[Sur la trace du propagateur des ondes et régularité du potentiel]
Nous considérons l’équation des ondes avec un potentiel borné, à support compact et à valeurs réelles, et montrons que la trace régularisée de l’opérateur d’évolution associé admet un développement asymptotique à l’ordre si et seulement si le potentiel appartient à l’espace de Sobolev d’ordre .
We consider the wave equation with a compactly supported, real-valued bounded potential, and show that the relative trace of the associated evolution group admits an asymptotic expansion to order if and only if the potential belongs to the Sobolev space of order .
Révisé le :
Accepté le :
Publié le :
Keywords: Trace, wave equation with potential.
Mot clés : Trace, équation des ondes avec potentiel.
Smith, Hart F. 1
@article{AIF_2023__73_4_1453_0, author = {Smith, Hart F.}, title = {On the trace of the wave group and regularity of potentials}, journal = {Annales de l'Institut Fourier}, pages = {1453--1488}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {4}, year = {2023}, doi = {10.5802/aif.3538}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3538/} }
TY - JOUR AU - Smith, Hart F. TI - On the trace of the wave group and regularity of potentials JO - Annales de l'Institut Fourier PY - 2023 SP - 1453 EP - 1488 VL - 73 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3538/ DO - 10.5802/aif.3538 LA - en ID - AIF_2023__73_4_1453_0 ER -
%0 Journal Article %A Smith, Hart F. %T On the trace of the wave group and regularity of potentials %J Annales de l'Institut Fourier %D 2023 %P 1453-1488 %V 73 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3538/ %R 10.5802/aif.3538 %G en %F AIF_2023__73_4_1453_0
Smith, Hart F. On the trace of the wave group and regularity of potentials. Annales de l'Institut Fourier, Tome 73 (2023) no. 4, pp. 1453-1488. doi : 10.5802/aif.3538. https://aif.centre-mersenne.org/articles/10.5802/aif.3538/
[1] Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, D.C., 1964, xiv+1046 pages | MR | Zbl
[2] On the heat trace of Schrödinger operators, Comm. Partial Differential Equations, Volume 20 (1995) no. 11-12, pp. 2153-2164 | DOI | MR | Zbl
[3] On the compactness of isospectral potentials, Comm. Partial Differential Equations, Volume 9 (1984) no. 7, pp. 687-698 | DOI | MR | Zbl
[4] Resonant rigidity for Schrödinger operators in even dimensions, Ann. Henri Poincaré, Volume 20 (2019) no. 5, pp. 1543-1582 | DOI | MR | Zbl
[5] Compactness of isospectral potentials, Trans. Amer. Math. Soc., Volume 357 (2005) no. 5, p. 1717-1730 (electronic) | DOI | MR | Zbl
[6] Mathematical theory of scattering resonances, Graduate Studies in Mathematics, 200, American Mathematical Society, Providence, RI, 2019, xi+634 pages | DOI | MR | Zbl
[7] Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Nat. Acad. Sci. U.S.A., Volume 37 (1951), pp. 760-766 | DOI | MR | Zbl
[8] Asymptotic formulae in spectral geometry, Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2004, viii+304 pages | MR | Zbl
[9] Compactness of iso-resonant potentials for Schrödinger operators in dimensions one and three, Trans. Amer. Math. Soc., Volume 374 (2021) no. 6, pp. 4481-4499 | DOI | MR | Zbl
[10] Regularized traces and Taylor expansions for the heat semigroup, J. London Math. Soc. (2), Volume 68 (2003) no. 2, pp. 402-418 | DOI | MR | Zbl
[11] Scattering theory and the trace of the wave group, J. Functional Analysis, Volume 45 (1982) no. 1, pp. 29-40 | DOI | MR | Zbl
[12] Geometric scattering theory, Stanford Lectures, Cambridge University Press, Cambridge, 1995, xii+116 pages | MR | Zbl
[13] Existence of resonances in potential scattering, Comm. Pure Appl. Math., Volume 49 (1996) no. 12, pp. 1271-1280 | MR | Zbl
[14] On the trace of Schrödinger heat kernels and regularity of potentials, Trans. Amer. Math. Soc., Volume 371 (2019) no. 6, pp. 3857-3875 | DOI | MR | Zbl
[15] Heat traces and existence of scattering resonances for bounded potentials, Ann. Inst. Fourier (Grenoble), Volume 66 (2016) no. 2, pp. 455-475 | DOI | MR | Zbl
[16] Partial differential equations III. Nonlinear equations, Applied Mathematical Sciences, 117, Springer, New York, 2011, xxii+715 pages | DOI | MR | Zbl
[17] Une formule de traces pour l’opérateur de Schrödinger dans , Ann. Sci. École Norm. Sup. (4), Volume 14 (1981) no. 1, pp. 27-39 | DOI | MR | Zbl
[18] A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995, viii+804 pages Reprint of the second (1944) edition | MR | Zbl
Cité par Sources :