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UNIQUENESS OF BIRATIONAL STRUCTURES ON
INOUE SURFACES

by Shengyuan ZHAO

Abstract. — We prove that the natural (Aff2(C), C2)-structure on an Inoue
surface is the unique (Bir(P2),P2(C))-structure, generalizing a result of Bruno
Klingler which asserts that the natural (Aff2(C), C2)-structure is the unique
(PGL3(C),P2(C))-structure.

Résumé. — Nous prouvons que la (Aff2(C), C2)-structure naturelle sur une sur-
face d’Inoue est l’unique (Bir(P2),P2(C))-structure. Ceci généralise un résultat de
Bruno Klingler qui affirme que la (Aff2(C), C2)-structure est l’unique (PGL3(C),
P2(C))-structure.

1. Introduction

Inoue surfaces are compact non-Kähler complex surfaces discovered by
Inoue in [26]. They are of class VII in Enriques–Kodaira’s classification of
compact complex surfaces, and are the only compact complex sufaces with
Betti numbers b1 = 1, b2 = 0 (cf. [33]). There are three types of Inoue
surfaces: S0, S+ and S−. Their universal covers are isomorphic to H ×C
where H is the upper half plane and the deck transformations can be writ-
ten as restrictions of complex affine transformations of C2. Therefore the
Inoue surfaces are equipped with a natural complex affine structure. Klin-
gler proves in [27] that the natural complex affine structure is the unique
complex projective structure carried by Inoue surfaces. In this article we
prove the following:

Theorem 1.1. — If an Inoue surface is equipped with a (Bir(X), X)-
structure for some complex projective surface X, then X is a rational sur-
face and the (Bir(X), X)-structure is induced by the natural (Aff2(C), C2)-
structure.
Keywords: Inoue surfaces, birational structures, Cremona group.
2020 Mathematics Subject Classification: 57M50, 14E07.
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Remark 1.2. — Roughly speaking, a birational structure is an atlas of
local charts with birational changes of coordinates. The precise definition
and basic properties will be given in Section 2.2. It is a generalization of the
classical (G, X)-structure; if we think of a geometric structure as a way to
patch coordinates, then it is the most general algebraic geometric structure
(the changes of coordinates are rational).

In a recent article [28], Kwon and Sullivan introduced some generalized
notions of geometric structures for which they allow a family of Lie groups
(Gi)i acting on the same space X. The group of birational transforma-
tions of a surface, though not a classical Lie group itself, is generated by
Lie groups acting by holomorphic diffeomorphisms on different birational
models of X. So, the geometric structure of [28] shares interesting similar-
ities with (Bir(X), X)-structures. Note that the group of birational trans-
formations of a variety of dimension ⩾ 3 may not be generated by its con-
nected algebraic subgroups (cf. [4]). Kwon and Sullivan proved in [28] that
every prime orientable three manifold admits such a generalized geomet-
ric structure. Their result is somewhat analogous to Dloussky’s conjecture
mentioned in Remark 1.4 below.

Remark 1.3. — Compared to the four-pages-long proof in [27] of the
uniqueness of the complex projective structure, our proof is more involved
because the group Bir(P2) of birational transformations of P2 is much larger
than PGL3(C). Also the fact that in our case the developing map is a priori
not holomorphic but only meromorphic will be the cause of some technical
complications.

Remark 1.4. — Complex projective structures on compact complex sur-
faces are classified by Klingler in [27]. There exist compact non-Kähler
complex surfaces which have (Bir(P2),P2)-structures but no complex pro-
jective structures, for example some Hopf surfaces; and Dloussky conjec-
tured in [21] that every surface of class VII admits a (Bir(P2),P2)-structure.

Remark 1.5. — If Y is a complex projective surface, we say that a sub-
group Γ of Bir(Y ) has the Kleinian property if the following three condi-
tions are satisfied: 1) the group Γ ⊂ Bir(Y ) acts by holomorphic diffeomor-
phisms on a Euclidean open set U ⊂ Y , i.e. an open set for the Euclidean
topology but not necessarily for the Zariski topology; 2) the action of Γ on
U is free and properly discontinuous; 3) the quotient U/Γ is compact. Once
we have a birational Kleinian group, the quotient surface is equipped natu-
rally with a birational structure. Thus we can view Theorem 1.1 as a result
about Fatou components of (groups of) birational transformations. For a
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systematic study of birational Kleinian groups we refer to the forthcoming
article [36].

Plan and strategy

Section 2 concerns two subjects of independent interest. The notion of
birational structure appeared already in the work of Dloussky [21] but
several subtleties, that do not appear in classical geometric structures, were
not addressed in that paper. In Section 2.2 we give two different definitions
of (Bir(Pn),Pn)-structure. For n = 2 they are the same but for n ⩾ 3
whether they are the same is equivalent to an open question of Gromov. In
Section 2.3 we study Ahlfors–Nevanlinna currents attached to entire curves
(see the work of Brunella and McQuillan in [7, 29]): for nice (uniform)
families of entire curves, we show how to construct families of Ahlfors–
Nevalinna currents, with a fixed cohomology class; this may be useful to
people interested in holomorphic foliations or Kobayashi hyperbolicity.

After these preliminaries we prove Theorem 1.1. The construction of In-
oue surfaces of type S0 (resp. S±) will be recalled in Section 3 (resp. 4). For
simplicity, let us focus, here, on Inoue surfaces of type S0. Rather different
tools are used, depending on the size of the image of the holonomy rep-
resentation. When the holonomy is injective, the two principal ingredients
are the classification of solvable subgroups of Bir(P2) due to Cantat [10],
Déserti [17] and Urech [35], and the classification of subgroups of Bir(P2)
ismorphic to Z2, obtained in [37]. With these results, we can reduce the
structure group from Bir(P2) to PGL3(C), and then apply Klingler’s pre-
vious work [27]. When the holonomy representation is not injective, we can
suppose that its image is cyclic. Then, the strategy is geometric: an Inoue
surface is foliated by compact real submanifolds of dimension three that
are themselves foliated by entire curves, i.e. Riemann surfaces isomorphic
to C. Via the developing map, we obtain families of Levi–flat hypersur-
faces foliated by entire curves, in some projective surfaces. The proof is
then based on the following three tools that are described in Section 2:
1) our deformation lemma for Ahlfors–Nevanlinna currents; 2) the relation
between these currents and the transverse invariant measures of Plante [31]
and Sullivan [32]; 3) properties of the pull-back action of a birational trans-
formation on currents (as in [18] and [9]).
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2. Preliminaries

2.1. Groups of birational transformations

Let X be a smooth complex projective surface. We denote by Bir(X) the
group of birational transformations of X. An element f of Bir(X) has a pull
back action f∗ on H1,1(X, R) (cf. [18]). Note that in general (f∗)n ̸= (fn)∗.
Fix an ample class H ∈ H1,1(X, R), the H-degree of f is the intersection
number f∗H ·H.

The plane Cremona group Bir(P2) is the group of birational transforma-
tions of the projective plane P2

C. It is isomorphic to the group of C-algebra
automorphisms of C(X1, X2), the function field of P2

C. Using a system of ho-
mogeneous coordinates [x0; x1; x2], a birational transformation f ∈ Bir(P2)
can be written as

[x0 : x1 : x2] 99K
[
f0 (x0, x1, x2) : f1 (x0, x1, x2) : f2 (x0, x1, x2)

]
where f0, f1, f2 are homogeneous polynomials of the same degree without
common factor. This degree does not depend on the system of homogeneous
coordinates and is the degree of f with respect to the class of a projective
line. Birational transformations of degree 1 are homographies and form
Aut(P2) = PGL3(C), the group of automorphisms of the projective plane.
See [12] for more about the Cremona group.

2.1.1. Algebraically stable maps

If f is a birational transformation of a smooth projective surface X,
we denote by Ind(f) the set of indeterminacy points of f . We say that f

is algebraically stable if there are no curves V on X such that fk(V ) ⊂
Ind(f) for some integer k ⩾ 0. There always exists a birational morphism
X̂ → X which lifts f to an algebraically stable birational transformation of
X̂ [18, Theorem 0.1]. An algebraically stable map f satisfies (f∗)n = (fn)∗

(cf. [18]).
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2.1.2. Four types of elements

Fix a Euclidean norm ∥ · ∥ on H1,1(X, R). The two sequences (∥(fn)∗∥)n

and ((fn)∗H ·H)n have the same asymptotic growth. Elements of Bir(X)
are classified into four types (cf. [18]):

(1) The sequence (∥(fn)∗∥)n ∈ N is bounded, f is birationally conjugate
to an automorphism of a smooth birational model of X and a pos-
itive iterate of f lies in the connected component of identity of the
automorphism group of that surface. We call f an elliptic element.

(2) The sequence (∥(fn)∗∥)n ∈ N grows linearly, f preserves a unique
pencil of rational curves and f is not conjugate to an automorphism
of any birational model of X. We call f a Jonquières twist.

(3) The sequence (∥(fn)∗∥)n ∈ N grows quadratically, f is conjugate to
an automorphism of a smooth birational model preserving a unique
genus one fibration. We call f a Halphen twist.

(4) The sequence (∥(fn)∗∥)n ∈ N grows exponentially and f is called
loxodromic. The limit λ(f) = limn → +∞(∥(fn)∗∥) 1

n exists and we
call it the dynamical degree of f . If f is an algebraically stable map
on X, then there is a nef cohomology class v+

f ∈ H1,1(X, R), unique
up to multiplication by a constant, such that f∗v+

f = λ(f)v+
f .

If moreover v+
f has zero self-intersection, then f is conjugate to

an automorphism.

2.1.3. Loxodromic automorphisms

We refer the reader to [11] for details of the materials presented in this
paragraph. Let X be a smooth projective surface and f be an automorphism
of X which is loxodromic. The dynamical degree λ(f) is a simple eigenvalue
for the pullback action f∗ on H1,1(X, R) and it is the unique eigenvalue
of modulus larger than 1. Let v+

f ∈ H1,1(X, R) be a non-zero eigenvector
associated with λ(f); we have f∗v+

f = λ(f)v+
f . By considering f−1, we

can also find a non-zero eigenvector v−
f such that f∗v−

f = 1
λ(f) v−

f . The
two cohomology classes v+

f , v−
f are nef and of self-intersection 0, they are

uniquely determined up to scalar multiplication. They are irrational in
the sense that the two lines Rv+

f and Rv−
f contain no non-zero elements

of H1,1(X, R) ∩ H2(X, Z). We will need the following theorem of Cantat
which has been generalized to higher dimension by Dinh and Sibony:

Theorem 2.1 (Cantat [9, 19, 20, 30]). — Let X be a smooth projective
surface and f be a loxodromic automorphism. There is a unique closed
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positive current T +
f (resp. T −

f ) whose cohomology class is v+
f (resp. v−

f ). It
satisfies f∗T +

f = λ(f)T +
f (resp. f∗T −

f = 1
λ(f) T −

f ).

2.1.4. The Jonquières group

Fix an affine chart of P2 with coordinates (x, y). The Jonquières group
Jonq(C) is the subgroup of the Cremona group of all transformations of
the form

(x, y) 7→
(

ax + b

cx + d
,

A(x)y + B(x)
C(x)y + D(x)

)
,(

a b

c d

)
∈ PGL2(C),

(
A B

C D

)
∈ PGL2(C(x)).

In other words, the Jonquières group is the maximal group of birational
transformations of P1 × P1 permuting the fibers of the projection onto
the first factor; it is isomorphic to the semidirect product PGL2(C) ⋉
PGL2(C(x)). A different choice of the affine chart yields a conjugation by
an element of PGL3(C). More generally a conjugation by an element of
the Cremona group yields a maximal group preserving a pencil of rational
curves; conversely any two such groups are conjugate in Bir(P2).

Elements of the Jonquières group are either elliptic or Jonquières twists.
We will need the following results:

Theorem 2.2 ([37]). — Let G be a subgroup of Jonq(C) which is iso-
morphic to Z2. Then G has a pair of generators (f, g) such that one of the
following (mutually exclusive) situations happens:

(1) f, g are elliptic elements and G ⊂ Aut(X) where X is a rational
surface;

(2) f is a Jonquières twist, and a finite index subgroup of G preserves
each fiber of the f -invariant fibration;

(3) f is a Jonquières twist with action of infinite order on the base of
the rational fibration and g is an elliptic element whose action on
the base is of finite order. In some affine chart, we can write f, g in
one of the following forms:
• g is (x, y) 7→ (αx, βy) and f is (x, y) 99K (η(x), yR(xk)) where

α, β ∈ C∗, αk = 1, R ∈ C(x), η ∈ PGL2(C), η(αx) = αη(x)
and η is of infinite order;

• g is (x, y) 7→ (αx, y + 1) and f is (x, y) 99K (η(x), y + R(x))
where α ∈ C∗, R ∈ C(x), R(αx) = R(x), η ∈ PGL2(C), η(αx)
= αη(x) and η is of infinite order.
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Theorem 2.3 ([2, Lemmata 2.7 and 2.8]). — Let f ∈ Bir(P2) be an
elliptic element of infinite order.

(1) If f is of the form (x, y) 7→ (x, νy) where ν ∈ C∗ has infinite order,
then the centralizer of f in Bir(P2) is

{(x, y) 99K (η(x), yR(x)) | η ∈ PGL2(C), R ∈ C(x)} .

(2) If f is of the form (x, y) 7→ (x, y + v) with v ∈ C∗, then the central-
izer of f in Bir(P2) is

{(x, y) 99K (η(x), y + R(x)) | η ∈ PGL2(C), R ∈ C(x)} .

2.1.5. Tits alternative and solvable subgroups

Déserti and Urech refined for finitely generated solvable subgroups, the
strong Tits alternative proved by Cantat in [10]; we state the solvable
version:

Theorem 2.4 (Cantat, Déserti, Urech [10, 17, 35]). — Let G ⊂ Bir(X)
be a solvable subgroup. Exactly one of the following cases holds up to
conjugation.

(1) G is a subgroup of automorphisms of a birational model Y and a
finite index subgroup of G is in Aut(Y )0 the connected component
of identity of Aut(Y ); the elements of G are all elliptic and G is
called an elliptic subgroup.

(2) G preserves a rational fibration and has at least one Jonquières
twist.

(3) G is a virtually abelian group whose elements are Halphen twists;
there is a birational model Y on which the action of G is by auto-
morphisms and preserves an elliptic fibration.

(4) X is a rational surface and G is contained in the group generated by
{(αx, βy)|α, β ∈ C∗} and one loxodromic monomial transformation
(xpyq, xrys) where ( p q

r s ) ∈ GL2(Z) is a hyperbolic matrix.
(5) X is an abelian surface and G is contained in the group generated

by translations and one loxodromic transformation.

2.2. Geometric structures

Let us first recall the classical notion of (G, X)-structures in the sense of
Ehresmann (cf. [22]):

TOME 73 (2023), FASCICULE 2
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Definition 2.5. — Let X be a connected real analytic manifold and
let G be a Lie group which acts real analytically faithfully on X. Let V

be a real analytic manifold. A (G, X)-structure on V is a maximal atlas of
local charts ϕi : Ui → X such that

• the Ui are open sets of V and form a covering;
• the ϕi are diffeomorphisms onto their images;
• the changes of coordinates ϕi ◦ ϕ−1

j : ϕj(Ui ∩Uj)→ ϕi(Ui ∩Uj) are
restrictions of elements of G.

A (G, X)-manifold is a manifold which is equipped with a (G, X)-structure.

The group of birational transformations of an algebraic variety is not a
Lie group in the classical sense, see [3] for its topology. Its action on the
variety is not a classical set-theoretic group action either. We give here
two non-equivalent definitions of birational structure. The first one is more
flexible and is the notion of birational structure that we use in this article.

Definition 2.6. — Let V be a complex manifold. Let X be a smooth
complex projective variety. A (Bir(X), X)-structure on V is a maximal
atlas of local charts φi : Ui → Xi such that

• the Ui are open sets of V and form a covering;
• the Xi are smooth projective varieties birational to X;
• the φi are biholomorphic onto their images;
• the changes of coordinates φi ◦ φ−1

j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj)
are holomorphic diffeomorphisms which extend to birational maps
from Xj to Xi.

Definition 2.7. — Let V be a complex manifold. Let X be a smooth
complex projective variety. A strict (Bir(X), X)-structure on V is a maxi-
mal atlas of local charts φi : Ui → X such that

• the Ui are open sets of V and form a covering;
• the φi are biholomorphic onto their images;
• the changes of coordinates φi ◦φ−1

j : φj(Ui ∩Uj)→ φi(Ui ∩Uj) are
holomorphic diffeomorphisms which extend to birational transfor-
mations of X.

Remark 2.8. — Let X ′ be a smooth birational model of X. It follows
directly from the definition that a (Bir(X), X)-structure on V is the same
thing as a (Bir(X ′), X ′)-structure on V , and that a strict (Bir(X), X)-
structure induces a (Bir(X), X)-structure. But in general it is not true
that a strict (Bir(X), X)-structure on V gives rise to a strict (Bir(X ′), X ′)-
structure on V , see Example 2.15.
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2.2.1. Holonomy and developing map

For a classical (G, X)-manifold V , there exist a group homomorphism
Hol : π1(V ) → G and a local diffeomorphism Dev from M̃ , the universal
cover of V , to X such that

∀ γ ∈ π1(V ), Dev ◦γ = Hol(γ) ◦Dev .

The map Dev is called the developing map and Hol is called the holonomy
representation. A (G, X)-structure is uniquely determined by its holonomy
and its developing map, up to composition by an element of G.

The same proof as in the classical case shows:

Proposition 2.9. — Let X be a smooth complex projective variety.
Let V be a (Bir(X), X)-manifold. Denote by Ṽ the universal cover of V

and π the quotient map. Fix a base point v ∈ V and choose a point w ∈ Ṽ

such that π(w) = v. There exist a smooth birational model Y of X, a homo-
morphism Hol : π1(V, v)→ Bir(Y ) and a π1(V, v)-equivariant meromorphic
map Dev : Ṽ 99K Y such that

∀ f ∈ π1(V, v), Dev ◦f = Hol(f) ◦Dev .

If (Y ′, Hol′, Dev′) is another such triple, then there exists a birational map
σ from Y to Y ′ such that Hol′ = σ Hol σ−1 and Dev′ = σ ◦ Dev. We can
choose (Y, Hol, Dev) so that Dev is holomorphic at w.

Proof. — Let c : [0, 1] → Ṽ be a smooth path from w = c(0) to a
point z = c(1). The image c([0, 1]) can be covered by local charts of the
birational structure (U0, φ0 : U0 → X0), · · · , (Uk, φk : Uk → Xk) which are
pulled-back from local charts on V , such that Ui ∩ Uj is connected and is
non-empty if j = i+1. We denote by gi the map φi−1◦φ−1

i ∈ Bir(Xi, Xi−1)
which is the unique map such that gi ◦ φi and φi−1 agree on Ui ∩ Uj ; the
uniqueness is because of the fact that two birational maps which coincide
on a non empty Euclidean open set must be the same. We define Dev(z) as

Dev(z) = g1g2 · · · gkφk(z).

To be rigorous, this expression does not associate a value to any point z:
the gi are birational so we get only a meromorphic expression. Let us see
that Dev is a well-defined meromorphic map from Ṽ to X0; it has stronger
properties than an arbitrary meromorphic map because locally analytically
it behaves as a birational map. The unicity of the gi guarantees that, once c

is fixed, Dev does not depend on U1, · · · , Uk, but only on the initial chart U0
at the base point w. Choose another path c′ from w to z. Since Ṽ is simply
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connected, there exists a homotopy H : [0, 1]× [0, 1]→ Ṽ between c and c′.
We can cover c([0, 1] × [0, 1]) by local charts of the birational structure.
The uniqueness of the transition maps then shows that Dev depends only
on the homotopy class of c. Around the point w, the map Dev coincides
with a coordinate chart, thus is holomorphic.

Let f ∈ π1(V, v) be a deck transformation. Let z = f(w) in the above
construction of Dev. We can suppose that Uk = f(U0) and φk = φ0 ◦ f−1.
Then Dev(f(w)) = g1g2 · · · gkφ0 ◦ f−1. Put Hol(f) = g1g2 · · · gk. It belongs
to Bir(X0). We have Dev ◦f = Hol(f) ◦Dev in a neighborhood of w. Thus
Dev ◦f = Hol(f) ◦Dev by analytic continuation.

Let (Y ′, Hol′, Dev′) be another such triple. Since the set of points of Ṽ

where a developing map is not defined or is not locally biholomorphic is
locally closed of codimension at least one, there exists an open set U of
Ṽ restricted to which both Dev and Dev′ are biholomorphic. Then Dev |U
and Dev′ |U are both local birational charts. They have to be compatible,
i.e. Dev′ |U ◦ (Dev |U )−1 extends to a birational map σ from Y to Y ′. By
analytic continuation we see that σ satisfies Hol′ = σ Hol σ−1 and Dev′ =
σ ◦Dev. □

Remark 2.10. — A developing map is locally birational; this means that
locally it has a birational expression when written in some complex analytic
coordinates. Thus a developing map has no ramification. In particular a
ramified covering map is never a developing map.

If V is a (Bir(X), X)-manifold, then any finite unramified cover V ′ of
V is equipped with an induced (Bir(X), X)-structure. If (Y, Hol, Dev) is
a holonomy-developing-map triple for V , then the compositions π1(V ′)→
π1(V ) Hol−−→ Bir(Y ) and V ′ → V

Dev−−→ Y form a pair of holonomy and
developing map for V ′.

Proposition 2.11. — Let V be a complex manifold with two (Bir(X),
X)-structures. Let (X1, Hol1, Dev1) and (X2, Hol2, Dev2) be pairs of ho-
lonomy and developing map associated with these two (Bir(X), X)-struc-
tures. The two (Bir(X), X)-structures are the same if and only if there
exists σ ∈ Bir(X1, X2) such that Hol2 = σ Hol1 σ−1 and Dev2 = σ ◦Dev1.

Proof. — We need to prove the “if” part. Let z be a point of the uni-
versal cover Ṽ . Without loss of generality, using the “only if” part (Propo-
sition 2.9), we can suppose that Dev1 and Dev2 are both locally biholo-
morphic at z. Thus on a neighborhood of z, the restrictions of Dev1 and
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Dev2 give local charts for their corresponding birational structures. The hy-
pothesis implies that these charts are compatible, i.e. contained in a same
maximal atlas. The conclusion follows. □

Remark 2.12. — Propositions 2.9 and 2.11 hold for strict (Bir(X), X)-
structures too. Note that for a strict (Bir(X), X)-structure, the target of
the developing map is X itself.

The next proposition says that we could alternatively define a birational
structure using holonomy and developing map.

Proposition 2.13. — Let X be a smooth projective variety. Let V be a
compact complex manifold and Ṽ its universal cover. Let D : Ṽ 99K X be a
meromorphic map that satisfies the following: for every point w ∈ Ṽ , there
is a Euclidean neighborhood W of w and a holomorphic diffeomorphism φ

from W to a Euclidean open set of a birational model Xw of X depending
on w such that D|W ◦ φ−1 is the restriction of a birational map. Let H :
π1(V ) → Bir(X) be a homomorphism of groups such that for every γ ∈
π1(V ) we have H(γ) ◦D = D ◦ γ. Then V has a (Bir(X), X)-structure for
which (H, D) is a holonomy/developing pair. If Xw = X0 are the same for
all w then we have a strict (Bir(X0), X0)-structure.

Proof. — Let v be a point of V . Choose a point w ∈ Ṽ which projects
onto v, and a sufficiently small neighborhood W of w which maps bijectively
to a neighborhood U of v. By hypothesis U is biholomorphic to an open
subset of a birational model Xw. The hypothesis on the local birational
property of D and the equivariance of H imply that different choices of
w give the same (Bir(X), X)-structure on U . Thus V is equipped with a
(Bir(X), X)-structure. We leave the reader to verify that (H, D) is indeed
a corresponding pair of holonomy and developing map. □

Corollary 2.14. — Let f : X1 99K X2 be a birational map between
two smooth projective varieties X1, X2. Let (X1, Hol, Dev) be a holonomy/
developing triple associated with a (Bir(X1), X1)-structure on a compact
complex manifold V . Then (X2, f Hol f−1, f ◦Dev) is a holonomy/develo-
ping triple associated with the same (Bir(X1), X1)-structure.

Proof. — The pair (f Hol f−1, f◦Dev) satisfies the conditions of Proposi-
tion 2.13, thus defines a (Bir(X2), X2)-structure. This (Bir(X2), X2)-struc-
ture coincides with the original (Bir(X1), X1)-structure by Proposition 2.11.

□
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2.2.2. Strict (Bir(Pn),Pn)-structures

In general a (Bir(X), X)-structure does not induce a strict (Bir(X), X)-
structure. A smooth projective variety birational to X always admits a
(Bir(X), X)-structure, but not necessarily a strict (Bir(X), X)-structure
as the following example shows:

Example 2.15. — Let X be a projective K3 surface. Let Z be the blow-
up of X at some point. Suppose by contradiction that Z admits a strict
(Bir(X), X)-structure. Consider the developing map Dev : Z 99K X. Being
locally birational, it induces an injection of the function field of X into that
of Z. This means that Dev is a rational dominant map. As a developing
map Dev has no ramification and a K3 surface is simply connected, the
degree of Dev must be one, i.e. it is birational. Then we infer that Dev
is the blow-down of the exceptional curve. However by Proposition 2.9 we
could choose Dev so that Dev is locally biholomorphic around a point on
the exceptional curve, contradiction.

The reasoning in the previous example shows:

Lemma 2.16. — Let X be a simply connected smooth variety. For a
(Bir(X), X)-structure on X, any developing map is birational. Hence the
natural (Bir(X), X)-structure on X is the unique one. If X has a strict
(Bir(Y ), Y )-structure for some Y birational to X then it is the unique
strict (Bir(Y ), Y )-structure on X.

As rational varieties have the most complicated birational transformation
groups, it is natural to ask

Question 2.17. —
(1) Does a (Bir(Pn),Pn)-structure always induce a strict (Bir(Pn),Pn)-

structure?
(2) Does every smooth rational variety X of dimension n admit a strict

(Bir(Pn),Pn)-structure?

Proposition 2.18. — Questions 2.17(1) and 2.17(2) are equivalent.

Proof. — (1) implies (2) because every smooth rational variety admits
trivially a non-strict (Bir(Pn),Pn)-structure. Suppose that (2) is true. Let
V be a complex manifold with a (Bir(Pn),Pn)-structure. Let (Ui, ϕi : Ui →
Xi) be an atlas for the (Bir(Pn),Pn)-structure. By hypothesis each Xi

has a strict (Bir(Pn),Pn)-structure. Via ϕi this equips Ui with a strict
(Bir(Pn),Pn)-structure. Cover Ui by charts {Uij}j of strict (Bir(Pn),Pn)-
structure induced by the one on Xi; the Uij are identified via ϕ with charts
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of (Bir(Pn),Pn)-structure on Xi. By Lemma 2.16 the changes from Uij

to Ui′j′ are birational. Therefore the strict (Bir(Pn),Pn)-structures on Ui

patch together to give a strict (Bir(Pn),Pn)-structure on V for which the
Uij form an atlas. □

A smooth rational variety X of dimension n is called uniformly rational
if any x ∈ X has a Zariski neighborhood which is isomorphic to a Zariski
open set in the affine space An. Being rational X has to have such a point;
the issue is whether it holds for all points, hence the terminology “uniformly
rational”. Gromov asked:

Question 2.19 (Gromov [25, p. 885], see also [5]). — Is every smooth
rational complex variety uniformly rational?

It turns out that Gromov’s question is equivalent to Question 2.17 of
which the formulation seems not quite algebraic at first glance:

Proposition 2.20. — A rational variety of dimension n is uniformly
rational if and only if it admits a strict (Bir(Pn),Pn)-structure.

Proof. — Suppose that X is a uniformly rational variety of dimension n.
For any x ∈ X, let Ux be a Zariski neighborhood isomorphic to an open set
of An. Then the open sets Ux give an atlas of strict (Bir(Pn),Pn)-structure.

Now suppose that X admits a strict (Bir(Pn),Pn)-structure. Let x ∈ X.
Take a developing map Dev : X 99K Pn which is holomorphic at x (cf.
Proposition 2.9). By Lemma 2.16 Dev is birational. Thus Dev realizes an
isomorphism from some Zariski neighborhood of x to a Zariski open set
of An. □

Question 2.19 is easy in dimension 1 or 2, and is still open in dimension
⩾ 3 (cf. [5]). The one dimensional case is trivial because P1 is the only
smooth rational curve. For completeness we include a proof for the two
dimensional case:

Proposition 2.21. — Let X be a smooth rational surface. Then X is
uniformly rational and admits a unique strict (Bir(P2),P2)-structure.

Proof. — Once we prove that X is uniformly rational, we obtain the
existence of a strict (Bir(P2),P2)-structure by Proposition 2.20 and the
uniqueness by Lemma 2.16.

A Hirzebruch surface is a P1-bundle over P1. Cover the base and fiber P1

respectively by two pieces of A1, we see that every Hirzebruch surface can
be otbtained by patching four pieces of A2. Every rational surface different
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from P2 can be obtained from a Hirzebruch surface by blow-ups. The blow-
up of A2 at one point is the union of two Zariski open sets isomorphic to
A2. Hence the uniform rationality. □

So it does no harm if we do not distinguish (Bir(P2),P2)-structures from
strict (Bir(P2),P2)-structures. More precisely we have:

Corollary 2.22. — Let V be a compact complex surface equipped
with a (Bir(P2),P2)-structure. Then for any rational surface X, there ex-
ists a unique strict (Bir(X), X)-structure on V such that, (Hol, Dev) is a
holonomy/developing pair associated with the strict (Bir(X), X)-structure
if and only if (X, Hol, Dev) is a holonomy/developing triple associated with
the (Bir(P2),P2)-structure.

Proof. — By Propositions 2.18 and 2.21 V has a strict (Bir(P2),P2)-
structure. Let (Ui, ϕi : Ui ↪→ P2) be an atlas. The strict (Bir(X), X)-
structure on V is constructed as follows. First Aut(P2) is transitive so any
point of P2 admits a Zariski neighborhood which is isomorphic to a Zariski
open set of X. By considering the intersection of the Euclidean open set
ϕi(Ui) with these Zariski neighborhoods, we can further subdivide the atlas
(Ui) into an atlas (Uij) such that there are embeddings φij : Uij ↪→ X

such that ϕi ◦ φ−1
ij extend to birational maps from X to P2. The atlas

(Uij , φij : Uij → X) defines the desired strict (Bir(X), X)-structure. □

2.2.3. Local structure of the developing map

Though the developing map Dev is in general not holomorphic, it is
by construction locally birational. Thus, at least locally, algebro-geometric
reasonings could be applied. In dimension two, the indeterminacy set of
Dev is a discrete set of points. We can speak about contracted curves, they
are complex analytic subsets of pure dimension 1. A contracted curve has
locally a finite number of components. An irreducible contracted curve is a
minimal closed connected 1-dimensional analytic subset contracted by Dev.

2.3. Entire curves and Ahlfors–Nevanlinna currents

In this section we give a treatment of families of Ahlfors–Nevanlinna
currents which are, we believe, of independent interest. Let X be a smooth
projective surface. An entire curve on X is a non-constant holomorphic map
ξ : C → X. An entire curve ξ is called transcendental if its image is not
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contained in an algebraic curve of X. We can associate to a transcendental
entire curve ξ a (a priori non unique) closed positive current, called Ahlfors–
Nevanlinna current. We need to prove a variant of the construction for a
family of entire curves. We recall first the process for a single entire curve
(see [7, 29] for Ahlfors–Nevanlinna currents and [15] for the functions we
use below).

Denote by Ai(X) the space of smooth i-differential forms on X and by
A1,1(X) the space of smooth 1, 1-forms. For a differential form η ∈ A2(X)
and for r > 0 we put

Tξ,r(η) =
∫ r

0

ds

s

∫
Ds

ξ∗η

where Ds ⊂ C is the disk of radius s. We fix a Kähler form ω ∈ A1,1(X).
Consider the positive currents defined by

Φr(η) = Tξ,r(η)
Tξ,r(ω) , ∀ η ∈ A2(X).

The family {Φr}r > 0 is bounded, so we can find a sequence of radii (rn)n ∈ N
such that rn → +∞ and Φrn

converges weakly to a positive current Φ. For
the limit Φ to be a closed current, we need a smart choice of the sequence
(rn). Let us denote by A(r) the area of ξ(Dr) and L(r) the length of ξ(∂Dr)
with respect to the Riemannian metric induced by ω. Then Tξ,r(ω) may be
written as

Tξ,r(ω) =
∫ r

0
A(s)ds

s
.

We have
limsupr → ∞

Tξ,r(ω)
log r

=∞

since ξ is transcendental (cf. [15]). We define

Sξ,r(ω) =
∫ r

0
L(s)ds

s
.

For β ∈ A1(X), Stokes’ theorem and the compactness of X imply the
inequality

|Tξ,r(dβ)| ⩽
∫ r

0

ds

s

∫
∂Ds

|ξ∗β| ⩽ constant · Sξ,r(ω),

where the constant on the right side depends on β but not on r. Therefore
to obtain a closed limit current Φ, we need a sequence of radii (rn)n such
that

Sξ,rn(ω)
Tξ,rn

(ω) → 0, when n→∞.
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The existence of such a sequence of radii is guaranteed by the following
lemma (see [7]):

Lemma 2.23 (Ahlfors [1]). — Let R > 0, ϵ > 0 be two positive real
numbers. Denote by B(ξ, ϵ) the set {r > R|Sξ,r(ω) > ϵTξ,r(ω)}. Then∫

B(ξ,ϵ)

dr

r log r
<∞.

In particular liminfr → ∞
Sξ,r(ω)
Tξ,r(ω) = 0.

Note that the measure of (R,∞) with respect to dr
r log r is infinite, so the

above lemma implies that we can choose an appropriate sequence of radii
simultaneously for a finite number of entire curves:

Lemma 2.24. — Let ξ1, · · · , ξk be k transcendental entire curves on X.
There exists a sequence of radii (rn)n ∈ N such that for each i ∈ {1, · · · , k},
the sequence (

Tξi,rn
(·)

Tξi,rn(ω)

)
n ∈ N

converges weakly to a closed positive current.

A closed positive current Φ constructed by the above limit process is
called an Ahlfors–Nevanlinna current associated with the entire curve ξ, it
depends on the choice of a sequence of radii (rn)n.

A cohomology class is called nef if its intersections with all curves are
non negative. We refer the reader to [7, 29] for the following:

Lemma 2.25. — Let [Φ] ∈ H1,1(X, R) be the cohomology class of an
Ahlfors–Nevanlinna current associated with a transcendental entire curve.
Then [Φ] is nef. In particular [Φ]2 ⩾ 0.

We will need to consider some families of entire curves. To treat the
Ahlfors–Nevanlinna currents simultaneously in family, we need some con-
trol on the variation of entire curves. The following very restricted notion
will be sufficient for our proof.

Definition 2.26. — A family of entire curves parametrized by a real
manifold B is a differentiable map B × C → X, (b, z) 7→ ξb(z) such that
ξb is an entire curve for every b ∈ B. A family of entire curves (ξb)b∈B is
called uniform if the following condition is satisfied: ∀ b0 ∈ B, ∀ δ > 0,
there exists a neighborhood U of b0 such that

∀ b ∈ U,∀ z ∈ C,
∣∣|ξ′

b(z)| −
∣∣ξ′

b0
(z)
∣∣∣∣ < δ

∣∣ξ′
b0

(z)
∣∣
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where the norms are measured with respect to a fixed Kähler metric on X.
In other words a family of entire curves is uniform if nearby pull-backed
metrics are close in proportion.

There exist non-trivial uniform families of transcendental entire curves
on complex projective surfaces, for example there exist families of Levi-flat
hypersurfaces foliated by entire curves (see [16, Remark 1.6]). Our interest
in this notion is explained by the following lemma:

Lemma 2.27. — Let (ξb)b ∈ B be a uniform family of transcendental en-
tire curves on X. Let A be a compact C∞-path connected subset of B. Then
there exists a sequence of radii (rn)n ∈ N using which an Ahlfors–Nevanlinna
current associated with ξa can be constructed for all a ∈ A. After fixing
such a sequence (rn)n ∈ N, the Ahlfors–Nevanlinna currents associated with
the ξa all have the same cohomology class.

Proof. — We prove first that there exists a common choice of the se-
quence of radii. Let us fix a sufficiently small real number δ > 0. By the
definition of uniform family and by compactness of A, we can find a finite
number of points a1, · · · , ak in A and their neighborhoods U1, · · · , Uk in B

such that

∀ i ∈ {1, · · · , k},∀ a ∈ Ui,∀ z ∈ C,
∣∣|ξ′

a(z)| −
∣∣ξ′

ai
(z)
∣∣∣∣ < δ

∣∣ξ′
ai

(z)
∣∣ ;(•)

A ⊂ ∪Ui.(•)

By lemma 2.24, we can take a sequence of radii (rn)n∈N that works for
all the ξai

, 1 ⩽ i ⩽ k. We denote by λ the Lebesgue measure on C. Let
a ∈ Ui. We have

Tξa,r(ω) =
∫ r

0
A(s)ds

s
=
∫ r

0

∫
Dr

|ξ′
a(z)|2 dλ(z)ds

s

and ∣∣Tξa,r(ω)− Tξai
,r(ω)

∣∣ ⩽ ∫ r

0

∫
Dr

∣∣∣|ξ′
a(z)|2 −

∣∣ξ′
ai

(z)
∣∣2∣∣∣ dλ(z)ds

s

⩽
(
2δ + δ2) ∫ r

0

∫
Dr

∣∣ξ′
ai

(z)
∣∣2 dλ(z)ds

s

=
(
2δ + δ2)Tξai

,r(ω)

Similarly we have ∣∣Sξa,r(ω)− Sξai
,r(ω)

∣∣ ⩽ δSξai
,r(ω).

Consequently
Sξa,r(ω)
Tξa,r(ω) ⩽

1 + δ

1− 2δ − δ2
Sξai

,r(ω)
Tξai

,r(ω) .
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In particular we have

lim
n → ∞

Sξa,rn
(ω)

Tξa,rn(ω) = lim
n → ∞

Sξai
,rn(ω)

Tξai
,rn(ω) = 0

so that the sequence (rn)n can be used to construct Ahlfors–Nevanlinna
currents for all a ∈ A. Hence we can talk about the Ahlfors–Nevanlinna
currents Φa associated with the ξa and this fixed sequence (rn)n.

Let a, b be two points in A. We now prove that the Ahlfors–Nevanlinna
currents Φa, Φb are cohomologous. It is sufficient to treat the case where
a = ai and b ∈ Ui. Take a C∞-path c : [0, 1]→ Ui such that c(0) = a, c(1) =
b. We denote by F the induced map [0, 1]×C→ X, F (s, z) = ξc(s)(z). Let
η ∈ A2(X). Applying Stokes’ theorem, we have

(2.1) Tξa,r(η)− Tξb,r(η)

=
∫ r

0

∫
[0,1] × Ds

F ∗(dη)ds

s
−
∫ r

0

∫
[0,1] × ∂Ds

F ∗(η)ds

s
.

We denote by Θr the current of dimension 3 defined by

Θr(β) =
∫ r

0

∫
[0,1] × Ds

F ∗(β)ds

s

for β ∈ A3(X), and by Ξr the current of dimension 2 defined by

Ξr(β) =
∫ r

0

∫
[0,1] × ∂Ds

F ∗(β)ds

s
.

We have
Tξa,r(η)
Tξa,r(ω) −

Tξb,r(η)
Tξb,r(ω) = Tξa,r(η)− Tξb,r(η)

Tξb,r(ω) + Tξb,r(ω)− Tξa,r(ω)
Tξa,r(ω)Tξb,r(ω) Tξb,r(η)

which with Equation (2.1) implies

(2.2) Tξa,r(η)
Tξa,r(ω) −

Tξb,r(η)
Tξb,r(ω)

= 1
Tξb,r(ω)

(
dΘr(η)− Ξr(η)

)
+ Tξb,r(ω)− Tξa,r(ω)

Tξa,r(ω)
Tξb,r(η)
Tξb,r(ω) .

We want to show that along the sequence of radii (rn)n∈N, the right side
of Equation (2.2) converges weakly to an exact current. We first estimate
Ξr. By compactness of X, we have

|Ξr(η)| =

∣∣∣∣∣
∫ r

0

∫
[0,1] × ∂Ds

F ∗(η)ds

s

∣∣∣∣∣ ⩽ M(η)
∫ r

0

∫
[0,1] × ∂Ds

|F ∗(ω)| ds

s
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where M(η) is a constant that depends on η but not on r. By Fubini’s
theorem, we deduce from the above inequality that

|Ξr(η)| ⩽ M(η)
∫ r

0

∫ 1

0
L(c(u), s)du

ds

s

where L(c(u), s) is the length of ξc(u)(∂Ds) with respect to the Kähler
metric defined by ω. Using the fact that the path c lies in Ui, we have
further

|Ξr(η)| ⩽ M(η)
∫ r

0

∫ 1

0
(1 + δ)L(a, s)du

ds

s
= M(η)(1 + δ)Sξa,r(ω).

This implies that the sequence of currents (Ξrn/Tξb,rn(ω))n ∈ N converges
weakly to 0.

Now we estimate the last term of Equation (2.2). By Stokes’ formula, we
have

(2.3) Tξb,r(ω)− Tξa,r(ω)

=
∫ r

0

∫
[0,1] × Ds

F ∗(dω)ds

s
−
∫ r

0

∫
[0,1] × ∂Ds

F ∗(ω)ds

s
.

Since the form ω is Kähler, we have dω = 0 and the first term of the
right side of (2.3) vanishes. The second term at the right side of (2.3) is
dominated by Sξa,r(ω). It follows immediately that the last term of (2.2)
converges weakly to zero along the sequence of radii (rn)n.

Finally we estimate Θr. Note that, since the other terms in Equation (2.2)
all converge weakly along the sequence (rn)n, the sequence(

dΘrn
/Tξb,rn

(ω)
)

n

converges weakly too. However this does not imply that (Θrn
/Tξb,rn

(ω))n

converges weakly. Again using Fubini’s theorem and compactness of X, we
have

|Θr(β)| ⩽ N(β)Tξb,r(ω)

where N(β) is a constant which depends on |β| and on δ but not on r. Thus
the Θrn

/Tξb,rn
(ω) form a bounded family and there exists a subsequence

(rnj
)j of (rn)n such that Θrnj

/Tξb,rnj
(ω) converges weakly to a current Θ.

Hence, the weak limit of (dΘrn
/Tξb,rn

(ω))n is exact because

lim
n→∞

dΘrn
(η)

Tξb,rn
(ω) = lim

j→∞
d

(
Θrnj

Tξb,rnj
(ω)

)
(η) = dΘ(η).

The conlusion follows. □
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Note that to construct Ahlfors–Nevanlinna currents it is not necessary
for ω to be Kähler: a Hermitian metric would be sufficient. However the
property dω = 0 is used in the last part of the above proof.

2.4. Transverse invariant measures

All the materials in this section can be found in [24] and [23]. Let M

be a compact Hausdorff topological space. A structure of lamination by
Riemann surfaces on M is an atlas L of charts hi : Ui → D × Bi where
D is the unit disk in C, the Bi are topological spaces, the hi are homeo-
morphisms and the Ui are open sets of M which cover M ; the changes of
coordinates hij = hj ◦ h−1

i are of the form (fij(z, b), gij(b)) where the fij

are holomorphic in z and the gij are continuous. A connected component
of Vc = {(z, b)|b = c} in a chart Ui is called a plaque. A minimal connected
subset of M which contains all plaques that it intersects is called a leaf.
A lamination by Riemann surfaces (M,L) is transversally smooth if the Bi

are real manifolds and if the gij are smooth maps. A transverse invariant
measure µ on (M,L) is a family of locally finite positive measures µi on
the topological spaces Bi such that if B ⊂ Bi is a measurable set contained
in the domain of definition of gij , then µi(B) = µj(gij(B)).

From now on we make the hypothesis that (M,L) is a lamination by
Riemann surfaces contained in a Kähler surface X. This hypothesis is just
for convenience of the presentation and everything we will say makes sense
without assuming that there is an ambient surface X. Examples to keep in
mind are Levi-flat hypersurfaces and saturated sets of holomorphic folia-
tions. We say that a continuous (1, 0)-form β on X defines the lamination
(M,L) if β ∧ [Vc] = 0 for every plaque Vc, where [Vc] is the current of
integration on the plaque Vc. A closed positive current Θ of bidimension
(1, 1) on X is directed by (M,L) if it is supported on M and if Θ ∧ β = 0
for all β defining (M,L). Our purpose of introducing the above notions is
the following theorem:

Theorem 2.28 (Sullivan [32]). — Let (M,L) be a transversally smooth
lamination by Riemann surfaces contained in a Kähler surface X. A trans-
verse invariant measure on (M,L) is the same thing as a closed positive
current directed by (M,L) via the following correspondence: for a closed
positive directed current T , there exists a transverse invariant measure µ

such that in a foliated chart hi : Ui → D×Bi, for a differential form ω,

⟨T, ω⟩ =
∫

Bi

(∫
Vb

ω

)
dµ(b).
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We will apply Sullivan’s theorem to Ahlfors–Nevanlinna currents associ-
ated with entire curves tangent to the lamination, thanks to the following
construction studied by Plante:

Theorem 2.29 (Plante [31], see also [23, 24]). — Let (M,L) be a lami-
nation by Riemann surfaces contained in a Kähler surface X. Let f : C→
X be a transcendental entire curve contained in a leaf of the lamination
and let Φf be an Ahlfors–Nevanlinna current associated with f . Then Φf

is directed by (M,L).

3. Inoue surfaces of type S0.

3.1. Description

Let M ∈ SL3(Z) be a matrix with eigenvalues α, β, β̄ such that α > 1
and β ̸= β̄. Note that necessarily α is irrational and |β| < 1. We choose a
real eigenvector (a1, a2, a3) corresponding to α and a complex eigenvector
(b1, b2, b3) corresponding to β. Let GM be the subgroup of Aut(P1 × P1)
generated by

g0 : (x, y) 7→ (αx, βy)
gi : (x, y) 7→ (x + ai, y + bi) for i = 1, 2, 3.

Denote by H the upper half plane, viewed as an open subset of P1 =
C∪{∞}. The action of GM preserves H×C; it is free and properly discon-
tinuous. The quotient SM = H ×C/GM is a compact non-Kähler surface
without curves called an Inoue surface of type S0 ([26]). Note that we
should have included the choices of (a1, a2, a3) and (b1, b2, b3) in the no-
tation of SM . By construction it has an (Aff2(C), C2)-structure where by
Aff2(C) we denote the affine transformation group of C2. In particular an
Inoue surface of type S0 has a natural (Bir(P2),P2)-structure.

Consider the following solvable Lie group which is a subgroup of Aff2(C):

Sol0 =


|λ|−2 0 a

0 λ b

0 0 1

 , λ ∈ C∗, a ∈ R, b ∈ C

 .

The group Sol0 is a semi-direct product (C×R) ⋊ C∗. It acts transitively
on H × C; the stabilizer of a point is isomorphic to S1. The group GM

defining the Inoue surface SM is a lattice in Sol0; conversely any torsion
free lattice of Sol0 gives an Inoue surface of type S0. The three elements
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g1, g2, g3 generate a free abelian group of rank three; denote it by AM . The
group GM is a semi-direct product AM ⋊Z where the Z factor is generated
by g0. We have g0gig

−1
0 = gmi1

1 gmi2
2 gmi3

3 where the mij are the entries of
the matrix M . Note that a finite unramified cover of an Inoue surface of
type S0 is an Inoue surface of type S0.

The following lemma says that GM has few normal subgroups. In par-
ticular the commutator [GM , GM ] is a finite index subgroup of AM .

Lemma 3.1. — If K is a non-trivial normal subgroup of GM , then either
K is of finite index in AM or K is of finite index in GM .

Proof. — The conjugation action of g0 on AM is just the action of M ∈
SL3(Z) on Z3. For all v ∈ Z3\{0}, the iterates Mnv generate a finite index
subgroup of Z3. Thus if K ∩ A0 is non trivial, then K ∩ A0 is a free Z-
module of rank 3 and is of finite index in AM . To conclude, we need only
remark that, by the semi-direct product structure, the intersection of a
normal subgroup of GM with AM cannot be trivial. □

Lemma 3.2. — Let σ : GM → PGL2(C) be an injective morphism.
Then for some affine coordinate P1 = {x ∈ C}∪{∞}, the images σ(gi), i =
0, · · · , 3, viewed as homographies of P1, may be written as

σ(gi) : x 7→ x + ui, i = 1, 2, 3
σ(g0) : x 7→ νx

for some ν, ui ∈ C∗.

Proof. — As σ(gi), i = 1, 2, 3 commute with each other, we have two
possibilities for them: we can find an affine coordinate x such that they are
either x 7→ x + ui with ui ̸= 0 or x 7→ αix with αi of infinite order.

Suppose by contradiction that the σ(gi)(x) = αix. Since AM is normal,
σ(g0) preserves the set of fixed points of σ(AM ), which is {0,∞}. Hence
σ(g0)(x) = γx±1. But then the action of σ(g0) on σ(AM ) has finite order,
a contradiction.

Hence the σ(gi) are x 7→ x + ui. The invariance of the fixed point ∞
implies that σ(g0) is x 7→ νx + δ where ν satisfies that νui = mi1u1 +
mi2u2 +mi3u3 and δ is arbitrary. Then the change of coordinates x 7→ x− δ

ν

allows us to write the σ(gi) as in the statement of the lemma. □

Lemma 3.3. — The only (possibly singular) holomorphic foliations on
SM are the two obvious ones coming from the horizontal foliation and the
vertical foliation of H×C.
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Proof. — This is already observed by Brunella in [6] without proof de-
tails. Here we give a proof for completeness. See [8] for the terminology we
use concerning holomorphic foliations. Suppose by contradiction that F is
a non-necessarily saturated holomorphic foliation on SM different from the
two obvious ones. Since SM has no curves ([26]), the singularities of F are
necessarily isolated. We compare F with one of the two obvious foliations:
the tangency locus is empty because otherwise it would be a curve on SM .
Since the tangency locus contains the singularities of F , we deduce that F

is a regular holomorphic foliation, transverse to the two obvious foliations.
We denote by T the tangent bundle of SM , by T ∗ its dual and by K

the canonical bundle of SM . We denote by F0 the normal bundle of one
obvious foliation; the normal bundle of the other obvious foliation is then
−K − F0 (here we use notations of [26]). Let F be the normal bundle of
F . The foliation F corresponds to a non-zero global section of T ∗ ⊗ F .
It is proved in [26, see the first two sentences of sections 6 and 8] that
the only line bundles F on SM such that T ∗ ⊗ F has non-zero sections
are F = F0 or F = −F0 −K. In other words, F and one of the obvious
foliations share the same normal bundle. As F is everywhere transverse to
this foliation, the two sections of T ∗⊗F corresponding to the two foliations
trivialize the sheaf T ∗⊗F , i.e. T ∗ is isomorphic to (−F )⊕ (−F ). However
T ∗ = (−F0) ⊕ (F0 + K) and F is either F0 or −F0 − K. This leads to a
contradiction as K is not trivial. □

The surface SM = H×C/AM is an infinite cyclic cover of SM . As a real
manifold, SM admits a fibration ρ : SM → R∗

+ where R∗
+ = {t

√
−1, t ∈

R∗
+} is the vertical axis of the component H of H × C. The fibers of ρ,

denoted by Ft, are quotients of {x + t
√
−1, x ∈ R} ×C by AM ; they are

real tori of dimension 3. The Ft are Levi-flat hypersurfaces in SM and
they are foliated by entire curves coming from the vertical complex lines in
H×C.

Lemma 3.4. — Up to multiples, there is only one transverse invariant
measure on the Levi flat hypersurface Ft.

Proof. — Recall that (a1, a2, a3) is an eigenvector associated with the
irrational eigenvalue α of M ∈ SL3(Z). A transverse invariant measure on
Ft is induced by a measure on R = {x + t

√
−1, x ∈ R} which is invariant

under the group of translations generated by x 7→ x + ai, i = 1, 2, 3. This
latter group is a dense subgroup of R so the transverse invariant measure
must be a multiple of the Lebesgue measure. □
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Lemma 3.5. — The two obvious foliations on SM are not transversely
Euclidean.

Proof. — The two dimensional Euclidean isometry group is the semi-
direct product R2 ⋊ SO2(R), where R2 is the group of translations and
SO2(R) is the group of rotations. Suppose by contradiction that one obvi-
ous foliation is transversely Euclidean. Then to this transverse Euclidean
structure are associated a holonomy representation θ : GM → R2⋊SO2(R)
and a continuous θ-equivariant developing map D : T → R2, where the
space of leaves T is H or C depending on which of the two obvious folia-
tions we are looking at. We prove first that ρ is injective by contradiction.
Suppose that the kernel K of θ is not trivial, then it is a finite index sub-
group of AM by Lemma 3.1. As AM is a group of translations on T which is
isomorphic to Z3, the closure of any AM -orbit contains at least one real line
(for T = H a subgroup of AM isomorphic to Z2 would be sufficient as the ai

are real). The same holds for K-orbits. Then by the θ-equivariance and the
continuity of the developing map, D is constant on each of these real lines.
This contradicts the fact that the developing map is locally homeomorphic.

We know now that θ is injective. As AM is abelian, we must have
θ(AM ) ⊂ R2. The conjugation action of g0 on R3 = AM ⊗ R and that
of θ(g0) on R2 are linear maps. We think of g0 and θ(g0) as linear maps
via their conjugation actions. The group homomorphism θ induces a linear
map π : R3 → R2 which is equivariant under the actions of g0 and θ(g0),
i.e. we have π◦g0 = ρ(g0)◦π. This is not possible because θ(g0) is a rotation
while g0 corresponds to the matrix M whose eigenvalues are α, β, β with
α > 1 and |β| < 1. □

3.2. Proof of Theorem 1.1 for Inoue surfaces of type S0

Let SM be an Inoue surface of type S0. We fix a (Bir(X), X)-structure on
SM where X is some projective surface. We want to prove that X is rational
and the structure is just the obvious affine structure. Let (Y, Dev, Hol) be
a corresponding holonomy/developing triple as in Proposition 2.9. We will
denote by π the covering map from H×C to SM .

Lemma 3.1 says that there are only three possibilities for the holonomy
representation. It is easy to rule out the first possibility: if the holonomy had
finite image then the developing map would induce a meromorphic locally
birational map from a finite unramified cover of SM to Y , contradicting
the fact that SM has algebraic dimension zero. The second possibility is
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that the kernel K of the holonomy is a finite index subgroup of AM . Then
K⋊Z has finite index in GM ; in this case by considering the corresponding
finite unramified cover of SM and the induced birational structure, we can
suppose that K = AM . We will prove in a first step that this case is not
possible either. Then we examine the last possibility where the holonomy
representation is injective.

3.2.1. The holonomy is not cyclic

The proof of the following proposition will occupy the rest of this section.

Proposition 3.6. — The image of the holonomy representation is not
cyclic.

We want to prove it by contradiction. We can and will assume in the
sequel that the kernel of Hol is exactly AM . Thus the developing map
Dev : H × C 99K Y factorizes through Dev : SM 99K Y . We will call the
latter map the developing map too.

Lemma 3.7. — The developing map Dev has only a finite number of
irreducible contracted curves.

Proof. — Consider the (real) fibration ρ : SM → R∗+. The fibers Ft are
compact and dev is locally birational, so each fiber intersects only a finite
number of irreducible contracted curves. Thus it is sufficient to prove that
every irreducible contracted curve intersects all the fibers. In other words,
let C ⊂ SM be an irreducible contracted curve, then we want to prove that
ρ(C) = R∗+. Since ρ is proper and C is closed, the image ρ(C) is closed in
R∗+. It is then sufficient to prove that ρ(C) is open. For this purpose it is
more convenient to look at the universal covering H ×C. Let C̃ ⊂ H ×C
be a component of the inverse image of C. Then the projection of C̃ onto
H is not a point because C cannot be contained in a leaf of the foliation.
Thus the projection is open since a holomorphic map is open. Therefore
ρ(C), identified as the projection of C̃ onto the vertical axis of H, is also
open. □

Let C ⊂ SM be an irreducible contracted curve and q ∈ Y be the point
onto which C is contracted. Take a point c ∈ C which is not an indeter-
minacy point of Dev. Take a chart of birational structure U ⊂ SM at c so
that the restriction Dev|U is analytically equivalent to a birational map.
By Zariski’s decomposition of birational maps, we can blow up Y at q and
its infinitely near points to obtain a surface Y ′ such that the map U 99K Y ′
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induced by Dev|U does not contract C ∩ U . By analytic continuation, the
map SM 99K Y ′ induced by Dev does not contract C. As Dev has only
finitely many irreducible contracted curves by Lemma 3.7, by repeating
the above process we can find a rational surface Y ∗, obtained by blowing
up Y a finite number of times, such that the induced map SM 99K Y ∗ has
no contracted curves. By replacing Y with Y ∗ we will suppose from now
on that Dev and Dev have no contracted curves.

However Dev may still have indeterminacy points. We denote by I ⊂ SM

the indeterminacy set of Dev, it is a discrete set. The map Dev : SM 99K Y

is locally biholomorphic outside I. We will call Dev(SM\I) the image of
SM (it is also the image of Dev).

The deck transformation group of the covering SM → SM is isomorphic
to the cyclic group GM /AM . Denote by g its generator induced by g0 ∈
GM . Denote by f the birational transformation Hol(g0) of Y . We have
f ◦ Dev = Dev ◦ g. By blowing up Y at some of the indeterminacy points
of f (and their infinitely near points), we can and will assume that f is
algebraically stable (see [18]). The only effect of doing so is to add some
extra points into the indeteminacy set I of Dev.

Lemma 3.8. — The contracted curves of fn, n ∈ Z are disjoint from the
image of Dev.

Proof. — Suppose by contradiction that a curve C ⊂ Y contracted by
fn intersects the image of Dev. Since Dev is locally biholomorphic where it
is defined, the inverse image Dev−1(C) is a curve on SM . Using the relation
fn◦Dev = Dev◦gn, we see that gn(Dev−1(C)) is a curve on SM contracted
by Dev. This is a contradiction as we are already in the case where there
are no contracted curves. □

Lemma 3.9. — The birational transformation f = Hol(g0) is loxodro-
mic.

Proof. — Suppose by contradiction that f is not loxodromic. We first
claim that f preserves a pencil of curves. By definition a Jonquières twist
or a Halphen twist preserves a pencil of curves. Thus we assume that f is
elliptic. An elliptic element comes from a holomorphic vector field on Y .
An elliptic element of infinite order exists only if Y is a rational surface,
a ruled surface, an elliptic surface or birational to a surface of Kodaira
dimension zero covered by an abelian surface.

If Y is birational to a surface covered by an abelian surface, then f pre-
serves a transversely Euclidean foliation coming from a linear foliation on
the abelian surface. This foliation can be pulled-back by Dev to a foliation
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on SM invariant under g. This further induces a holomorphic foliation on
SM which by Lemma 3.3 coincides with one of the two obvious foliations
on SM . However neither of these foliations is transversely Euclidean by
Lemma 3.5, contradiction.

If Y is rational, then f preserves a pencil of rational curves by [2, Propo-
sition 2.3]. If Y is an elliptic surface of Kodaira dimension one, then f

preserves the elliptic fibration of Y . If Y is a non-rational ruled surface,
then f preserves the rational fibration. The claim follows.

Now we know that f preserves a pencil of curves. This pencil gives rise to
a possibly singular holomorphic foliation SM which by Lemma 3.3 coincides
with one of the two obvious foliations on SM . By abuse of notation, we use
the same letter F to denote this foliation on SM and the one on SM . The
fact that F is induced by a pencil of curves on Y implies that the images
of the leaves of F by Dev are contained in algebraic curves. The actions of
AM on the spaces of leaves of both of the two foliations are non-discrete,
thus the leaves of the two foliations in SM are not closed. Hence the image
of a leaf of F by Dev cannot be contained in an algebraic curve. □

In the sequel we fix a Kähler metric on Y and we endow SM\I with
the Kähler metric pulled back from Y by Dev. Before we consider Ahlfors–
Nevanlinna currents, a few words need to be said about the Kähler metric.
In Section 2.3, for constructing Ahlfors–Nevanlinna currents the Kähler
surface needs to be compact so that the difference between any Riemannian
metric and the Kähler metric is everywhere bounded by a constant. In our
situation here, though SM\I is not compact, we will be able to use freely
all the results of Section 2.3 because of the following three observations:

(1) the Kähler metric on SM\I is pulled back from the compact surface
Y ;

(2) in a small neighborhood U of a point e ∈ I, the map Dev|U\{e} fac-
torizes through a compact surface (Zariski’s factorization theorem
for birational maps);

(3) the entire curves with which we will deal lie in a compact subset of
SM . Roughly speaking, these three observations allow us to think of
the part of SM on which we will work as an open set of a compact
Kähler surface.

The set of points in SM that are mapped by Dev to indeterminacy points of
f is discrete and countable. The indeterminacy set I of Dev is also discrete
and countable. Therefore we can find two fibers Fa, Fb of ρ : SM → R∗+

such that:
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• Fa ∪ Fb is disjoint from I and Dev(Fa ∪ Fb) is disjoint from the
indeteminacy points of f ;

• g(Fa) = Fb.
We will view the covering map H × C → SM and the developing map
Dev : H × C 99K Y (where it is defined) as families of entire curves. By
choosing an appropriate path in H from a point of vertical coordinate a

to a point of vertical coordinate b, we can extract from the above family a
family of entire curves (ξt)t ∈ [a,b] on SM parametrized by the interval [a, b]
such that

• ∀ t ∈ [a, b], the image of ξt : C → SM is disjoint from the indeter-
minacy set I of Dev;

• ξt parametrizes a leaf of Ft; in particular ξa (resp. ξb) parametrizes
a leaf of Fa (resp. Fb).

We can push the family (ξt)t forward by Dev to obtain a family of entire
curves (Dev ◦ ξt)t on Y . As the covering map and the developing map
(where it is defined) are locally biholomorphic, the derivative ξ′

t(z) is non-
zero for all t ∈ [a, b] and for all z ∈ C. We claim that the families (ξt)t and
(Dev ◦ ξt)t are uniform in the sense of Definition 2.26. This is clear if Dev
has no indeterminacy points because in that case the entire curves Dev ◦ ξt

factorize through the compact sets Ft. Since Dev is locally birational, the
same reasoning works after blowing up the indeterminacy points contained
in the Ft, t ∈ [a, b].

By Lemma 2.27, we can construct a family of Ahlfors–Nevanlinna cur-
rents (Φt)t associated with the uniform family of entire curves (ξt)t, after
fixing an appropriate sequence of radii once and for all. We construct cor-
responding Ahlfors–Nevanlinna currents associated with the Dev ◦ ξt: they
are the push-forward Dev∗Φt. Lemma 2.27 tells us that the cohomology
classes [Dev∗Φt] ∈ H1,1(Y, R) are all the same. We also know that they are
nef (see Lemma 2.25).

As (the images of) the entire curves Dev◦ξa and Dev◦ξb are disjoint from
the contracted curves and the indeterminacy set of f by Lemma 3.8, we
can push forward the Ahlfors–Nevanlinna current Dev∗Φa by f without any
ambiguity. We want to compare the pushed forward current f∗(Dev∗Φa)
with Dev∗Φb. We have

f∗
(
Dev∗Φa

)
= Dev∗ (g∗Φa) .

Thus we just need to compare g∗Φa and Φb. By Plante’s Theorem 2.29, the
closed positive currents Φa, Φb are respectively directed by the laminations
Fa, Fb. As g sends Fa to Fb preserving their lamination structures, the
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push forward g∗Φa is a closed positive current directed by Fb. By Sullivan’s
Theorem 2.28, the two currents g∗Φa and Φb correspond to two transverse
invariant measures on Fb. However by Lemma 3.4, there exists only one
transverse invariant measure on Fb up to multiples. Thus, we have

λg∗Φa = Φb for some λ ∈ R∗+.

It follows that
λf∗

(
Dev∗Φa

)
= Dev∗Φb.

By the equality of cohomology classes [Dev∗Φa] = [Dev∗Φb], we get

(3.1) λf∗
[
Dev∗Φa

]
=
[
Dev∗Φa

]
.

As (the images of) the entire curves Dev ◦ ξa and Dev ◦ ξb are disjoint from
the contracted curves and the indeterminacy set of f by Lemma 3.8, we
get also

(3.2) f∗ [Dev∗Φa

]
= λ

[
Dev∗Φa

]
.

Lemma 3.10. — The dynamical degree of f is equal to λ or λ−1.

Proof. — Denote the dynamical degree of f by λ(f). There exists a
unique nef cohomology class v+

f such that f∗v+
f = λ(f)v+

f . By [18, Propo-
sition 1.11], we have the following equality for intersection numbers:

(3.3)
(

f∗v+
f ,
[
Dev∗Φa

])
=
(

v+
f , f∗

[
Dev∗Φa

])
.

If [Dev∗Φa] and v+
f are proportional, then λ(f) = λ by Equation (3.2).

Assume that they are not proportional; this implies that their intersection is
strictly positive because they are both nef. Then Equations (3.1) and (3.3)
force the equality between λ(f) and 1/λ. □

Replacing f with f−1 if necessary, we can and will assume that the
dynamical degree of f is λ.

Lemma 3.11. — We can assume that f acts by automorphism on Y ,
without losing any other property that we need.

Proof. — We first prove that all the irreducible curves contracted by
the iterates fn are of strictly negative self-intersection. Let E be an ir-
reducible curve contracted by fn. By Lemma 3.8, the curve E is disjoint
from Dev(Fa) which is the support of Dev∗Φa. Therefore the intersection
number [Dev∗Φa] · E is zero. As [Dev∗Φa] is nef, we have [Dev∗Φa]2 ⩾ 0.
It follows from Hodge index theorem that E2 ⩽ 0, with equality if and
only if [Dev∗Φa]2 = 0 and E is proportional to [Dev∗Φa]. Since [Dev∗Φa] is
an eigenvector associated with λ, the equality [Dev∗Φa]2 = 0 would imply
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that the algebraically stable map f is an automorphism (see Section 2.1).
But then [Dev∗Φa] would be irrational and could not be proportional to E.

We write the Zariski factorization of f as Y ← Ŷ → Y . Let E1, · · · , Em

be the irreducible curves contracted by f . Denote by Ê1, · · · , Êm their
strict transforms in Ŷ . Among the Êi, there exists at least one (−1)-curve,
let us say, Ê1. Since Ŷ is obtained from Y by blow-ups, we have Ê2

1 ⩽ E2
1 .

We have showed that E2
1 < 0. It follows that E1 is already a (−1)-curve on

Y . Now we contract it to obtain a new surface Y1. We need to verify that
all the hypothesis still hold on Y1. The contraction may give rise to new
curves contracted by f , but the new contracted curves on Y1 come from
the curves on Y contracted by f2. So they are still disjoint from the image
of Dev and are of strictly negative self-intersection on Y1. Hence we can
continue the process. This process terminates because the Picard number
drops down by one after each step. At last we get a surface on which f

contracts no curves, i.e. f acts by automorphism. □

Once we know that f is a loxodromic automorphism, Theorem 2.1 im-
plies that Dev∗Φa is the unique closed positive current with cohomology
class [Dev∗Φa]. However the cohomology class of Dev∗Φb is also [Dev∗Φa].
This leads to a contradiction because Dev∗Φa and Dev∗Φb are two differ-
ent currents. Indeed their supports are respectively Dev(Fa), Dev(Fb) and
Dev(Fa) ̸= Dev(Fb) because otherwise Dev would induce a map from SM

to Y . The proof of Proposition 3.6 is finished.

Remark 3.12. — The very existence of immersed Levi-flat hypersurfaces
as Dev(Fa) imposes strong restrictions on the geometry of Y . For example
there are no such immersed Levi-flat hypersurfaces in P2 (see [16]). However
there exist families of Levi-flat hypersurfaces on other surfaces and we are
not able to conclude directly by the existence of an “immersion” of SM

into Y . This is why the geometry of the cyclic covering SM → SM plays a
crucial role in our proof.

3.2.2. Injective holonomy

Since we have proved that the image of the holonomy is not cyclic, its
kernel must be finite by Lemma 3.1. Thus changing SM into a finite cover
we can and will assume in the sequel that Hol is injective. We will identify
GM with its image Hol(GM ) ∈ Bir(Y ).

Lemma 3.13. — The group GM is an elliptic subgroup of Bir(Y ), i.e. it
is in the first case of Theorem 2.4.
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Proof. — We apply Theorem 2.4 to the solvable group GM ⊂ Bir(Y ).
Up to conjugating the holonomy representation there are five possibilities
in Theorem 2.4 and we need to rule out the last four ones.

In Theorem 2.4(5) Y is an abelian surface, the group GM is generated by
translations and a loxodromic automorphism. The stable and the unstable
foliations of the loxodromic automorphism (see [13, Example 1.1]), which
are both linear foliations on Y , are preserved by GM . Thus they can be
pulled back to two holomorphic foliations on SM . Being induced by linear
foliations on Y , these two pulled back foliations are transversely Euclidean.
But they must coincide with the obvious foliations on SM by Lemma 3.3;
this contradicts Lemma 3.5.

In Theorem 2.4(4) Y is rational and GM is in Bir(P2). In this case AM is
contained in {(αx, βy)|α, β ∈ C∗} and g0 is a monomial map (xpyq, xrys)
such that the matrix B = ( p q

r s ) ∈ GL2(Z) is hyperbolic, i.e. has one eigen-
value > 1 and one < 1. The conjugation action of g0 on AM is given by
(α, β) 7→ (αpβq, αrβs). The exponential map semi-conjugates the action of
B = ( p q

r s ) on C2 to the action of g0 on C∗ × C∗. We think of AM as a
Z-module of rank 3 with an irreducible action of g0. Its preimage AM in
C2 by the exponential map is a Z-module of rank 5 invariant under B.
The kernel of the exponential map, generated by (0, 2πi) and (2πi, 0) is
invariant under B and the action is irreducible. Hence either AM is an in-
decomposable module of rank 5 or there is an indecomposable submodule
of rank 3 which is isomorphic to AM . However an indecomposable module,
subgroup of C2, has to be of even rank because B is a hyperbolic matrix.
We obtain thus a contradiction. Hence case 4) is not possible.

Theorem 2.4(3) is impossible because GM is not virtually abelian.
It suffices to show that Theorem 2.4(2) is not possible for GM . Suppose

the contrary. The rational fibration preserved by GM can be pulled-back
to a holomorphic foliation on H×C. By the equivariance of D, this equips
SM with a holomorphic foliation. This foliation must coincide with one of
the two obvious foliations on SM by Lemma 3.3. Acting on H × C, the
elements g0, · · · , g3 permute the leaves of the foliation. The action of GM

on the spaces of leaves of the two foliations on H × C, i.e. its actions on
the C-factor and on the H-factor are both non-discrete. This means that,
on the Bir(Y ) side, the action of GM on the base of the rational fibration
is non discrete. As the automorphism group of a curve of general type is
finite, the base is either P1 or an elliptic curve. But the base cannot be an
elliptic curve neither because otherwise the fibration would be transversely
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Euclidean. Thus the base of the rational fibration is P1 and Y is a rational
surface.

We have a morphism σ : GM → PGL2(C) that records the action of
GM on the base of the rational fibration. Since this base action is non-
discrete, Lemma 3.1 implies that σ is injective. So g1, g2, g3 have infinite
actions on the base. Suppose by contradiction that one of the gi, say g1, is
a Jonquières twist. Theorem 2.2(3) says that for any h that commutes with
g1, the actions of h and g1 on the base generate a virtually cyclic group.
But we said that the actions of g1, g2 and g3 on the base generate a group
isomorphic to Z3, contradiction. Hence g1, g2, g3 are all elliptic elements of
Bir(Y ) and AM is an elliptic subgroup of Bir(Y ). Up to replacing AM by
a finite index free abelian subgroup, we can assume that AM is contained
in Aut0(Z), the connected component of the automorphism group of a
rational surface Z. The group Aut0(Z) is an algebraic group; we denote by
AM the Zariski closure of AM in Aut0(Z). Since AM is infinite, AM is an
algebraic group of dimension ⩾ 1.

We want to prove that no element of GM is a Jonquières twist. For this
purpose we apply an argument used by S. Cantat in [14, the Appendix].
Any element of GM normalizes AM , thus normalizes AM . We have two
possibilities for the action of the abelian algebraic group AM on the rational
surface Z, either it has a Zariski open orbit, or its orbits form a pencil of
curves.

Assume that the orbits of AM form a pencil of curves. This pencil of
curves must differ from the original rational fibration preserved by AM

because the actions of g1, g2, g3 on the base of the rational fibration are
infinite. Every element of GM normalizes AM , it preserves this pencil of
curves. Recall that every element of GM preserves also the rational fibra-
tion, thus preserves simultaneously two pencils of curves. This implies that
g0 is an elliptic element (cf. [18]). Therefore the group GM contains no
Jonquières twists.

Now assume that AM has a Zariski open orbit O. We have three possibil-
ities for O; it is a principal homogeneous space isomorphic to C2, C×C∗

or C∗×C∗. Since an element of GM normalizes AM , it acts on O by auto-
morphism of principal homogeneous spaces. If O = C2 then every element
of GM would be affine, thus elliptic. If O = C×C∗ then an element of GM

would be of the form (ax + b, αy) with a, α ∈ C∗, b ∈ C, which is again
elliptic. If O = C∗ ×C∗ then every element of GM would be contained in
the group generated by
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{(αx, βy)|α, β ∈ C∗} and
{

(xpyq, xrys) ,

(
p q

r s

)
∈ GL2(Z)

}
.

In this case an element of GM is either elliptic or loxodromic, but it cannot
be loxodromic because we work already under the hypothesis that GM

preserves a rational fibration. Thus we have proved that every element of
GM is elliptic. This implies that GM is an elliptic subgroup by Theorem 2.4.

□

We proved that GM is an elliptic subgroup of Bir(Y ). Up to taking a finite
index subgroup, GM is contained in Aut0(Z), the component of identity
of the automorphism group of a projective surface Z birational to Y . The
Aut0 of a projective variety is an algebraic group. By Chevalley’s structure
theorem it is an extension of an abelian variety by a linear algebraic group.
As Aut0(Z) contains the non-abelian infinite group GM , its linear part
is not trivial. Hence Z is ruled by [34, Theorem 14.1] (see also [8, Chap-
ter 6.3]). If Z were a non-rational ruled surface, then GM would preserve the
ruling and the ruling would be pulled back by Dev to one of the two obvious
foliations on SM . Using the fact that GM acts non-discretely on the space
of leaves and the fact that the two obvious foliations are not transversely
Euclidean, we obtain a contradiction as in the proof of Lemma 3.13.

Therefore Z is a rational surface. Since GM is solvable, it comes from a
group of automorphisms of a Hirzebruch surface. We can and will assume
in the sequel that Z = Fn is a Hirzebruch surface and that GM ⊂ Aut0(Z)
(cf. Corollary 2.14). Note that from now on we take Z as the target space
of the developing map.

Since Aut(Fn) preserves the rational fibration on Fn, we have a group ho-
momorphism σ : GM → PGL2(C) which encodes the action of GM on the
base P1 of the rational fibration. As GM is solvable, we can assume, maybe
after replacing GM with a subgroup of index two, that σ(GM ) ⊂ PGL2(C)
fixes at least one point in P1. Let us decompose P1 as C ∪ {∞} where ∞
is one of the fixed point of σ(GM ). As in the proof of Lemma 3.13, the
rational fibration induces a foliation on SM which must coincide with one
of the two obvious foliations on SM ; and we deduce from this that σ(AM )
is not discrete. By Lemma 3.1, this implies that σ is injective (up to taking
a finite index subgroup). By Lemma 3.2, we can write σ(g1), σ(g2), σ(g3)
as x 7→ x + ui for some ui ̸= 0, and σ(g0) as x 7→ νx for some ν ∈ C∗ of
infinite order.

Lemma 3.14. — The developing map Dev : H×C 99K Fn is everywhere
defined and is locally biholomorphic.
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Proof. — First we claim that Dev contracts no curves. Suppose by con-
tradiction that Dev contracts a curve C ⊂ H × C. Let γ ∈ GM be a
non-trivial element. From the relation Dev ◦γ = γ ◦Dev and the fact that
γ acts by automorphism on Fn, we deduce that γ(C) ⊂ H × C is also a
contracted curve of Dev. Since locally there is only a finite number of con-
tracted curves, the union

⋃
γ ∈ GM

γ(C) is a GM -invariant set locally closed
in H × C. Therefore the image of C in the quotient SM is locally closed,
i.e. it is a curve on SM . This contradicts the fact that SM has no curves.

Suppose by contradiction that p ∈ H × C is an indeterminacy point
of Dev. Take a local chart of birational structure U at p. We factorize
Dev |U : U 99K Fn as U

π1←− V
π2−→ Fn where π1 is a composition of

(inverses of) blow-ups at p and its infinitely near points, and π2 is an
open embedding because Dev contracts no curves. Note that here we have
holomorphic foliations on U and V , pulled back from the rational fibration
on Fn. As the foliation on U is regular, the exceptional curve of π1 is an
invariant curve of the foliation on V . This implies that its image by π2 into
Fn must be contained in a fiber of the rational fibration. However on Fn

there are no (−1)-curves contained in the fibers of the rational fibration,
this contradicts the fact that π2 is an open embedding. □

The above lemma tells us that the birational structure on SM is in fact
a (Aut(Fn),Fn)-structure in the classical sense.

Lemma 3.15. — Any GM -invariant curve is disjoint from the image
of Dev.

Proof. — Let C be a curve which intersects the image of Dev, then
Dev−1(C) is a curve on H × C. Note that elements of GM are regular
on the intersection of C with the image of Dev. So if C were GM -invariant,
then π(Dev−1(C)) would be a curve on SM . □

Case 1. Assume that the Hirzebruch surface Fn is not P1×P1, i.e. n ⩾ 1.
The fiber over ∞ ∈ P1 and the exceptional section of Fn are GM -

invariant curves. Lemma 3.15 implies that the image of the developing
map is contained in the complement of these two invariant curves which is
isomorphic to C2. The automorphisms g1, g2, g3 are of the form (x, y) 7→
(x + ui, βiy + Ri(x)) where βi ∈ C∗ and Ri is a polynomial of degree ⩽ n;
the automorphism g0 is (x, y) 7→ (νx, β0y + R0(x)) where β0 ∈ C∗ and R0
is a polynomial of degree ⩽ n.

Assume first that β1, β2, β3 are not all equal to 1, for example β1 ̸= 1.
In this case g1 has a fixed point e on the fiber over ∞ which is not on
the exceptional section of Fn. By commutativity, the point e is fixed by
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AM ; then by the fact that g0 normalizes AM , the whole group GM fixes
e. We can blow-up e and contract the strict transform of the initial fiber
to get Fn−1. The group GM remains a group of automorphisms of Fn−1.
Moreover the image of the developing map is not affected by this elemen-
tary transformation. Therefore the initial birational structure reduces to a
(Aut(Fn−1),Fn−1)-structure. We continue this process and reduce the bi-
rational structure to a (Aut(F1),F1)-structure. The Hirzebruch surface F1
is the blow-up of P2 at one point; the exceptional divisor is the exceptional
section and is disjoint from the image of Dev. Therefore we finally get a
(PGL3(C),P2)-structure.

Assume that β1 = β2 = β3 = 1. We can conjugate g1 inside Bir(P2),
by elements of the form (x, y) 99K (x, y + δxd), to decrease the degree
of R1 until g1 becomes (x, y) 7→ (x + u1, y); note that this only modifies
the fiber at ∞ so that the conjugation does not affect Dev. After these
conjugations, g2, g3 become (x, y) 99K (x + ui, y + R̃i(x)), i = 2, 3 and
g0 becomes (x, y) 99K (νx, β0y + R̃0(x)) where the R̃i are polynomials for
i = 0, 2, 3. The commutation relations between g1 and g2, g3 reads:

R̃i(x) = R̃i(x + u1), i = 2, 3;

this implies immediately that R̃2 and R̃3 are constants. Therefore we have
conjugated AM to a subgroup of PGL3(C). Now the transformation g0 ◦
g1 ◦ g−1

0 is

(x, y) 99K
(

x + νu1, y + R̃0
(
ν−1x + u1

)
− R̃0

(
ν−1x

))
For g0 ◦ g1 ◦ g−1

0 to be in AM , the polynomial function R̃0(ν−1x + u1) −
R̃0(ν−1x) needs to be a constant. This implies that the degree of R̃0 is at
most 1, i.e. g0 is also in PGL3(C). We get again a (PGL3(C),P2)-structure.

Case 2. The Hirzebruch surface is P1 × P1. — Considering a finite un-
ramified cover of SM , we can assume that GM is included in the identity
component of the automorphism group which is PGL2(C) × PGL2(C).
Replacing GM with a index two subgroup if necessary, we have two injec-
tive homomorphisms σ1, σ2 from the solvable group GM to PGL2(C). The
image σ1(GM ) (resp. σ2(GM )) fixes at least one point in the first (resp.
second) factor P1. Removing the two corresponding GM -invariant curves
from P1 × P1, we get a Zariski open set which is isomorphic to C2 and in
which the image of the developing map is contained. This means that the
birational structure is reduced to a complex affine structure.
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Bruno Klingler proved in [27] that the only (PGL3(C),P2)-structure on
SM is the natural one, this finishes the proof of Theorem 1.1 for Inoue
surfaces of type S0.

4. Inoue surfaces of type S±

4.1. Description

Let n ∈ N∗. Consider the group of upper-triangular matrices

Λn =


1 x z

n

0 1 y

0 0 1

 , x, y, z ∈ Z

 .

The center of Λn is the infinite cyclic group Cn generated by1 0 1
n

0 1 0
0 0 1

 .

The quotient Λn/Cn is isomorphic to Z2. Let N ∈ SL2(Z) be a matrix with
eigenvalues α, 1

α such that α > 1. Let φ be an automorphism of the group
of real upper-triangular matrices which preserves Λn, acts trivially on Cn

and acts on Λn/Cn
∼= Z2 as N . We form a semi-direct product ΓN = Λn⋊Z

where the Z factor acts on Λn as φ. The group ΓN acts on the group of
real upper-triangular matrices which is identified with R3 = R×C. Define
an action of ΓN on H×C = R>0×R×C with Λn acting trivially on R>0

and 1 ∈ Z acting on H as x 7→ αx. This action is holomorphic and the
quotient SN = H×C/ΓN is a compact non-Kähler surface called an Inoue
surface of type S+ ([26]). Note that the Inoue surface depends on n, φ, and
φ depends on N ; we denote it by SN because N is the most significant
parameter.

The group ΓN can be identified with a lattice in one of the two following
solvable Lie groups which are subgroups of Aff2(C) (cf. [27]):

Sol1 =


1 a b

0 d c

0 0 1

 , a, b, c, d ∈ R, d > 0

 ,

Sol1
′

=


1 a b + i log(d)

0 d c

0 0 1

 , a, b, c, d ∈ R, d > 0

 .
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Conversely any torsion free lattice of these two groups gives an Inoue surface
of type S+. Note that a finite unramified cover of an Inoue surface of type
S+ is an Inoue surface of type S+.

Concretely ΓN has four generators g0, g1, g2, g3 which act on H×C as:

g0 : (x, y) 7→ (αx, y + t)
gi : (x, y) 7→ (x + ai, y + bix + ci) i = 1, 2

g3 : (x, y) 7→
(

x, y + b1a2 − b2a1

n

)
where t is a complex number, (a1, a2) (resp. (b1, b2)) is a real eigenvector
of N corresponding to the eigenvalue α (resp. α−1) and c1, c2 are some
complex numbers (see [26] for the explicit expressions of c1, c2). The center
Cn of Λn is also the center of ΓN , it is generated by g3. The normal subgroup
Λn is generated by g1, g2, g3. We have

g−1
1 g−1

2 g1g2 = gn
3

g0gig
−1
0 = gni1

1 gni2
2 gmi

3 ,

i = 1, 2

where nij are entries of the matrix N and m1, m2 are two integers depend-
ing on c1, c2.

The Inoue surface SN has an obvious (Aff2(C), C2)-structure. The sur-
face SN = H × C/Λn is an infinite cyclic covering space of SN . As a
real manifold, SN admits a fibration ρ : SN → R∗+ where the R∗

+ =
{t
√
−1, t ∈ R∗

+} is the vertical axis of H ⊂ H×C. The fibers, denoted by
Et, are quotients of {x+t

√
−1, x ∈ R∗+}×C by Λn; they are compact real

nilmanifolds of dimension 3. The Et are Levi-flat hypersurfaces in SN and
they are foliated by entire curves coming from the vertical complex lines in
H×C.

The analogues of Lemmata 3.1, 3.2, 3.3, 3.4 and 3.5 still hold (we omit
the details when the proof is exactly the same).

Lemma 4.1. — If K is a non-trivial normal subgroup of ΓN , then K

has finite index in Cn, Λn or ΓN .

Proof. — The conjugation action of g0 on Λn/Cn is just the action of
N ∈ SL2(Z) on Z2; it has no eigenvectors in Z2\{0}. Thus, if K contains an
element of Λn which is not in Cn, then it contains Λn. To conclude, we need
only remark that, by the semi-direct product structure, the intersection of
a normal subgroup of ΓN with Λn cannot be trivial. □
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Lemma 4.2. — Let σ : ΓN → PGL2(C) be a morphism whose kernel
is Cn. Then for some affine coordinate P1 = {x ∈ C} ∪ {∞}, the images
σ(gi), i = 0, · · · , 2, viewed as homographies of P1, may be written as

σ(gi) : x 7→ x + ui, i = 1, 2
σ(g0) : x 7→ νx

for some ν, ui ∈ C∗.

Lemma 4.3. — The only (possibly singular) holomorphic foliation on
SN is the obvious one coming from the vertical foliation of H×C.

Proof. — Let F be a foliation on SN . As in the proof of Lemma 3.3,
we infer that F is saturated and non-singular. We denote by T the tan-
gent bundle of SM , by T ∗ its dual and by K the canonical bundle of SM .
We denote by F0 the normal bundle of the obvious foliation (here we use
notations of [26]) and by F the normal bundle of F . The foliation F cor-
responds to a non-zero global section of T ∗ ⊗ F . It is proved in [26] that
T ∗⊗F has non-zero sections if and only if F = F0. In other words, F and
the obvious foliation share the same normal bundle. It is also proved in [26]
that the space of global sections of T ∗ ⊗ F0 is one dimensional. Thus, F

must coincide with the obvious foliation. □

Lemma 4.4. — Up to multiples, there is only one transverse invariant
measure on Et.

Lemma 4.5. — The obvious foliation on SN is not transversely Eu-
clidean.

Inoue surfaces of type S− are defined similarly: instead of choosing N in
SL2(Z), we take a matrix in GL2(Z) with determinant (−1). Every Inoue
surface of type S− has a double unramified cover which is an Inoue surface
of type S+. Thus for our purpose it is sufficient to consider only the Inoue
surfaces of type S+.

4.2. Proof of Theorem 1.1 for Inoue surfaces of type S+

Many details of the proof will be very similar to the case of Inoue surfaces
of type S0; we will make them brief.

Equip SN with a (Bir(X), X)-structure and let (Y, Hol, Dev) be a holo-
nomy/developing triple.
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4.2.1. Run again the previous proof

Lemma 4.1 says that there are only four possibilities for the holonomy
representation. It is easy to rule out the first possibility: if the holonomy had
finite image then the developing map would induce a meromorphic locally
birational map from a finite unramified cover of SN to Y , contradicting the
fact that SN has algebraic dimension zero.

If the kernel K of the holonomy has finite index in Λn, then K ⋊ Z has
finite index in ΓN ; in this case by considering the corresponding finite un-
ramified cover of SN and the induced birational structure, we can suppose
that K = Λn. The image of the holonomy is then cyclic. This is not pos-
sible: Lemmata 4.3, 4.4 and 4.5 ensure that the proof of Subsection 3.2.1
works exactly in the same way for SN .

We now rule out the case where the kernel K of Hol has finite index in Cn;
we will examine the situation of injective holonomy in the next subsection.
After taking a finite unramified cover of SN , we can and will assume that
K = Cn. Thus we have an embedding of ΩN = ΓN /Cn

∼= Z2 ⋊ Z into
Bir(Y ). The situation is almost the same as in the case of Inoue surface of
type S0; there we had Z3 ⋊ Z, here we have Z2 ⋊ Z. We can almost copy
the proof of Section 3.2.2; we give here a sketch.

Firstly we prove as in Lemma 3.13 that ΩN is an elliptic subgroup of
Bir(Y ). The only difference in the proof is the fourth case of Theorem 2.4.
In case 4), ΩN is contained in the group generated by {(αx, βy)|α, β ∈ C∗}
and one monomial transformation

(xpyq, xrys) where
(

p q

r s

)
∈ GL2(Z).

In this case ΩN preserves two holomorphic foliations defined by ι1xdy +
ν1ydx and ι2xdy + ν2ydx where (ιi, νi) i = 1, 2 are two eigenvectors of
( p r

q s ). These two ΓN -invariant foliations induce two foliations on SN ; this
is impossible because there exists only one holomorphic foliation on an
Inoue surface of type S+ by Lemma 4.3.

Once we know that ΩN is an elliptic subgroup, we prove as in Sec-
tion 3.2.2 that the (Bir(X), X)-structure is reduced to a (Aut(Fn),Fn)-
structure, and then to a (PGL3(C),P2)-structure; the arguments here and
there are exactly the same. However the only (PGL3(C),P2)-structure on
SN is the obvious one by [27] and its holonomy is injective, a contradiction
to the hypothesis that the kernel of the holonomy is Cn. Thus, we have
proved:

Lemma 4.6. — The kernel of the holonomy representation Hol is trivial.
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4.2.2. Injective holonomy

After Lemma 4.6 we know that the holonomy representation is injective.
From now on we consider ΓN as a subgroup of Bir(Y ). We apply Theo-
rem 2.4 to ΓN . Theorem 2.4(5) is not possible because the stable and the
unstable foliations of a loxodromic automorphism on an abelian surface
would induce two transversely Euclidean foliations on SN . Theorem 2.4(4)
is not possible because the derived length of C∗×C∗ ⋊ ⟨a monomial map⟩
is 2 and that of ΓN is 3 (here we can also use the foliation argument). Theo-
rem 2.4(3) is impossible because ΓN is not virtually abelian. The following
lemma says that Theorem 2.4(2) is not possible either.

Lemma 4.7. — If the group ΓN preserves a rational fibration, then it
contains no Jonquières twists and Y is rational.

Proof. — The rational fibration preserved by ΓN induces a holomorphic
foliation on SN which coincides with the natural one. The action of g3,
even on H × C, does not permute the leaves, so its action on the base of
the rational fibration must be trivial. As regards the action of ΓN\Cn on
the base, it is non-discrete by considering the action on the space of leaves.
Together with the fact that the foliation is not transversely Euclidean, this
implies that the base of the rational fibration is necessarily P1. Thus Y is
a rational surface.

Using again the non-discreteness of the base action, we have an em-
bedding σ : ΩN = Γn/Cn → PGL2(C). By Lemma 4.2, we infer that
σ(g0), σ(g1), σ(g2) are respectively x 7→ γx, x 7→ x + u1, x 7→ x + u2 where
γ, u1, u2 ∈ C∗ are such that γui = ni1u1 + ni2u2 for i = 1, 2. The sequel of
the proof is purely about the group of birational transformations.

Every element of ΓN commutes with g3; for i = 0, 1, 2, the group gen-
erated by gi, g3 is isomorphic to Z2. By Theorem 2.2, g3 must be an el-
liptic element. Up to conjugation, g3 is (x, y) 7→ (x, y + v3) or (x, y) 7→
(x, νy). Let us first suppose that g3 is (x, y) 7→ (x, νy) for some ν ∈ C∗

of infinite order. By Theorem 2.3 g0, g1, g2 are respectively (γx, R0(x)y)
and (x + ui, Ri(x)y), i = 1, 2 where R0, R1, R2 ∈ C(x). The relation
g−1

1 g−1
2 g1g2 = gn

3 reads

R2(x)R1(x + u2)R2(x + u1)−1R1(x)−1 = νn.

For i = 1, 2 write Ri as Pi

Qi
with Pi, Qi ∈ C[x]. Then the above equation

becomes
P2(x)P1(x + u2)Q2(x + u1)Q1(x)
P2(x + u1)P1(x)Q2(x)Q1(x + u2) = νn.
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On the left-hand side, the numerator and the denominator have the same
degree and the same dominant coefficient. This implies νn = 1, which is
absurd because ν has infinite order. Thus, g3 is not of the form (x, y) 7→
(x, νy).

Hence g3 is of the form (x, y) 7→ (x, y+v3). By Theorem 2.3 g0, g1, g2 can
be respectively written as (γx, y + R0(x)) and (x + ui, y + Ri(x)), i = 1, 2
where R0, R1, R2 ∈ C(x).

We will exploit the relation g−1
1 g−1

2 g1g2 = gn
3 to show that R1, R2 must be

polynomials. Note that g3 is elliptic and acts trivially on the base; roughly
speaking g1, g2 almost commute. Before we continue the proof we recall
first some notions. An indeterminacy point x of f will be called persistent
if for every i > 0, f−i is regular at x and the backward orbit of x is infinite,
and if there are infinitely many curves contracted onto x by the iterates
f−k, k ∈ N. A conic bundle is a rational fibration where the only singular
fibers are unions of two (−1)-curves. It is proved in [37] that g1, being an
element of Jonq(C), acts by an algebraically stable transformation on a
conic bundle X; moreover the only singular fiber of X lies over the ΓN -
invariant fiber x =∞.

Suppose by contradiction that R1 is not a polynomial; this implies that
g1 is a Jonquières twist. Some poles of R1 in C correspond to persisitent
indeterminacy points of g1 on X (see [37] for details). Let e ∈ X be a
persistent indeterminacy point of g1. Since {g−i

1 (e), i > 0} is infinite, g2 and
g3 are regular at g−k

1 (e) for k large enough. For infinitely many j > 0, g−j
1

contracts a regular fiber of the conic bundle onto e, denote it by Cj . For k

large enough g2 and g3 do not contract Ck. Keeping these two observations
in mind, from the relation gk

1 ◦ g2 ◦ g−j
1 = g2 ◦ gnk

3 ◦ gk−j
1 we deduce that

g2 ◦ g−j
1 (e) is an indeterminacy point of gk

1 for suitable j, k (recall that g3
does not permute the fibers of the conic bundle). This means that, under
the iteration of g1, the forward orbit of g2 ◦ g−j

1 (e) will meet a persistent
indeterminacy point e′ of g1. The correspondance e 7→ e′ does not depend
on j, k. Thus, up to raplacing g2 by an iterate gm

2 , we have e = e′. Then for
some l ∈ Z, gl

1 ◦ gm
2 (g−j

1 (e)) will be an indeterminacy point of gj
1, i.e. we

have gl
1 ◦ gm

2 (g−j
1 (e)) = g−j

1 (e). Similarly, we have gl
1 ◦ gm

2 (Ck) = Ck for k

large enough. This means that gl
1 ◦ gm

2 preserves the rational fibration fiber
by fiber. In particular lu1 + mu2 = 0, which is impossible because u1, u2
generate a non-discrete subgroup of C.

Now we know that R1, R2 are polynomials. Consequently g1, g2 are el-
liptic. Let us finish the proof by showing that R0 is a polynomial too. The
element g0gig

−1
0 reads
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(x, y) 99K
(

x + γu1, y −R0
(
γ−1x

)
+ R1

(
γ−1x

)
+ R0

(
γ−1x + u1

) )
.

The relation g0gig
−1
0 = gni1

1 gni2
2 gmi

3 implies that the rational fraction

−R0
(
γ−1x

)
+ R1

(
γ−1x

)
+ R0

(
γ−1x + u1

)
is a polynomial. This is only possible if R0 is a polynomial. □

From the above discussions we know that ΓN is an elliptic subgroup of
Bir(P2). The proofs of Lemma 3.14 and Lemma 3.15 work exactly in the
same way and we reduce the birational structure on SN to a (Aut(Fk),Fk)-
structure for k ̸= 1 or to a (PGL3(C),P2)-structure as in Section 3.2.2. If it
is reduced to a (PGL3(C),P2)-structure then the result of B. Klingler [27]
finishes the proof. It cannot be reduced to a (Aut(P1×P1),P1×P1)-structure
because a finite unramified cover of SN would have two holomorphic folia-
tions.

Assume that the birational structure is reduced to a (Aut(Fk),Fk)-struc-
ture for k ⩾ 2. Then ΓN preserves a rational fibration. Denote by σ the
induced homomorphism from ΓN to PGL2(C). Using the same reasoning we
have done in the proof of the previous lemma, we can write g0, g1, g2, g3 as:

g0 : (x, y) 7→ (γx, y + R0(x)) ;
gi : (x, y) 7→ (x + ui, y + Ri(x)) , i = 1, 2;
g3 : (x, y) 7→ (x, y + v3)

where u1, u2, v3, γ ∈ C∗ and R1, R2, R3 are polynomials. Moreover we have

(4.1) γ

(
u1
u2

)
=
(

n11 n12
n21 n22

)(
u1
u2

)
.

where ( n11 n12
n21 n22 ) is the matrix N . The relation g−1

1 g−1
2 g1g2 = gn

3 reads

(4.2) R2(x) + R1(x + u2)−R2(x + u1)−R1(x) = nv3.

For the left side of Equation (4.2) to be a constant, the degrees of R1, R2
must be the same. Denote by l their degree. For i = 1, 2, the element
g0gig

−1
0 may be written as

(4.3) (x, y) 7→
(

x + γui, y −R0
(
γ−1x

)
+ R1

(
γ−1x

)
+ R0

(
γ−1x + ui

) )
.

The relation g0gig
−1
0 = gni1

1 gni2
2 gmi

3 implies that the polynomial−R0(γ−1x)
+R1(γ−1x)+R0(γ−1x+ui) has degree l. This is possible only if the degree
of R0 is less than or equal to (l + 1). For i = 1, 2, 3 and 0 ⩽ j ⩽ l + 1, we
denote by rij the coefficient of xj in Ri(x).
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Suppose by contradiction that l > 1. By looking at the dominant co-
efficients in the equations g−1

1 g−1
2 g1g2 = gn

3 and g0gig
−1
0 = gni1

1 gni2
2 gmi

3 ,

i = 1, 2, we obtain

r1llu2 − r2llu1 = 0(4.4)

γ−lril + γ−l(l + 1)uir0(l+1) = ni1r1l + ni2r2l i = 1, 2.(4.5)

In terms of matrices, Equation (4.5) reads(
N − γ−l Id

)(r1l

r2l

)
= γ−l(l + 1)uir0(l+1)

(
1
1

)
which by Equation (4.1) and Equation (4.4) is equivalent to

(4.6)
(
γ − γ−l

)(u1
u2

)
= C

(
1
1

)
for some non-zero constant C. This is not possible because u1 ̸= u2. There-
fore l ⩽ 1 and g1, g2 are affine transformations. The relation g−1

1 g−1
2 g1g2 =

gn
3 now reads

(4.7) r11lu2 − r21lu1 = nv3.

Equation (4.7) implies that l ̸= 0, i.e. l = 1. Then R0 is a polynomial of
degree at most 2. If R0 is of degree 2, then we can conjugate g0 : (x, y) 7→
(γx, y+R0(x)) by (x, y) 7→ (x, y+δx2) for an appropriate δ ∈ C∗ to decrease
the degree of R0. Moreover the conjugation by (x, y) 7→ (x, y + δx2) keeps
g1, g2, g3 affine transformations. Thus we reduce the birational structure
to a complex affine structure. Using again [27], we achieve the proof of
Theorem 1.1 for Inoue surfaces of type S±.
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