vector space
Ad(n).

1.7. Organization of the paper

In Section 2, we recall some notions and definitions about Jacobi dia-
grams, open Jacobi diagrams and the category of Jacobi diagrams in han-
dlebodies. In Section 3, we construct functors Ad : Fop → fVect and
Bd : FAbop → gVect and observe that Ad induces Bd. In Section 4, we
compute the functors A1 and B1 explicitly. In Section 5, we define an ac-
tion of the graded Lie algebra gr(IA(n)) on the graded vector space Bd(n).
In Section 6, we establish the notation about representations of GL(Vn)
and consider the dimension of the k-vector spaces Ad(n) and Bd(n). In
Section 7, we consider the Aut(Fn)-module structure of A2(n) and give an

TOME 73 (2023), FASCICULE 4
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indecomposable decomposition of A2. In Section 8, we consider the poly-
nomiality of the functor Ad. In Appendix A, we define an action of an
extended N-series on a filtered vector space and an action of an extended
graded Lie algebras on a graded vector space.

1.8. Acknowledgments

The author would like to thank Kazuo Habiro for careful reading and
valuable advice, and Christine Vespa for letting us know that our functor
Ad is a polynomial functor and some relations between our study and their
paper [24]. She also thanks Gwénaël Massuyeau, Takefumi Nosaka and
Sakie Suzuki for helpful comments.

2. Preliminaries

In this section, we recall some notions of Jacobi diagrams and open Jacobi
diagrams and the category A of Jacobi diagrams in handlebodies. In what
follows, we work over a fixed field k of characteristic 0.

2.1. Jacobi diagrams and open Jacobi diagrams

In this section, we recall Jacobi diagrams and open Jacobi diagrams
defined in [3], [2] and [23].

A uni-trivalent graph is a finite graph whose vertices are either univalent
or trivalent. A trivalent vertex is oriented if it has a fixed cyclic order of
the three edges around it. A vertex-oriented uni-trivalent graph is a uni-
trivalent graph such that each trivalent vertex is oriented.

For n ⩾ 0, let Xn be the oriented 1-manifold consisting of n arc compo-
nents as depicted in Figure 2.1.

1 2 n

Xn =

Figure 2.1. The oriented 1-manifold Xn.

A Jacobi diagram on Xn is a vertex-oriented uni-trivalent graph such that
univalent vertices are embedded into the interior of Xn and each connected

ANNALES DE L’INSTITUT FOURIER
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component has at least one univalent vertex. Two Jacobi diagrams D and
D′ on Xn are regarded as the same if there is a homeomorphism f : D ∪
Xn → D′∪Xn whose restriction to Xn is isotopic to the identity map of Xn.
In figures, we depict Xn as solid lines and Jacobi diagrams as dashed lines
in such a way that each trivalent vertex is oriented in the counterclockwise
order.

Let A (Xn) denote the k-vector space spanned by Jacobi diagrams on
Xn modulo the STU relation, which is described in Figure 2.2.

= −

Figure 2.2. The STU relation.

The degree of a Jacobi diagram is defined to be half the number of its
vertices. Since the STU relation is homogeneous with respect to the degree,
we have a grading

A (Xn) =
⊕
d⩾0

Ad(Xn),

where Ad(Xn) ⊂ A (Xn) is the subspace spanned by Jacobi diagrams of
degree d.

For k ⩾ 0, let Ad,k(Xn) ⊂ Ad(Xn) be the subspace spanned by Jacobi
diagrams with at least k trivalent vertices. We have A0(Xn) = A0,0(Xn) ∼=
k for d = 0. For d ⩾ 1, we have a filtration

Ad(Xn) = Ad,0(Xn) ⊃ Ad,1(Xn) ⊃ Ad,2(Xn) ⊃ · · · ⊃ Ad,2d−1(Xn) = 0.

Note that we have Ad,2d−1(Xn) = 0 since a Jacobi diagram on Xn with only
one univalent vertex vanishes by using the STU relations. We consider the
graded vector space gr(Ad(Xn)) :=

⊕
k⩾0 grk(Ad(Xn)) associated to the

above filtration Ad,∗(Xn), where grk(Ad(Xn)) := Ad,k(Xn)/Ad,k+1(Xn).
An open Jacobi diagram is a vertex-oriented uni-trivalent graph such

that each connected component has at least one univalent vertex.
Let T be a set. A T -colored open Jacobi diagram is an open Jacobi

diagram such that each univalent vertex is colored by an element of T . In
figures, we depict T -colored open Jacobi diagrams as solid lines in such a
way that each trivalent vertex is oriented in the counterclockwise order.

Let B(T ) denote the k-vector space spanned by T -colored open Jacobi
diagrams modulo the AS and IHX relations, which are depicted in Fig-
ure 2.3.

TOME 73 (2023), FASCICULE 4
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= −= −
,

Figure 2.3. The AS and IHX relations.

The degree of a T -colored open Jacobi diagram is defined to be half the
number of vertices. Since the AS and IHX relations are homogeneous with
respect to the degree, we have a grading

B(T ) =
⊕
d⩾0

Bd(T ),

where Bd(T ) ⊂ B(T ) is the subspace spanned by T -colored open Jacobi
diagrams of degree d.

For k ⩾ 0, let Bd,k(T ) ⊂ Bd(T ) be the subspace spanned by open Jacobi
diagrams with exactly k trivalent vertices. We have B0(T ) = B0,0(T ) = k∅
for d = 0. For d ⩾ 1, we have

Bd(T ) =
2d−2⊕
k=0

Bd,k(T ).

Note that Bd,k(T ) = 0 for k ⩾ 2d since an open Jacobi diagram has at
least one univalent vertex and for k = 2d − 1 since an open Jacobi diagram
with only one univalent vertex vanishes by using the AS and IHX relations.

We consider the case where the coloring set is [n] := {1, . . . , n} ⊂ N.
Bar-Natan [2, 3] proved that A (Xn) is isomorphic to B([n]). This is a
diagrammatic interpretation of the Poincaré–Birkhoff–Witt theorem.

Proposition 2.1 (PBW theorem [2, 3]). — For d ⩾ 0, we have an
isomorphism of vector spaces

χd : Bd([n])
∼=−→ Ad(Xn).

If D ∈ B([n]) is an [n]-colored open Jacobi diagram of degree d such that
for any i ∈ [n], D has ki univalent vertices colored by i, then χ(D) ∈ A (Xn)
is the average of the

∏
i∈[n](ki)! ways of attaching the univalent vertices

colored by i to the i-th component of Xn.
Moreover, the map χd induces an isomorphism

χd,k : Bd,k([n])
∼=−→ grk(Ad,∗(Xn)).

Note that two Jacobi diagrams of Ad,k(Xn) appearing in the average
of the

∏
i∈[n](ki)! ways are equivalent in the quotient space grk(Ad,∗(Xn))

ANNALES DE L’INSTITUT FOURIER
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by the STU relations. Therefore, the average of the
∏

i∈[n](ki)! ways of
attaching univalent vertices coincides with an arbitrary way of attaching
them in grk(Ad,∗(Xn)).

2.2. The category A of Jacobi diagrams in handlebodies

Here we briefly review the category A of Jacobi diagrams in handlebodies
defined in [12].

The objects in A are nonnegative integers. To define the hom-set A(m,n),
we need the notion of (m, n)-Jacobi diagrams, which we explain below.

Let I = [−1, 1]. For m ⩾ 0, let Um ⊂ R3 denote the handlebody of genus
m that is obtained from the cube I3 by attaching m handles on the top
square I2 × {1} as depicted in Figure 2.4. We call l := I × {0} × {−1} the
bottom line of Um. We call S := I2 × {−1} the bottom square of Um. For
i = 1, . . . , m, let xi be a loop which goes through only the i-th handle of
the handlebody Um just once and let xi denote its homotopy class as well.
In what follows, for loops γ1 and γ2 with base points on l, let γ2γ1 denote
the loop that goes through γ1 first and then goes through γ2. That is, we
write a product of elements of the fundamental group of Um in the opposite
order to the usual one. Let x̄i ∈ H1(Um;k) denote the homology class of
xi. We have π1(Um) = ⟨x1, . . . , xm⟩ and H1(Um;k) =

⊕m
i=1 kx̄i.

S

1 m· · ·

l

x1 xm· · ·

Figure 2.4. The handlebody Um.

For m, n ⩾ 0, an (m, n)-Jacobi diagram (D, f) consists of a Jacobi di-
agram D on Xn and a map f : Xn ∪ D → Um which maps ∂Xn into the
bottom line l of Um in such a way that the endpoints of Xn are uniformly
distributed and that for i = 1, . . . , n, the i-th arc component of Xn goes
from the 2i-th point to the 2i − 1-st point, where we count the endpoints

TOME 73 (2023), FASCICULE 4
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from left to right. In what follows, we simply write D for an (m, n)-Jacobi
diagram. We identify two (m, n)-Jacobi diagrams if they are homotopic in
Um relative to the endpoints of Xn. Figure 2.5 shows a (2, 3)-Jacobi dia-
gram D. For m, n ⩾ 0, the hom-set A(m, n) is the k-vector space spanned

D = : 2 → 3

Figure 2.5. A (2, 3)-Jacobi diagram.

by (m, n)-Jacobi diagrams modulo the STU relations. We usually depict
(m, n)-Jacobi diagrams by drawing their images under the orthogonal pro-
jection of R3 onto R × {0} × R.

In order to define the composition in the category A, we use the box
notation as depicted in Figure 2.6. (See [12, Example 3.2].) Dashed and
solid lines are allowed to go through the box, and a dashed line is attached
to the left side of the box. The box notation represents a sum with sign of
each Jacobi diagram which is obtained by attaching the univalent vertex
of the dashed line to each line which goes through the box. The sign of a
summand corresponding to a solid line is determined by the compatibility
of its orientation with the direction of the box, and the sign of a summand
corresponding to a dashed line is determined to be positive. We also define
the box notation with a dashed line attached to the right side of the box
by the box notation with the dashed line attached to the left side of the
box as depicted in Figure 2.6.

= − + · · · ++ =:

Figure 2.6. The box notation.

ANNALES DE L’INSTITUT FOURIER



ACTIONS OF AUTOMORPHISM GROUPS OF FREE GROUPS 1501

For D : m → n and D′ : p → m, the composition D ◦ D′ is defined
as follows. By using isotopies of Um, we can transform D into an (m, n)-
Jacobi diagram D̃ each of whose handle has only solid and dashed lines
parallel to the handle core. The composition D ◦D′ is obtained by stacking
on the top of the square part of D̃ a suitable cabling of D′. Here, the
cabling is obtained from D′ by replacing each component of Xm with its
parallel copies so that the target of the cabling matches the source of D̃,
and each univalent vertex is replaced by the box notation. Figure 2.7 shows
the composition D ◦ D′ of the (2, 3)-Jacobi diagram D, which is given in
Figure 2.5, and the following (3, 2)-Jacobi diagram D′.

D′ = D ◦ D′ =

Figure 2.7. The composition D ◦ D′.

The identity morphism of an object n is

n

.

The degree of an (m, n)-Jacobi diagram is the degree of its Jacobi dia-
gram. Let Ad(m, n) ⊂ A(m, n) be the subspace spanned by (m, n)-Jacobi
diagrams of degree d. We have A(m, n) =

⊕
d⩾0 Ad(m, n). Note that we

have

Ad(0, n) ∼= Ad(Xn).

The category A has a structure of a linear symmetric strict monoidal cat-
egory. See [14] for the definition of symmetric strict monoidal categories.
The tensor product on objects is addition. The monoidal unit is 0. The ten-
sor product on morphisms is juxtaposition followed by horizontal rescaling
and relabelling of indices. For example, Figure 2.8 shows the tensor prod-
uct of a (1, 1)-Jacobi diagram and a (2, 2)-Jacobi diagram. The symmetry
is determined by P1,1 : 2 → 2 which is depicted in Figure 2.9.
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=

1 1 2 1 2 3

⊗

Figure 2.8. The tensor product.

P1,1 =

Figure 2.9. The symmetry.

3. Functors Ad and Bd

In this section, we define a functor Ad : Fop → fVect from the opposite
category Fop of the category F of finitely generated free groups to the
category fVect of filtered vector spaces over k. We define another functor
Bd : FAbop → gVect from the opposite category FAbop of the category
FAb of finitely generated free abelian groups to the category gVect of
graded vector spaces over k. We prove that the functor Ad induces the
functor Bd.

3.1. The categories F, FAb, fVect and gVect

Let us start with the definitions of the categories F, FAb, fVect and
gVect.

For n ⩾ 0, let Fn = ⟨x1, . . . , xn⟩ be the free group of rank n. The category
F of finitely generated free groups is the full subcategory of the category
Grp of groups such that the class of objects is {Fn : n ⩾ 0}. We identify
the object Fn with the integer n. Thus, F(n, m) = Hom(Fn, Fm) ∼= F n

m.
The category F is a symmetric strict monoidal category.
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The category FAb of finitely generated free abelian groups is the full
subcategory of the category Ab of abelian groups such that the class of
objects is {Zn : n ⩾ 0}. We identify the object Zn with the integer n. Thus,
FAb(n, m) = Hom(Zn,Zm) ∼= Mat(m, n;Z). The category FAb is also a
symmetric strict monoidal category.

Let ab : F → FAb denote the restriction of the abelianization func-
tor ab : Grp → Ab. Here the functor ab maps Fn to its abelianization
ab(Fn) = Fn/[Fn, Fn] ∼=

⊕n
i=1 Z[xi], which is naturally identified with Zn.

In the following sections, we use the opposite functor abop : Fop → FAbop.
Let fVect denote the category of filtered vector spaces and

filter-preserving morphisms. A filtered vector space is a k-vector space V

with a decreasing sequence of vector spaces V = V0 ⊃ V1 ⊃ · · · .
Let gVect denote the category of graded vector spaces and degree-

preserving morphisms. A graded vector space is a k-vector space W =⊕
d⩾0 Wd.
For a filtered vector space V , set grd(V ) := Vd/Vd+1 for d ⩾ 0. We

call gr(V ) :=
⊕

d⩾0 grd(V ) the associated graded vector space of V . Let
gr : fVect → gVect be the functor that sends a filtered vector space V to
the associated graded vector space gr(V ) and a filter-preserving morphism
f : V → W to a degree-preserving morphism gr(f) : gr(V ) → gr(W )
defined by gr(f)([v]Vd+1) = [f(v)]Wd+1 for v ∈ Vd.

3.2. The functor Ad : Fop → fVect

We define a functor Ad : Fop → fVect.
Let d, n ⩾ 0. Set

Ad(n) := Ad(0, n) ∼= Ad(Xn).

For k ⩾ 0, let Ad,k(n) ⊂ Ad(n) be the subspace spanned by Jacobi diagrams
with at least k trivalent vertices. We have an isomorphism

Ad,k(n) ∼= Ad,k(Xn).

Thus, we have A0(n) = A0,0(n) ∼= k. For d ⩾ 1, we have a filtration

Ad(n) = Ad,0(n) ⊃ Ad,1(n) ⊃ Ad,2(n) ⊃ · · · ⊃ Ad,2d−1(n) = 0.

Let kF be the k-linearization of the category F. Here, the class of objects
in kF is the same as that in F and the hom-set kF(m, n) is the k-vector
space spanned by all of the morphisms m → n in F for m, n ⩾ 0. We
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have an isomorphism kFop(m, n)
∼=−→ A0(m, n) of k-vector spaces (see [12,

Section 1.5]). Note that

A0(m, n)
= k{(m, n)-Jacobi diagrams with empty Jacobi diagram}
= k{homotopy classes of maps Xn → Um relative to the boundary}.

For a map f : Xn → Um such that f(∂Xn) ⊂ l, let f̃ = f ∪ idl : Xn ∪ l →
Um and f̃∗ : π1(Xn ∪ l) ∼= Fn → π1(Um) ∼= Fm be the induced map on the
fundamental groups. The linear map A0(m, n) → kFop(m, n) that sends f

to f̃∗ is an isomorphism.
We define a map

Ad : Fop(m, n) → fVect(Ad(m), Ad(n))

by

Ad : Fop(m, n) ↪→ kFop(m, n)
∼=−→ A0(m, n) ◦−→ fVect(Ad(m), Ad(n)),

where the last map is the composition in the category A and we recall that
Ad(m) = Ad(0, m) ⊂ A(0, m). Note that since any element of A0(m, n)
has an empty Jacobi diagram, the composition of an element of A0(m, n)
with an element of Ad(m) preserves the filtration. It can be easily checked
that Ad is a functor.

3.3. The functor Bd : FAbop → gVect

In this section, we define a functor Bd : FAbop → gVect.
Let

Vn := H1(Un;k) = Hom(H1(Un;k),k)
and let {vi} denote the dual basis of {x̄i}. We fix the basis {vi} for Vn and
we have Vn =

⊕n
i=1 kvi.

Let Bd(n) denote the k-vector space spanned by Vn-colored open Ja-
cobi diagrams of degree d modulo the AS, IHX and multilinearity re-
lations, where the multilinearity relation is shown in Figure 3.1. Since
Vn =

⊕n
i=1 kvi, the space Bd(n) is isomorphic to the space Bd([n]) de-

fined in Section 2.1.
For k ⩾ 0, let Bd,k(n) ⊂ Bd(n) be the subspace spanned by open Jacobi

diagrams with exactly k trivalent vertices. We have an isomorphism

Bd,k(n) ∼= Bd,k([n]).
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aw1 + bw2

= a

w1

+ b

w2

for a, b ∈ k, w1, w2 ∈ Vn.

Figure 3.1. Multilinearity.

Thus, we have B0(n) = B0,0(n) = k∅. For d ⩾ 1, we have a grading

Bd(n) =
2d−2⊕
k=0

Bd,k(n).

Let T be a finite set. A T -colored open Jacobi diagram D is called special
if the map {univalent vertices of D} → T that gives the coloring of D is a
bijection.

Define Dd,k as the k-vector space spanned by special [2d−k]-colored open
Jacobi diagrams of degree d modulo the AS and IHX relations. The space
Dd,k has an S2d−k action given by the action on the colorings. Considering
V ⊗2d−k

n as a right S2d−k-module by the action which permutes the factors,
we have an isomorphism

(3.1) Bd,k(n) ∼= V ⊗2d−k
n ⊗kS2d−k

Dd,k.

Thus, any element of Bd,k(n) can be written in the form

u(w1, . . . , w2d−k) := (w1 ⊗ · · · ⊗ w2d−k) ⊗ u

for u ∈ Dd,k and w1, . . . , w2d−k ∈ Vn.
For m, n ⩾ 0, we define a map

Bd : FAbop(m, n) → gVect(Bd(m), Bd(n))

as follows. We consider an element of FAbop(m, n) = Mat(m, n;Z) as an
(m × n)-matrix and an element of Vn as a (1 × n)-matrix. For example,
we consider vi ∈ Vn as the i-th standard basis. For f ∈ FAbop(m, n) and
u(w1, . . . , w2d−k) ∈ Bd(m), we define

Bd(f)(u(w1, . . . , w2d−k)) := u(w1 · f, . . . , w2d−k · f).

It can be easily seen that Bd is a functor.
We can apply the definition of Bd : FAbop(m, n) → gVect(Bd(m), Bd(n))

to the opposite group GL(n;k)op of the general linear group GL(n;k) with
coefficient in k to obtain a group homomorphism

Bd : GL(n;k)op → AutgVect(Bd(n)).
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Then we have a GL(n;k)-action on Bd(n) by identifying GL(n;k) with
GL(n;k)op by taking an element to its inverse.

On the other hand, we consider the GL(Vn)-action on Bd(n) that is
determined by the standard action of GL(Vn) on each coloring. Here, we
consider an element of Vn =

⊕n
i=1 kvi as an (n × 1)-matrix. The GL(n;k)-

action on Bd(n) factors through the dual action of GL(n;k) on Vn and the
standard action of GL(Vn) on Bd(n):

(3.2) GL(n;k)
t(·)−1

−−−→ GL(Vn) → AutgVect(Bd(n)).

Note that the isomorphism (3.1) is a GL(Vn)-module isomorphism.

3.4. Relation between the functors Ad and Bd

In this section, we show that the functor Ad defined in Section 3.2 induces
the functor Bd defined in Section 3.3.

In the following lemma, we observe that we can identify the associated
graded vector space gr(Ad(n)) of the filtered vector space Ad(n) with the
graded vector space Bd(n).

Lemma 3.1. — For d, n, k ⩾ 0, we have an isomorphism of k-vector
spaces

θd,n,k : grk(Ad(n))
∼=−→ Bd,k(n),

which maps a Jacobi diagram D on Xn to an open Jacobi diagram θd,n,k(D)
that is obtained from D by assigning the color vi to a univalent vertex which
is attached to the i-th arc component of Xn for any i = 1, . . . , n.

Taking direct sum, we have an isomorphism of graded vector spaces

θd,n : gr(Ad(n))
∼=−→ Bd(n).

We call θd,n the PBW map.

Proof. — By identifying Bd,k(n) with Bd,k([n]) and Ad,k(n) with Ad,k(Xn)
through the canonical isomorphisms, it follows from Proposition 2.1 that
we have an isomorphism

χd,n,k : Bd,k(n)
∼=−→ grk(Ad(n)).

Thus, we have an isomorphism θd,n,k := χd,n,k
−1. □

For d ⩾ 0, we define another functor B̃d : Fop → gVect as follows. For
an object n ⩾ 0, let B̃d(n) := Bd(n). For a morphism f : m → n in Fop, let

B̃d(f) := θd,n ◦ gr(Ad(f)) ◦ θ−1
d,m : Bd(m) → Bd(n).
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The family of morphisms θd := (θd,n)n⩾0 : gr ◦ Ad ⇒ B̃d is a natural iso-
morphism. This is because the PBW maps θd,m and θd,n are isomorphisms
and because the following diagram commutes:

gr(Ad(m))
gr(Ad(f)) //

∼=θd,m

��

gr(Ad(n))

θd,n∼=
��

Bd(m)
B̃d(f)

// Bd(n).

⟳

Proposition 3.2. — For d ⩾ 0, we have B̃d = Bd ◦ abop. Thus, the
family of the PBW maps θd can be rewritten as a natural isomorphism
θd : gr ◦ Ad

∼=⇒ Bd ◦ abop. In diagram, we have

Fop Ad //

abop

��

fVect

gr
��

FAbop
Bd

// gVect.

∼=
w� θd

Proof. — We show that B̃d = Bd ◦abop. For an element f ∈ Fop(m, n) =
F(n, m), let ãi,j ∈ N (resp. ai,j ∈ Z) be the number (resp. the sum of
signs) of copies of x±1

i that appear in the word f(xj) for i = 1, . . . , m and
j = 1, . . . , n. For example, if f : F2 → F2 is defined by

(3.3) f(x1) = x1x2x−1
1 , f(x2) = x−1

1 x2,

then the corresponding matrices (ãi,j) and (ai,j) are

(ãi,j) =
(

2 1
1 1

)
, (ai,j) =

(
0 −1
1 1

)
.

Note that the matrix A = (ai,j) ∈ Mat(m, n;Z) corresponds to the mor-
phism abop(f) ∈ FAbop(m, n).

For a diagram u′ = u(w1, . . . , w2d−k) ∈ Bd,k(m), we prove that

B̃d(f)(u′) = Bd ◦ abop(f)(u′).

It suffices to prove the case where wl = vil
for l ∈ [2d−k] by multilinearity.

By the definition of the map Bd, we have

Bd ◦ abop(f)(u(vi1 , . . . , vi2d−k
)) = u(vi1 · A, . . . , vi2d−k

· A).

By Lemma 3.1, θ−1
d,m(u′) is obtained from u by attaching the l-colored

univalent vertex of u to the il-th component of Xm for l ∈ [2d − k]. We
consider the image of θ−1

d,m(u′) under the map gr(Ad(f)). First, we take a
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look at an example. For the morphism f : F2 → F2 defined by (3.3), we
have

gr(A2(f))
(

θ−1
2,2

(
v1 v2

))

= gr(A2(f))


1 2



=

1 2

=

1 2

−

1 2

∈ gr2(A2(2)).

The first term vanishes because two Jacobi diagrams with the same uni-
trivalent graph and with different ways of attaching univalent vertices to a
component of X2 are equivalent in gr2(A2(2)) by the STU relations. Thus,
we have

gr(A2(f))
(

θ−1
2,2

(
v1 v2

))
= −

1 2

.

As we observed in the example, the map gr(Ad(f)) sends θ−1
d,m(u′) to a

linear combination of diagrams which are obtained from u by attaching
univalent vertices to Xn. In particular, the map gr(Ad(f)) sends the l-
colored univalent vertex of u to the signed sum of ãil,j copies of the vertex
which are attached to the j-th component of Xn for any j = 1, . . . , n. In
the associated graded vector space grk(Ad(n)), the image of the l-colored
vertex is actually the signed sum of |ail,j | copies of the vertex which are
attached to the j-th component of Xn.

Through the PBW map θd,n again, the Jacobi diagram of B̃d(f)(u′) is u.
The coloring of B̃d(f)(u′) that corresponds to the l-colored univalent vertex
of u is

∑n
j=1 ail,jvj = vil

· A, which is equal to that of Bd ◦ abop(f)(u′). □
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4. The functors A1 and B1

In this section, we compute the functors A1 and B1.
The vector space B1(n) has a basis {di,j = vi vj : 1 ⩽ i ⩽ j ⩽ n}.

We have a linear isomorphism

(4.1) B1(n)
∼=−→ Sym2(Vn)

that maps di,j to vi · vj for i ⩽ j, where Sym2(Vn) is the symmetric square
of Vn.

We can compute the functor B1 explicitly as follows. We extend the
notation di,j by letting dj,i := di,j for i < j and let D := (di,j) ∈
Mat(n, n; B1(n)). For a morphism P ∈ FAbop(m, n) = Mat(m, n;Z), it
is easily checked that

B1(P )(di,j) = (P D tP )i,j

for 1 ⩽ i ⩽ j ⩽ m. Let Sym2 : Vect → Vect denote the functor that maps
a vector space V to its symmetric square Sym2(V ).

Proposition 4.1. — We have a natural isomorphism of functors on
FAbop:

B1 ∼= Sym2(Hom(− ⊗Z k,k)).
Therefore, the linear isomorphism (4.1) gives a GL(Vn)-module isomor-
phism.

Since A1,1(n) = 0, we have

A1(n) = A1,0(n) = gr(A1(n)) θ1,n−−→∼=
B1(n) = B1,0(n)

via the PBW map. The space A1(n) has a basis {ci,j : 1 ⩽ i ⩽ j ⩽ n}
corresponding to {di,j}, where

ci,j =


1 i n

(i = j)

1 i j n
(i < j).

Considering the target categories of the functors A1 and B1 as the cate-
gory Vect of vector spaces over k, we have

A1 ∼= B1 ◦ abop

by Proposition 3.2.
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5. Action of gr(IA(n)) on Bd(n)

The functor Ad gives an Aut(Fn)op-action on Ad(n), where Aut(Fn)op

denotes the opposite group of Aut(Fn). We have a right Aut(Fn)-action on
Ad(n) by letting

u · g := Ad(g)(u)

for u ∈ Ad(n) and g ∈ Aut(Fn).
We first consider the case n = 1. We have

Aut(F1) = {1, s} ∼= GL(1;Z) ∼= Z/2Z.

The action of s on Bd,k(1) is multiplication by (−1)2d−k = (−1)k, although
it is known that Bd,k(1) = 0 for d ⩽ 9 and odd k and it is open whether or
not we have Bd,k(1) = 0 for all odd k [3].

Let IA(n) denote the IA-automorphism group of Fn, which is the kernel
of the canonical homomorphism Aut(Fn) → Aut(H1(Fn;Z)) ∼= GL(n;Z).
In this section, we construct an action of the associated graded Lie algebra
gr(IA(n)) of the lower central series of IA(n) on the graded vector space
Bd(n), consisting of group homomorphisms

βr
d,k : grr(IA(n)) → Hom(Bd,k(n), Bd,k+r(n))

for k ⩾ 0 and r ⩾ 1, which we define in Section 5.3. In Section 5.4, we
extend this action by adding the case where r = 0, to obtain an action of
an extended graded Lie algebra gr(Aut(Fn)op) on the graded vector space
Bd(n). See Appendix A for extended graded Lie algebras.

5.1. Out(Fn)-action on Ad(n)

The inner automorphism group Inn(Fn) of Fn is the normal subgroup
of Aut(Fn) consisting of automorphisms σa for any a ∈ Fn, defined by
σa(x) = axa−1 for x ∈ Fn. By the definitions of Inn(Fn) and IA(n), it
follows that Inn(Fn) is a normal subgroup of IA(n) for any n ⩾ 1. Here,
we consider the Inn(Fn)-action on Ad(n).

Theorem 5.1. — The Inn(Fn)-action on Ad(n) is trivial for any d, n ⩾
0. Therefore, the Aut(Fn)-action on Ad(n) induces an action on Ad(n) of
the outer automorphism group Out(Fn) = Aut(Fn)/ Inn(Fn) of Fn.

Thus, the functor Ad is an outer functor in the sense of [24] for any d ⩾ 0.
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Proof. — We show that the Inn(Fn)-action on Ad(n) is trivial. Since
Inn(F0) = Inn(F1) = 1 and since A0(n) = k∅, we have only to consider for
n ⩾ 2, d ⩾ 1.

Since Fn
∼= Inn(Fn) for n ⩾ 2, the inner automorphism group Inn(Fn) is

generated by σx1 , . . . , σxn . For each i = 2, . . . , n, define P1,i ∈ Aut(Fn) by

P1,i(x1) = xi, P1,i(xi) = x1, P1,i(xj) = xj (j ̸= 1, i).

Then, we have σxi = P1,iσx1P1,i. If we have u · σx1 = u for any u ∈ Ad(n),
then we have

u · σxi
= u · P1,iσx1P1,i = (u · P1,i) · σx1P1,i = u · P1,iP1,i = u.

Therefore, we need to prove u · σx1 = u for any u ∈ Ad(n).

For u =
1 2 n

u

∈ Ad(n), we have u · σx1 =

1 2 n

u

.

Since the box notation satisfies = , by pulling the first

arc component to the right, we have

u · σx1 =

1 2 n· · ·

u

.

Moreover, by pulling the leftmost dashed line up, we obtain

u · σx1 =

1 2 n· · ·

u

.
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By iterating similar operations, we obtain

u · σx1 =

1 2 n· · ·

u

=

1 2 n· · ·

u

= u.

This completes the proof. □

5.2. IA(n)-action on Ad(n) for n = 1, 2

For n = 1, we have IA(1) = 1. Therefore, the IA(1)-action on Ad(1) is
trivial.

We use the following fact due to Nielsen [21] and Magnus [19]. See
also [20] for the statement.

Theorem 5.2 (Nielsen (n ⩽ 3), Magnus (for all n)). — Let n ⩾ 2.
The IA-automorphism group IA(n) is normally generated in Aut(Fn) by
an element K2,1 defined by

K2,1(x2) = x1x2x−1
1 , K2,1(xj) = xj for j ̸= 2.

For n = 2, we have IA(2) = Inn(F2) by the above theorem. Therefore,
we have the following corollary of Theorem 5.1.

Corollary 5.3. — The IA(2)-action on Ad(2) is trivial for any d ⩾ 0.
Therefore, the Aut(F2)-action on Ad(2) induces an action of GL(2;Z) on
Ad(2).

5.3. Bracket map [·, ·] : Bd,k(n) ⊗Z grr(IA(n)) → Bd,k+r(n)

We define

(5.1) [·, ·] : Ad(n) × IA(n) → Ad(n)

by [u, g] := u · g − u for u ∈ Ad(n), g ∈ IA(n), which we call the bracket
map.

Lemma 5.4. — Let k ⩾ 0. We have

[Ad,k(n), IA(n)] ⊂ Ad,k+1(n).
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Proof. — If we identify the associated graded vector space gr(Ad(n))
with Bd(n), then Proposition 3.2 implies that the Aut(Fn)-action on Ad(n)
induces the GL(n;Z)-action on Bd(n). It follows that the restriction of
the Aut(Fn)-action on gr(Ad(n)) to IA(n) is trivial. This implies that
[Ad,k(n), IA(n)] ⊂ Ad,k+1(n). □

The following lemma easily follows from the definition of the bracket
map.

Lemma 5.5.
(1) For g, h ∈ IA(n), u ∈ Ad,k(n), we have

[u, gh] = [u, g] + [u, h] + [[u, g], h].

(2) For g ∈ IA(n), u ∈ Ad,k(n), we have

[u, g−1] = −[u, g] − [[u, g], g−1].

Proposition 5.6. — The bracket map (5.1) induces a map

(5.2) [·, ·] : Bd,k(n) × IA(n) → Bd,k+1(n).

The map
βd,k : IA(n) → Hom(Bd,k(n), Bd,k+1(n))

defined by βd,k(g)(u) = [u, g] for g ∈ IA(n), u ∈ Bd,k(n) is a group homo-
morphism.

Proof. — By Lemma 5.4, the map (5.1) induces a map

[·, ·] : grk(Ad,∗(n)) × IA(n) → grk+1(Ad,∗(n)).

By identifying grk(Ad,∗(n)) with Bd,k(n) via the PBW map, we have a
map (5.2). Since we have [u, gh] = [u, g] + [u, h] + [[u, g], h] and [[u, g], h] ∈
Ad,k+2(n) for g, h ∈ IA(n), u ∈ Ad,k(n) by Lemmas 5.4 and 5.5, it follows
that

βd,k(gh)(u) = [u, gh] = [u, g] + [u, h] = βd,k(g)(u) + βd,k(h)(u)

for g, h ∈ IA(n), u ∈ Bd,k(n), so the map βd,k is a group homomorphism.
□

Now we consider the lower central series Γ∗(IA(n)) of IA(n):

IA(n) = Γ1(IA(n)) ▷ Γ2(IA(n)) ▷ · · · ,
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where Γr+1(IA(n)) = [Γr(IA(n)), IA(n)] for r ⩾ 1. Note that the commuta-
tor bracket [x, y] of x and y is defined to be [x, y] := xyx−1y−1 for elements
x, y of a group. Let

gr(IA(n)) :=
⊕
r⩾1

grr(IA(n)) =
⊕
r⩾1

Γr(IA(n))/Γr+1(IA(n))

denote the associated graded Lie algebra with respect to the lower central
series of IA(n). We improve the bracket map (5.2) and the map βd,k by
restricting the maps to the lower central series.

Lemma 5.7. — Let r ⩾ 1. We have

(5.3) [Ad,k(n), Γr(IA(n))] ⊂ Ad,k+r(n).

Proof. — We prove (5.3) by induction on r. The case r = 1 is Lemma 5.4.
Suppose that (5.3) holds for r − 1 ⩾ 1. By Lemma 5.5, we have

[u, [g, h]] = u · (ghg−1h−1) − u = (u · gh − u · hg) · g−1h−1

= ([u, gh] − [u, hg])g−1h−1 = ([[u, g], h] − [[u, h], g]) · g−1h−1

for any g ∈ Γr−1(IA(n)) and h ∈ IA(n). From the induction hypothesis
and Lemma 5.4, we have [u, [g, h]] ∈ Ad,k+r(n). Therefore, by Lemma 5.5,
we have [u, g] ∈ Ad,k+r(n) for any g ∈ Γr(IA(n)) and u ∈ Ad,k(n). □

Since Ad,2d−1(n) = 0 for any d ⩾ 1 and n ⩾ 0, we have the following
corollary.

Corollary 5.8. — The Aut(Fn)-action on Ad(n) induces an
Aut(Fn)/Γ2d−1(IA(n))-action on Ad(n) for d ⩾ 1.

We have a canonical isomorphism GL(n;Z) ∼= Aut(Fn)/ IA(n) by the
definition of IA(n). For any r ⩾ 1, the abelian group grr(IA(n)) is a right
GL(n;Z)-module by the action induced from the adjoint action of Aut(Fn)
on IA(n).

Proposition 5.9. — Let r ⩾ 1. The bracket map (5.1) induces a
GL(n;Z)-module homomorphism

(5.4) [·, ·] : Bd,k(n) ⊗Z grr(IA(n)) → Bd,k+r(n).

Proof. — By Lemmas 5.5 and 5.7, we have a Z-bilinear map

[·, ·] : Bd,k(n) × grr(IA(n)) → Bd,k+r(n)

and thus, we have a k-linear map (5.4).
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Since we have [u, h]·g = [u·g, g−1hg] for g ∈ Aut(Fn), h ∈ Γr(IA(n)), u ∈
Ad(n), it follows that the following diagram commutes:

Bd,k(n) ⊗Z grr(IA(n))

·A
��

[·,·] // Bd,k+r(n)

·A
��

Bd,k(n) ⊗Z grr(IA(n))
[·,·]
// Bd,k+r(n),

for any A ∈ GL(n;Z). Therefore, (5.4) is a right GL(n;Z)-module map. □

We define a group homomorphism

(5.5) βr
d,k : grr(IA(n)) → Hom(Bd,k(n), Bd,k+r(n))

by βr
d,k(g)(u) = [u, g] for g ∈ grr(IA(n)) and u ∈ Bd,k(n).

5.4. Action of gr(IA(n)) on Bd(n)

Here we state the Aut(Fn)-action on Ad(n) in terms of extended N-series
and the two induced actions on Bd(n) of GL(n;Z) and gr(IA(n)), the latter
of which means the GL(n;Z)-module homomorphisms (5.4), in terms of
extended graded Lie algebras. See Appendix A for extended N-series and
extended graded Lie algebras.

Set

Autr(Fn) :=
{

Aut(Fn) (r = 0)
Γr(IA(n)) (r ⩾ 1).

The descending series Aut∗(Fn) = (Autr(Fn))r⩾0 is an extended N-series,
so the descending series Aut∗(Fn)op := (Autr(Fn)op)r⩾0 of opposite groups
of Autr(Fn) is also an extended N-series. Let gr(Aut(Fn)op) denote the
image of Aut∗(Fn)op under the functor gr•. The functor Ad induces an
action of Aut∗(Fn)op on the filtered vector space Ad,∗(n):

Ad : Aut∗(Fn)op → Aut∗(Ad,∗(n)).

Theorem 5.10. — The Aut∗(Fn)op-action on the filtered vector space
Ad,∗(n) induces an action of the extended graded Lie algebra gr(Aut(Fn)op)
on the graded vector space Bd(n). This action is determined by the functor
Bd and the group homomorphisms βr

d,k in (5.5).
In particular, we have a right action of the graded Lie algebra gr(IA(n))

on the graded vector space Bd(n), which consists of GL(n;Z)-module ho-
momorphisms

[·, ·] : Bd,k(n) ⊗Z grr(IA(n)) → Bd,k+r(n).
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Proof. — By Proposition A.4, the action of Aut∗(Fn)op on Ad,∗(n) in-
duces an action of the extended graded Lie algebra gr(Aut(Fn)op) on the
graded vector space gr(Ad,∗(n)) ∼= Bd(n). This action is a pair of a group
homomorphism

Bd : GL(n;Z)op → AutgVect(Bd(n))

and a graded Lie algebra homomorphism⊕
r⩾1

(grr(Aut∗(Fn)op)) →
⊕
r⩾1

Endr(Bd(n)),

which can be regarded as the group homomorphisms βr
d,k by considering

the action of grr(Aut∗(Fn)op) on Bd(n) as a right action of grr(IA(n)) on
Bd(n). □

6. The GL(Vn)-module Bd(n)

In this section, we recall elementary facts about the representation theory
to establish the notation and consider the dimension of the k-vector space
Bd(n), which is equal to that of Ad(n).

Let N be a nonnegative integer and λ a partition of N . Let cλ ∈ kSN

denote the Young symmetrizer. Let Sλ = kSN · cλ denote the Specht
module corresponding to λ, which is a simple SN -module. Let SλVn =
V ⊗N

n · cλ denote the image of Vn under the Schur functor Sλ corresponding
to λ, which is a GL(Vn)-module. Let r(λ) be the number of rows of λ. If
r(λ) ⩽ n, then the GL(Vn)-module SλVn ̸= 0 is simple. If r(λ) > n, we have
SλVn = 0. It is well known that any SN -module can be decomposed into a
direct sum of the Specht modules and that any polynomial representation
of GL(Vn) can be decomposed into a direct sum of the images of Vn under
the Schur functors corresponding to partitions. See [7, 8] for some basic
facts about the representation theory of GL(n;Z) and GL(Vn).

Proposition 6.1. — The dimension of the k-vector space Bd,k(n) is a
polynomial of degree 2d − k on n. Therefore, the dimension of the k-vector
space Ad(n) ∼= Bd(n) is a polynomial of degree 2d on n.

Proof. — Since Bd,k(n) is a polynomial representation of GL(Vn) corre-
sponding to the S2d−k-module Dd,k, the GL(Vn)-module Bd,k(n) can be
decomposed into a direct sum of SλVn for λ ⊢ 2d − k. The dimension of
the k-vector space SλVn is a polynomial of degree 2d − k on n and so is the
dimension of the k-vector space Bd,k(n). □
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7. Aut(Fn)-module structure of A2(n) and indecomposable
decomposition of the functor A2

In this section, we study the Aut(Fn)-module structure of A2(n) and give
an indecomposable decomposition of the functor A2.

7.1. Irreducible decomposition of the GL(Vn)-module B2(n)

Here we give an irreducible decomposition of the GL(Vn)-module B2(n).
Let Bc

2,k(n) ⊂ B2,k(n) be the connected part of B2,k(n), which is spanned
by connected Vn-colored open Jacobi diagrams, and Dc

2,k ⊂ D2,k the con-
nected part of D2,k, which is spanned by connected special [4 − k]-colored
open Jacobi diagrams. The subspace Dc

2,k is an S4−k-submodule of D2,k.
We have an isomorphism of GL(Vn)-modules

(7.1) Bc
2,k(n) ∼= V ⊗4−k

n ⊗kS4−k
Dc

2,k,

which is the connected version of (3.1).

Proposition 7.1 (Bar-Natan [4]). — We have isomorphisms of S4−k-
modules

Dc
2,1

∼= S(1,1,1), Dc
2,2

∼= S(2).

Proposition 7.2. — We have B2(n) = B2,0(n) ⊕ B2,1(n) ⊕ B2,2(n),
where

B2,0(n) ∼= S(4)Vn ⊕ S(2,2)Vn,

B2,1(n) = Bc
2,1(n) ∼= S(1,1,1)Vn,

B2,2(n) = Bc
2,2(n) ∼= S(2)Vn

as GL(Vn)-modules.

Proof. — The cases where k = 1, 2 follow from the isomorphism (7.1) and
Proposition 7.1. For k = 0, we have an isomorphism of GL(Vn)-modules

Φ : B2,0(n)
∼=−→ Sym2(Bc

1,0(n)) = S(2)(Bc
1,0(n))

defined by Φ( w1 w2 w3 w4 ) = w1 w2 · w3 w4 for w1, . . . , w4 ∈
Vn. By Proposition 4.1 and plethysm, it follows that

B2,0(n) ∼= Sym2(Bc
1,0(n)) ∼= S(2)(S(2)Vn) ∼= S(4)Vn ⊕ S(2,2)Vn. □
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Let B′
2,0(n) (resp. B′′

2,0(n)) denote the subspace of B2,0(n) that is isomor-
phic to S(4)Vn (resp. S(2,2)Vn). By Proposition 7.2, we have an irreducible
decomposition of the GL(Vn)-module B2(n)

B2(n) = B′
2,0(n) ⊕ B′′

2,0(n) ⊕ B2,1(n) ⊕ B2,2(n).(7.2)

Here B′′
2,0(n) vanishes only when n = 0, 1, B2,1(n) vanishes only when

n = 0, 1, 2, and B′
2,0(n) and B2,2(n) vanish only when n = 0. By (3.2), the

GL(n;Z)-action on Bd(n) factors through the GL(Vn)-action on Bd(n):

GL(n;Z) ↪→ GL(n;k)
t(·)−1

−−−→ GL(Vn) → AutgVect(Bd(n)).

Therefore, the irreducible decomposition (7.2) of B2(n) holds as the
GL(n;Z)-modules.

Remark 7.3. — For n = 2, S(2,2)Vn
∼= det2 = k is the simple GL(2;Z)-

module given by the square of the determinant, so it is trivial. For n = 3,
S(1,1,1)Vn

∼= det is the simple GL(3;Z)-module given by the determinant.

7.2. Direct decomposition of A2

Here we give a direct decomposition of the functor A2.
The category A has morphisms

µ = : 2 → 1, η = : 0 → 1, c = : 0 → 2.

Depict c as . The iterated multiplications µ[q] : q → 1 for q ⩾ 0 are
inductively defined by

µ[0] = η, µ[1] = id1, µ[q+1] = µ ◦ (µ[q] ⊗ id1) (q ⩾ 1).

For m ⩾ 0, there is a group homomorphism

Sm → A(m, m), σ 7→ Pσ,

where Pσ is the symmetry in A corresponding to σ. Set

symm :=
∑

σ∈Sm

Pσ, altm :=
∑

σ∈Sm

sgn(σ)Pσ ∈ A(m, m).

By Habiro–Massuyeau [12, Lemma 5.16], every element of A2(n) is a
linear combination of morphisms of the form

(µ[q1] ⊗ · · · ⊗ µ[qn]) ◦ Pσ ◦ c⊗2

ANNALES DE L’INSTITUT FOURIER



ACTIONS OF AUTOMORPHISM GROUPS OF FREE GROUPS 1519

for σ ∈ S4 and q1, . . . , qn ⩾ 0 such that q1 + · · · + qn = 4. For example, we
have

1 2 n
· · ·

3
= (µ[1] ⊗ µ[2] ⊗ µ[1] ⊗ (µ[0])⊗n−3) ◦ (P(2,3) − Pid) ◦ c⊗2.

Since we have (µ[q1] ⊗ · · · ⊗ µ[qn]) ◦ Pσ ∈ A0(4, n) and A0(m, n) ∼=
kFop(m, n), by the above decomposition of morphisms of A2(n), we have
the following lemma.

Lemma 7.4. — For n ⩾ 0, we have

A2(n) = Spank{A2(f)(c ⊗ c) : f ∈ Fop(4, n)}.

Set

P ′ = sym4 = 8 c ⊗ c + 8 + 8 ∈ A2(4),

P ′′ = alt2 alt2 = 2 − 2 ∈ A2(4).

Let
A′

2, A′′
2 : Fop → fVect

be the subfunctors of the functor A2 such that

A′
2(n) := Spank{A2(f)(P ′) : f ∈ Fop(4, n)} ⊂ A2(n),

A′′
2(n) := Spank{A2(f)(P ′′) : f ∈ Fop(4, n)} ⊂ A2(n),

respectively.

Proposition 7.5. — We have a direct decomposition

A2 = A′
2 ⊕ A′′

2

in the functor category fVectFop
.

Proof. — We prove that A2(n) = A′
2(n) + A′′

2(n) for n ⩾ 0. Since we
have

sym4 + 4 alt2 alt2 + 4 alt2 alt2

= (8 c ⊗ c + 8 + 8 ) + (8 c ⊗ c − 8 ) + (8 c ⊗ c − 8 )
= 24 c ⊗ c,

it follows that c⊗c ∈ A′
2(n)+A′′

2(n). Thus, we have A2(n) = A′
2(n)+A′′

2(n)
by Lemma 7.4.
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In order to prove that A′
2(n) ∩ A′′

2(n) = 0, it suffices to show that

θ2,n(gr(A′
2(n))) ⊂ B′

2,0(n), θ2,n(gr(A′′
2(n))) ⊂ B′′

2,0(n)⊕B2,1(n)⊕B2,2(n).

Let P ′
ijkl =

sym4

i j k l

be a linear sum of elements of A2(n) such that

each endpoint of two chords are attached to the i, j, k, l-th component of
Xn, respectively, where 1 ⩽ i ⩽ j ⩽ k ⩽ l ⩽ n. Note that P ′

ijkl is defined
independently of how to attach endpoints to the same component of Xn

because of the symmetrizer. Since an element of A′
2(n) is a linear sum of

P ′
ijkl and since we have

θ2,n(P ′
ijkl) = sym4

vivjvkvl

∈ B′
2,0(n),

it follows that θ2,n(gr(A′
2(n))) ⊂ B′

2,0(n).

Let P ′′
ijkl = alt2 alt2

i j k l

be a linear sum of elements of A2(n) such that

each endpoint of two chords are attached to the i, j, k, l-th component,
respectively, where i, j, k, l ∈ {1, . . . , n}. Note that P ′′

ijkl has ambiguity of
how to attach endpoints to the same component of Xn, but the difference
is an element of A2,1(n). Since an element of A′′

2(n) is a linear sum of P ′′
ijkl

and since we have

θ2,n(P ′′
ijkl) − alt2 alt2

vi vj vkvl

∈ B2,1(n) ⊕ B2,2(n)

by Lemma 3.1, it follows that

θ2,n(gr(A′′
2(n))) ⊂ B′′

2,0(n) ⊕ B2,1(n) ⊕ B2,2(n). □

Proposition 7.6. — We have

θ2,n(gr(A′
2(n))) = B′

2,0(n),
θ2,n(gr(A′′

2(n))) = B′′
2,0(n) ⊕ B2,1(n) ⊕ B2,2(n).

(7.3)

Proof. — This follows from Proposition 7.5 and Lemma 3.1. □
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7.3. Action of gr(IA(n)) on B2(n)

In order to study the Aut(Fn)-module structure of A′′
2(n), we consider

whether the restrictions of the GL(n;Z)-module homomorphism (5.4)

[·, ·] : B′′
2,0(n) ⊗Z gr1(IA(n)) → B2,1(n),(7.4)

[·, ·] : B2,1(n) ⊗Z gr1(IA(n)) → B2,2(n)(7.5)

vanish or not.
For n = 1, 2, the maps (7.4) and (7.5) vanish, because the IA(n)-actions

on A2(n) are trivial by Corollary 5.3.
The bracket maps (7.4) and (7.5) induce GL(n;Z)-module homomor-

phisms

ρ1 : B′′
2,0(n) → Hom(gr1(IA(n)), B2,1(n)),

ρ2 : B2,1(n) → Hom(gr1(IA(n)), B2,2(n)),

respectively.
For distinct elements i, j, k ∈ [n], define Ki,j,k ∈ IA(n) by

Ki,j,k(xi) = xi[xj , xk], Ki,j,k(xl) = xl for l ̸= i.

Lemma 7.7. — For n ⩾ 3, the GL(n;Z)-module homomorphisms ρ1 and
ρ2 are injective.

Proof. — Let

u = v1 v1 v2 v2 − v1 v2 v1 v2 ∈ B′′
2,0(n).

We have

ρ1(u)(K3,1,2) = 6
v1 v2 v3

̸= 0 ∈ B2,1(n).

Thus, we have ρ1 ̸= 0. Since B′′
2,0(n) is simple, it follows that ρ1 is injective.

We have

ρ2

(
v1 v2 v3

)
(K1,3,2) = v1 v1 ̸= 0 ∈ B2,2(n).

Since B2,1(n) is simple, it follows that ρ2 is injective in a similar way. □

Remark 7.8. — The restriction of the GL(n;Z)-module homomor-
phism (5.4)

[·, ·] : B′′
2,0(n) ⊗Z gr2(IA(n)) → B2,2(n)

also induces a GL(n;Z)-module homomorphism

ρ3 : B′′
2,0(n) → Hom(gr2(IA(n)), B2,2(n)).
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We can also check that ρ3 is injective. This is because we have

[u, [K3,1,2, K1,3,2]] = [[u, K3,1,2], K1,3,2] − [[u, K1,3,2], K3,1,2]

=
[

6
v1 v2 v3

, K1,3,2

]
= 6 v1 v1 ̸= 0 ∈ B2,2(n)

since [u, K1,3,2] = 0.

7.4. Aut(Fn)-module structure of A2(n)

Here, we consider the Aut(Fn)-module structure of A2(n).
By Proposition 7.5, we have a decomposition of Aut(Fn)-modules

A2(n) = A′
2(n) ⊕ A′′

2(n)

and a filtration of Aut(Fn)-modules

A′′
2(n) ⊃ A2,1(n) ⊃ A2,2(n) ⊃ 0.

Moreover, by (7.2) and (7.3), we have GL(n;Z)-module isomorphisms

θ2,n(gr(A′
2(n))) = B′

2,0(n) ∼= S(4)Vn,

θ2,n(gr(A′′
2(n))) = B′′

2,0(n) ⊕ B2,1(n) ⊕ B2,2(n)
∼= S(2,2)Vn ⊕ S(1,1,1)Vn ⊕ S(2)Vn,

θ2,n(gr(A2,1(n))) = B2,1(n) ⊕ B2,2(n) ∼= S(1,1,1)Vn ⊕ S(2)Vn,

θ2,n(gr(A2,2(n))) = B2,2(n) ∼= S(2)Vn.

Thus, it follows that A′
2(n) and A2,2(n) are simple Aut(Fn)-modules for

any n ⩾ 1.

Theorem 7.9. — The Aut(Fn)-module A′
2(n) is simple for any n ⩾ 1.

For n = 1, Aut(F1) ∼= Z/2Z acts on A′′
2(1) ∼= k trivially.

For n = 2, A′′
2(2) has an irreducible decomposition

A′′
2(2) = W ⊕ A2,2(2),

where Aut(F2) acts on W ∼= k trivially.
For n ⩾ 3, A′′

2(n) admits a unique composition series of length 3

A′′
2(n) ⊋ A2,1(n) ⊋ A2,2(n) ⊋ 0;

that is, A′′
2(n) has no nonzero proper Aut(Fn)-submodules other than

A2,1(n) and A2,2(n). Therefore, A′′
2(n) and A2,1(n) are indecomposable.
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To prove this theorem, we use the following fact due to Nielsen [22]. See
also [20] for the statement. Define U1,2, P1,2, σ ∈ Aut(F2) by

U1,2(x1) = x1x2, U1,2(x2) = x2,

P1,2(x1) = x2, P1,2(x2) = x1,

σ(x1) = x−1
1 , σ(x2) = x2.

Theorem 7.10 (Nielsen [22]). — The automorphism group Aut(F2) is
generated by U1,2, P1,2 and σ.

Proof of Theorem 7.9. — For n = 1, A′′
2(1) = A2,2(1) has a basis

{
1

}. We can check that the action of Aut(F1) ∼= Z/2Z on A′′
2(1)

is trivial.
For n = 2, let

u = 2
1 2

−
1 2

−
1 2

∈ A′′
2(2) \ A2,2(2),

u1,1 = 1
2

1 2
, u1,2 =

1 2
, u2,2 = 1

2
21

∈ A2,2(2).

It is easily checked that {u, u1,1, u1,2, u2,2} is a basis for A′′
2(2) and that the

representation matrices of U1,2, P1,2 and σ for this basis are

U1,2 =


1 1 1 0
0 1 0 0
0 2 1 0
0 1 1 1

 , P1,2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , σ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 .

Let w = (1, −1, 0, −1) = u − u1,1 − u2,2 ∈ A′′
2(2) \ A2,2(2) and W = kw.

We have
w · U1,2 = w · P1,2 = w · σ = w.

Thus, by Theorem 7.10, it follows that the Aut(F2)-action on W is trivial.
Therefore, we have an irreducible decomposition

A′′
2(2) = W ⊕ A2,2(2).

For n ⩾ 3, since

A′′
2(n)/A2,1(n) ∼= B′′

2,0(n) ∼= S(2,2)Vn,

A2,1(n)/A2,2(n) ∼= B2,1(n) ∼= S(1,1,1)Vn
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are simple Aut(Fn)-modules, we have a composition series of length 3

A′′
2(n) ⊋ A2,1(n) ⊋ A2,2(n) ⊋ 0.

We next prove that A2,1(n) does not have any nonzero proper submod-
ules other than A2,2(n). (Then, it follows that A2,1(n) is indecomposable.)
Let A be a nonzero submodule of A2,1(n) other than A2,2(n). Since A2,2(n)
is simple, there is an element a ∈ A \ A2,2(n). We have θ2,n(gr(A2,1(n))) =
B2,1(n) ⊕ B2,2(n), so we can write a as a = u + v, for some elements
u ̸= 0 ∈ θ−1

2,n(B2,1(n)), v ∈ θ−1
2,n(B2,2(n)) = A2,2(n). By Lemma 7.7, there

is g ∈ IA(n) such that [u, g] ̸= 0 ∈ A2,2(n). Therefore, we have

[a, g] = [u + v, g] = [u, g] + [v, g] = [u, g] ̸= 0 ∈ A2,2(n).

Since A2,2(n) is simple, we have A2,2(n) ⊊ A. Since A2,1(n) has a composi-
tion series of length 2, by the Jordan–Hölder theorem, we have A = A2,1(n).

We now prove that A′′
2(n) does not have any nonzero proper submodules

other than A2,1(n) and A2,2(n). (Then, it follows that A′′
2(n) is indecompos-

able.) Let A be a nonzero submodule of A′′
2(n) other than A2,1(n), A2,2(n).

Since A2,2(n) is the only nonzero proper submodule of A2,1(n), we have
A ⊈ A2,1(n). Thus, there is an element a ∈ A \ A2,1(n). Since we have
θ2,n(gr(A′′

2(n))) = B′′
2,0(n)⊕B2,1(n)⊕B2,2(n), we can write a as a = u+v for

some elements u ̸= 0 ∈ θ−1
2,n(B′′

2,0(n)), v ∈ θ−1
2,n(B2,1(n)⊕B2,2(n)) = A2,1(n).

By Lemma 7.7, there is g ∈ IA(n) such that [u, g] ∈ A2,1(n) \ A2,2(n).
Therefore, we have

[a, g] = [u + v, g] = [u, g] + [v, g] ∈ A2,1(n) \ A2,2(n),

because [v, g] ∈ A2,2(n). Since A2,2(n) is the only nonzero proper submod-
ule of A2,1(n), we have A ∩ A2,1(n) = A2,1(n) and therefore, A2,1(n) ⊊ A.
Since A′′

2(n) has a composition series of length 3, by the Jordan–Hölder
theorem, we have A = A′′

2(n). □

Corollary 7.11. — There are exact sequences of Aut(Fn)-modules

0 → S(1,1,1)Vn →A′′
2(n)/A2,2(n) → S(2,2)Vn → 0,

0 → S(2)Vn →A2,1(n) → S(1,1,1)Vn → 0,

which do not split for n ⩾ 3. Thus, we have

Ext1
k Aut(Fn)(S(2,2)Vn,S(1,1,1)Vn) ̸= 0,

Ext1
k Aut(Fn)(S(1,1,1)Vn,S(2)Vn) ̸= 0

for n ⩾ 3.
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Remark 7.12. — Corollary 7.11 also holds as Out(Fn)-modules. In the
context of outer functors, the latter fact of Corollary 7.11 about extensions
corresponds to some specific cases of Corollary 19.15 in [24].

Remark 7.13. — By Theorem 5.1, the Aut(Fn)-module A2,1(n) can be
considered as an Out(Fn)-module. There is no Out(F3)-modules of di-
mension less than 7 which do not factor through the canonical surjection
Out(F3) ↠ GL(3;Z) [17]. Turchin and Willwacher [25] constructed the
first 7-dimensional Out(F3)-module U I

3 with such property. We can check
that the Out(F3)-module A2,1(3) is isomorphic to U I

3 . We have another 7-
dimensional Out(F3)-module A′′

2(3)/A2,2(3) which does not factor through
GL(3;Z). At the level of the associated graded GL(3;Z)-module,

gr(A′′
2(3)/A2,2(3)) ∼= S(2,2)V3 ⊕ S(1,1,1)V3 ∼= (S(2)V3)∗ ⊕ (S(1,1,1)V3)∗

∼= gr(A2,1(3))∗.

We conjecture that the Out(F3)-module A′′
2(3)/A2,2(3) is isomorphic to the

dual of A2,1(3) and that A′′
2(3) is self-dual.

7.5. Indecomposable decomposition of A2

Finally, we show that the subfunctors A′
2 and A′′

2 of A2, which we ob-
served in Section 7.2, are indecomposable.

Theorem 7.14. — The direct decomposition A2 = A′
2 ⊕ A′′

2 in Propo-
sition 7.5 is indecomposable in the functor category fVectFop

.

Proof. — Since A′
2(n) are simple Aut(Fn)-modules for any n ⩾ 1 by

Theorem 7.9, the functor A′
2 is indecomposable in fVectFop

.
Suppose that we have a direct decomposition

A′′
2 = G ⊕ G′ ∈ fVectFop

,

where G′ is possibly 0. By Theorem 7.9, the Aut(Fn)-modules A′′
2(n) are

indecomposable for n ⩾ 3, we have

(7.6) G(n) = A′′
2(n), G′(n) = 0 (n ⩾ 3).

Since G and G′ are subfunctors of A2, (7.6) holds for any n ⩾ 0. Therefore,
we have

G = A′′
2 , G′ = 0.

This implies that the functor A′′
2 is indecomposable in fVectFop

. □
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8. Polynomiality of the functor Ad

In Section 8.1, we show that the functor Ad is a polynomial functor of
degree 2d as the author was informed by Christine Vespa. Moreover, she
informed the author that the filtration of Ad(n) corresponds to the polyno-
mial filtration of the polynomial functor Ad. (The reader can consult [24]
for the definition of polynomial filtrations.)

In Section 8.2, we give some remarks about a polynomial functor Ud asso-
ciated to a Casimir Lie algebra and a weight system natural transformation
from Ad to Ud.

8.1. The polynomial functor Ad

We recall the definition of polynomial functors (see [13, Section 2]). Let
C be a pointed monoidal category, that is, a monoidal category (C, ⊗, 0)
with a null object 0 as the monoidal unit. For X1, . . . , Xn ∈ C, let

rn

k̂
: X1 ⊗ · · · ⊗ Xn → X1 ⊗ · · · X̂k · · · ⊗ Xn

be the composition

X1 ⊗· · ·⊗Xk ⊗· · ·⊗Xn → X1 ⊗· · ·⊗0⊗· · ·⊗Xn

∼=−→ X1 ⊗· · · X̂k · · ·⊗Xn,

where the first map is determined by the unique morphism Xk → 0. Let D
be an additive category. A functor F : C → D is a polynomial functor of
degree ⩽ n if

r̂F =
(

F
(

rn+1
1̂

)
, . . . , F

(
rn+1

n̂+1

))t

: F (X1 ⊗ · · · ⊗ Xn+1)

→
n+1⊕
k=1

F (X1 ⊗ · · · X̂k · · · ⊗ Xn+1)

is monic for any X1, . . . , Xn+1 ∈ C. Note that if D is an abelian category,
then the above definition of polynomial functors coincides with the defini-
tion in [13]. Since the category fVect is an additive category but not an
abelian category, we need this generalized definition of polynomial functors.

Proposition 8.1. — The functor Ad : Fop → fVect is a polynomial
functor of degree 2d.

Proof. — For a Jacobi diagram D ∈ Ad(n), define the support supp(D) ⊂
[n] of D to be the set of i ∈ [n] such that at least one of the univalent vertices
of D is attached to the i-th component of Xn. For S ⊂ [n], let Ad(n)S
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denote the subspace of Ad(n) spanned by the diagrams with support S.
Since the three terms in an STU relation have the same support, we have

Ad(n) =
⊕

S⊂[n]

Ad(n)S .

To prove that the functor Ad is a polynomial functor of degree 2d, it
suffices to show that for each S ⊂ [2d + 1], there is k ∈ [2d + 1] such
that Ad(r2d+1

k̂
) : Ad(2d + 1)S → Ad(2d) is injective. Since any support

S ⊂ [2d + 1] of an element of Ad(2d + 1) has at most 2d elements, we can
choose k ∈ [2d + 1] \ S. For the morphism r2d+1

k̂
: 2d + 1 → 2d in Fop, we

have

Ad(r2d+1
k̂

) =
k1 2d + 1

◦− : Ad(2d+1) → Ad(2d).

Since for any element u ∈ Ad(2d + 1)S , the element Ad(r2d+1
k̂

)(u) ∈ Ad(2d)
is obtained from u by taking away the k-th arc component of X2d+1 , it
follows that the map Ad(r2d+1

k̂
) is injective on Ad(2d + 1)S . □

8.2. Polynomial functor Ud and the weight system map

Here we give some remarks about another polynomial functor Ud and
weight systems, which relate Ad to Ud.

Let g be a Casimir Lie algebra in the sense of [12], which is a Lie algebra
with an ad-invariant symmetric 2-tensor cg ∈ g ⊗ g (for example, a qua-
dratic Lie algebra is a Casimir Lie algebra). Let U(g) denote the universal
enveloping algebra of g. We have an increasing filtration F∗(U(g)⊗n) of
U(g)⊗n, which is induced by the usual filtration of the tensor algebra of g.

Since U(g) is a cocommutative Hopf algebra, by [5], U(g)⊗n has a left
Aut(Fn)-module structure, and the ad-invariant part (U(g)⊗n)U(g) of
U(g)⊗n has a left Out(Fn)-module structure. Moreover, we can construct
a polynomial functor

Ud : Fop → Vect

of degree 2d that maps n ∈ N to F2d(U(g)⊗n)U(g), which is also an outer
functor.

By Section 7.1 of [12], there is a Hopf algebra H in the category A, and
we have a unique linear symmetric monoidal functor W (g) : A → ModU(g)
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from the category A to the category ModU(g) of U(g)-modules that sends

the pair (H, c = ) to (U(g), cg). Thus, we have a linear map

Wn(g) : Ad(n) → F2d(U(g)⊗n),

which we call the weight system of the Casimir Lie algebra (g, cg). Con-
sidering Ad(n) as a left Aut(Fn)-module via Aut(Fn)op ∼= Aut(Fn), which
takes an element to its inverse, the weight system Wn(g) preserves the
Aut(Fn)-module structure. Since a Casimir element is ad-invariant, the
weight system takes values in the ad-invariant part (U(g)⊗n)U(g) of U(g)⊗n.
Therefore, the weight system induces an Out(Fn)-module map

Wn(g) : Ad(n) → F2d(U(g)⊗n)U(g).

Moreover, the family (Wn(g))n∈N of weight systems forms a natural trans-
formation between polynomial functors Ad and Ud of degree 2d.

Appendix A. Extended N-series and extended graded
Lie algebras

We briefly review the definition of extended N-series and extended graded
Lie algebras, which are defined in [11], and define an action of an extended
N-series on a filtered vector space and an action of an extended graded
Lie algebras on a graded vector space. Then we prove that an action of
an extended N-series on a filtered vector space induces an action of the
associated extended graded Lie algebras on the associated graded vector
space.

An extended N-series K∗ = (Kn)n⩾0 of a group K is a descending series

K = K0 ⩾ K1 ⩾ K2 ⩾ · · ·

such that [Kn, Km] ⩽ Kn+m for all n, m ⩾ 0. A morphism f : G∗ → K∗
between extended N-series is a group homomorphism f : G0 → K0 such
that we have f(Gn) ⊂ Kn for all n ⩾ 0.

For a filtered vector space W∗, set

Aut0(W∗) := AutfVect(W∗),
Autn(W∗) := {ϕ ∈ Aut0(W∗) : [ϕ, Wk] ⊂ Wk+n for all k ⩾ 0} (n ⩾ 1),

where [ϕ, w] := ϕ(w)−w for w ∈ Wk. We can easily check that Aut∗(W∗) :=
(Autn(W∗))n⩾0 is an extended N-series.

ANNALES DE L’INSTITUT FOURIER



ACTIONS OF AUTOMORPHISM GROUPS OF FREE GROUPS 1529

Definition A.1 (Action of extended N-series on filtered vector spaces).
Let K∗ be an extended N-series and W∗ be a filtered vector space. An
action of K∗ on W∗ is a morphism f : K∗ → Aut∗(W∗) between extended
N-series.

An extended graded Lie algebra (abbreviated as eg-Lie algebra) L• =
(Ln)n⩾0 is a pair of

• a graded Lie algebra L+ =
⊕

n⩾1 Ln,
• a group L0 acting on L+ in a degree-preserving way.

A morphism f• = (fn : Ln → L′
n)n⩾0 : L• → L′

• between eg-Lie algebras
consists of

• a group homomorphism f0 : L0 → L′
0,

• a graded Lie algebra homomorphism f+ = (fn)n⩾1 : L+ → L′
+,

such that we have fn(xy) = f0(x)(fn(y)) for n ⩾ 1, x ∈ L0 and y ∈ Ln.
We have a functor gr• from the category of extended N-series to the

category of eg-Lie algebras, which maps an extended N-series K∗ to an
eg-Lie algebra gr•(K∗) = (K0/K1,

⊕
n⩾1 Kn/Kn+1), where Lie bracket is

given by the commutator and the action of K0/K1 on
⊕

n⩾1 Kn/Kn+1 is
given by the adjoint action.

For a graded vector space W =
⊕

k⩾0 Wk, set

End0(W ) := AutgVect(W ),
Endn(W ) := {ϕ ∈ End(W ) : ϕ(Wk) ⊂ Wk+n for k ⩾ 0} (n ⩾ 1).

We can check that End•(W ) = (AutgVect(W ),
⊕

n⩾1 Endn(W )) is an eg-
Lie algebra, where the Lie bracket is defined by

[f, g] := f ◦ g − g ◦ f for f ∈ Endk(W ), g ∈ Endl(W )

and the action of AutgVect(W ) on
⊕

n⩾1 Endn(W ) is defined by the adjoint
action

gf := g ◦ f ◦ g−1 for g ∈ AutgVect(W ), f ∈ Endk(W ).

Definition A.2 (Action of graded Lie algebras on graded vector spaces).
Let L+ =

⊕
n⩾1 Ln be a graded Lie algebra and W =

⊕
k⩾0 Wk be a

graded vector space. An action of L+ on W is a morphism f : L+ →⊕
n⩾1 Endn(W ) between graded Lie algebras.

Definition A.3 (Action of eg-Lie algebras on graded vector spaces).
Let L• be an eg-Lie algebra and W =

⊕
k⩾0 Wk be a graded vector space.

An action of L• on W is a morphism f : L• → End•(W ) between eg-Lie
algebras.
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Proposition A.4. — Let an extended N-series K∗ act on a filtered
vector space W∗. Then we have an action of the eg-Lie algebra gr•(K∗) on
the graded vector space gr(W∗) as follows. The group homomorphism

ρ0 : gr0(K∗) → AutgVect(gr(W∗))

is defined by ρ0(gK1)([v]Wk+1) = [g(v)]Wk+1 for gK1 ∈ gr0(K∗), and the
graded Lie algebra homomorphism

ρ+ :
⊕
n⩾1

grn(K∗) →
⊕
n⩾1

Endn(gr(W∗))

is defined by ρ+(gKn+1)([v]Wk+1) = [[g, v]]Wk+n+1
for gKn+1 ∈ grn(K∗).

Proof. — Firstly, we prove that there is a well-defined group homomor-
phism ρ0. Since K∗ acts on W∗, we have a group homomorphism

K0 → Aut(grk(W∗)).

Moreover, since [g(v)]Wk+1 = [[g, v] + v]Wk+1 = [v]Wk+1 for g ∈ K1 and
v ∈ Wk, it follows that K1 → Aut(grk(W∗)) is trivial. Thus, the group
homomorphism

ρ0 : gr0(K∗) = K0/K1 → AutgVect(gr(W∗))

is induced.
Secondly, we prove that there is a well-defined Lie algebra homomorphism

ρ+. Since K∗ acts on W∗, we can check that ρ+ is well defined. Moreover,
the map ρ+ is a Lie algebra homomorphism because for g ∈ Kn, h ∈ Kn′

and v ∈ Wk, we have

[[gKn+1, hKn′+1], [v]Wk+1 ]
= [[g, h]Kn+n′+1, [v]Wk+1 ]
= [[g, h], v]Wk+n+n′+1 = [[g, [h, v]] − [h, [g, v]]]Wk+n+n′+1

= [gKn+1, [hKn′+1, [v]Wk+1 ]] − [hKn′+1, [gKn+1, [v]Wk+1 ]].

Finally, we check that ρ+ is compatible with ρ0. For g ∈ K0, h ∈ Kn and
v ∈ Wk, we have

ρ+(gK1hKn+1)([v]Wk+1) = [[ghg−1, v]]Wk+n+1

= [g([h, g−1(v)])]Wk+n+1

= ρ0(gK1)(ρ+(hKn+1))([v]Wk+1).

Therefore, this is an action of gr•(K∗) on gr(W∗). □
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