[Actions des groupes d’automorphismes des groupes libres sur les espaces de diagrammes de Jacobi. I]
Nous considérons une action du groupe d’automorphisme s du groupe libre de rang sur l’espace vectoriel filtré des diagrammes de Jacobi de degré sur arcs orientés. Cette action induit sur l’espace vectoriel gradué associé de , qui est identifié à l’espace des diagrammes de Jacobi ouverts, une action du groupe linéaire général et une action de l’algèbre de Lie graduée du groupe d’automorphismes IA de associée à sa série centrale inférieure. Nous utilisons ces actions sur pour étudier la structure de -module de . En particulier, nous considérons en détail le cas où et donnons une décomposition indécomposable de . Nous construisons également un foncteur polynomial de degré de la catégorie opposée de la catégorie des groupes libres finiment engendrés à la catégorie des espaces vectoriels filtrés, qui inclut la structure de -module de pour tout .
We consider an action of the automorphism group of the free group of rank on the filtered vector space of Jacobi diagrams of degree on oriented arcs. This action induces on the associated graded vector space of , which is identified with the space of open Jacobi diagrams, an action of the general linear group and an action of the graded Lie algebra of the IA-automorphism group of associated with its lower central series. We use these actions on to study the -module structure of . In particular, we consider the case where in detail and give an indecomposable decomposition of . We also construct a polynomial functor of degree from the opposite category of the category of finitely generated free groups to the category of filtered vector spaces, which includes the -module structure of for all .
Révisé le :
Accepté le :
Publié le :
Keywords: Jacobi diagrams, Automorphism groups of free groups, General linear groups, IA-automorphism groups of free groups.
Mot clés : Diagrammes de Jacobi, groupes d’automorphisme des groupes libres, groupes linéaires généraux, groupes d’automorphisme IA des groupes libres.
Katada, Mai 1
@article{AIF_2023__73_4_1489_0, author = {Katada, Mai}, title = {Actions of automorphism groups of free groups on spaces of {Jacobi} diagrams. {I}}, journal = {Annales de l'Institut Fourier}, pages = {1489--1532}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {4}, year = {2023}, doi = {10.5802/aif.3544}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3544/} }
TY - JOUR AU - Katada, Mai TI - Actions of automorphism groups of free groups on spaces of Jacobi diagrams. I JO - Annales de l'Institut Fourier PY - 2023 SP - 1489 EP - 1532 VL - 73 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3544/ DO - 10.5802/aif.3544 LA - en ID - AIF_2023__73_4_1489_0 ER -
%0 Journal Article %A Katada, Mai %T Actions of automorphism groups of free groups on spaces of Jacobi diagrams. I %J Annales de l'Institut Fourier %D 2023 %P 1489-1532 %V 73 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3544/ %R 10.5802/aif.3544 %G en %F AIF_2023__73_4_1489_0
Katada, Mai. Actions of automorphism groups of free groups on spaces of Jacobi diagrams. I. Annales de l'Institut Fourier, Tome 73 (2023) no. 4, pp. 1489-1532. doi : 10.5802/aif.3544. https://aif.centre-mersenne.org/articles/10.5802/aif.3544/
[1] On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. (3), Volume 15 (1965), pp. 239-268 | DOI | MR | Zbl
[2] On the Vassiliev knot invariants, Topology, Volume 34 (1995) no. 2, pp. 423-472 | DOI | MR | Zbl
[3] Vassiliev homotopy string link invariants, J. Knot Theory Ramifications, Volume 4 (1995) no. 1, pp. 13-32 | DOI | MR | Zbl
[4] Some computations related to Vassiliev invariants (1996) (preprint)
[5] Hopf algebras and invariants of the Johnson cokernel, Algebr. Geom. Topol., Volume 16 (2016) no. 4, pp. 2325-2363 | DOI | MR | Zbl
[6] On the groups . II. Methods of computation, Ann. of Math. (2), Volume 60 (1954), pp. 49-139 | DOI | MR | Zbl
[7] Young tableaux, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997, x+260 pages (With applications to representation theory and geometry) | MR | Zbl
[8] Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991, xvi+551 pages (Readings in Mathematics) | DOI | MR | Zbl
[9] The classification of links up to link-homotopy, J. Amer. Math. Soc., Volume 3 (1990) no. 2, pp. 389-419 | DOI | MR | Zbl
[10] Bottom tangles and universal invariants, Algebr. Geom. Topol., Volume 6 (2006), pp. 1113-1214 | DOI | MR | Zbl
[11] Generalized Johnson homomorphisms for extended N-series, J. Algebra, Volume 510 (2018), pp. 205-258 | DOI | MR | Zbl
[12] The Kontsevich integral for bottom tangles in handlebodies, Quantum Topol., Volume 12 (2021) no. 4, pp. 593-703 | DOI | MR | Zbl
[13] Polynomial functors from algebras over a set-operad and nonlinear Mackey functors, Int. Math. Res. Not. IMRN (2015) no. 6, pp. 1461-1554 | DOI | MR | Zbl
[14] Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995, xii+531 pages | DOI | MR | Zbl
[15] Actions of automorphism groups of free groups on spaces of Jacobi diagrams. II., Journal of the Institute of Mathematics of Jussieu (2022), p. 1â69 | DOI
[16] Cohomological aspects of Magnus expansions (2005) (https://arxiv.org/abs/math/0505497)
[17] Low-dimensional free and linear representations of , J. Group Theory, Volume 18 (2015) no. 6, pp. 913-949 | DOI | MR | Zbl
[18] Vassiliev’s knot invariants, I. M. Gelʼfand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 137-150 | MR | Zbl
[19] Über -dimensionale Gittertransformationen, Acta Math., Volume 64 (1935) no. 1, pp. 353-367 | DOI | MR | Zbl
[20] Combinatorial group theory. Presentations of groups in terms of generators and relations, Dover Publications, Inc., New York, 1976, xii+444 pages | MR | Zbl
[21] Die Gruppe der dreidimensionalen Gittertransformationen, Det Kgl. Danske Videnskabernes Selskab., Mathematisk-fysiske Meddelelser, Volume 5 (1924) no. 12, pp. 1-29
[22] Die Isomorphismengruppe der freien Gruppen, Math. Ann., Volume 91 (1924) no. 3-4, pp. 169-209 | DOI | MR
[23] Quantum invariants. A study of knots, 3-manifolds, and their sets, Series on Knots and Everything, 29, World Scientific Publishing Co., Inc., River Edge, NJ, 2002, xiv+489 pages | MR | Zbl
[24] Higher Hochschild homology and exponential functors (2018) (https://arxiv.org/abs/1802.07574)
[25] Hochschild–Pirashvili homology on suspensions and representations of , Ann. Sci. Éc. Norm. Supér. (4), Volume 52 (2019) no. 3, pp. 761-795 | DOI | MR | Zbl
Cité par Sources :