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FIBERED COHOMOLOGY CLASSES IN DIMENSION
THREE, TWISTED ALEXANDER POLYNOMIALS AND

NOVIKOV HOMOLOGY

by Jean-Claude SIKORAV

Abstract. — We prove that for “most” closed 3-dimensional manifolds M ,
the existence of a closed non singular one-form in a given cohomology class u ∈
H1(M,R) = Hom(π1(M),R) is equivalent to the fact that every twisted Alexander
polynomial ∆H(M,u) ∈ Z[G/ keru] associated to a normal subgroup with finite
index H < π1(M) has a unitary u-minimal term.
Résumé. — Nous prouvons que pour « la plupart » des variétés fermées de di-

mension trois, l’existence d’une forme fermée non singulière dans une classe de
cohomologie donnée u ∈ H1(M,R) = Hom(π1(M),R) équivaut au fait que tout
polynôme d’Alexander tordu ∆H(M,u) ∈ Z[G/ keru] associé à un sous-groupe
distingué d’indice fini H < π1(M) a un terme u-minimal unitaire.

1. Introduction and statement of the main result

We considerM a closed connected 3-manifold. Let G := π1(M) and let u
be a nonzero element of Hom(G,R), which will be identified withH1(M,R).
Denote by rk(u) the rank of u, i.e. the number of free generators of G/ keru.
We are interested in the following

Question. — Does there exist a nonsingular closed 1-form ω in the
class u?

If such a form exists, we say that u is fibered. The reason is that if
rk(u) = 1 so that au(G) ⊂ Z for a suitable a 6= 0, such a form is a−1f∗dt
for f a fibration to S1 = R/Z. More generally, by [23], if u fibers then M

Keywords: Three-manifolds, fibrations, Alexander polynomials, Novikov homology.
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fibers over S1: perturb ω to ω′ = ω + ε such that rk([ω′]) = 1 and ε is
C0-small. Then ω′ is still nonsingular, thus M fibers.
An answer to this question was given in rank one by [21]: if rk(u) = 1, u

fibers if and only if keru is finitely generated. Actually, Stallings required
M to be irreducible, but using Perelman it is unnecessary.
In any rank, the paper [22] introducing the Thurston (semi-)norm on

H1(M ; R) proved the following results:

(1) the unit ball of the norm is an “integer polyhedron”, i.e. it is defined
by a finite number of inequalities u(g) 6 n, g ∈ G, n ∈ N∗;

(2) the set of fibered u ∈ H1(M ; R) \ {0} is a cone over the union of
some maximal open faces of the unit sphere of the Thurston norm.

Note that thanks to Stallings, to know if a given face is “fibered”, it suffices
to test one element u of rank one and see if keru is finitely generated.
In the 2000s and beginning of 2010s, S. Friedl and S. Vidussi studied

this question again, mostly in rank one, in connection with what was then
a conjecture of Taubes: u fibers if and only if u ∧ [dt] + a ∈ H1(M × S1)
is represented by a symplectic form, where a ∈ H2(M ; R) satisfies a ∧
u 6= 0. The starting point was the relation of Seiberg–Witten invariants
of M × S1 and twisted Alexander polynomials, see below and Section 3.
They ultimately solved that conjecture in [7], and obtained as a byproduct
a new answer for the characterization of fibered classes in the case of rank
1: if rk(u) = 1, u fibers if and only if all twisted Alexander polynomials
∆H(G, u) are nonzero.
Let us describe briefly what are these twisted Alexander polynomials

(for a detailed presentation, see [5]). In fact, we do it only for a special
case, which is already sufficient: those associated to finite covers, see [6,
Section 3.2].

Recall first the definition of the order of a finitely generated moduleM
over a Noetherian UFD R: it is the greatest common divisor of the p-minors
of A in a finite presentation

Rq
×A−→ Rp →M,

where ×A is the right multiplication by a matrix A ∈ Mq,p(R). Thus it is
an element of R defined up to multiplication by a unit. We denote it by
ordR(M), usually viewed as an element of R. See Section 3.1.

Since G/ keru ≈ Zr, the ring Z[G/ keru] is isomorphic to Z[t±1
1 , . . . , t±1

r ],
thus it is a Noetherian UFD. In particular, this order vanishes if and only
if there are no p-minors or they all vanish.

ANNALES DE L’INSTITUT FOURIER



FIBERED COHOMOLOGY CLASSES IN DIMENSION THREE 3

Then let H be a normal subgroup of G with finite index, denoted by
H /f.i. G. We define H1(H; Z[G/ keru]) as the homology of H with coeffi-
cients in theH-module Z[G/ keru]. It is naturally a module over Z[G/ keru]
by action on the coefficients, which is finitely generated since H is finitely
generated. By definition, the twisted Alexander polynomial of (G, u) asso-
ciated to H is

∆H(G, u) := ordZ[G](H1(H; Z[G/ keru])).

Since the units of Z[G/ keru] are ±(G/ keru) (i.e. ±ti11 . . . tirr ), it is an
element of Z[G/ keru]/±(G/ keru).
It is not too difficult to prove that, if u is fibered, ∆H(G, u) is always

u-monic, i.e. its u-minimal term has a coefficient ±1: see Proposition 3.4.
In the rank one case, this goes back to Alexander.
We can now state our main result.

Theorem 1.1. — Let M be a closed 3-manifold such that M̃ is con-
tractible and G := π1(M) is virtually residually torsion-free nilpotent
(VRTFN), and let u be a nonzero element of Hom(G,R) = H1(M,R).
Assume that ∆H(G, u) is u-monic for every H /f.i. G. Then u is fibered,

i.e. represented by a nonsingular closed 1-form.

Comments

(1). — Building on [1], [13] proves that π1(M) is VRTFN for all geo-
metric manifolds which are not Sol. In particular, if M is hyperbolic, this
follows from the fact that π1(M) is virtually a right-angled Artin group.
If M is Sol, π1(M) is not virtually nilpotent, but M is either a torus

bundle over S1 with hyperbolic monodromy or has a finite cover of this
type and H1(M,R) = 0. Thus in that case the theorem is obvious.

The hypothesis that M̃ is contractible can be dispensed with: if it does
not hold, then (since b1(M) > 0) we are in one of the two following cases:
either M is nonprime thus nonfibered and the twisted Alexander polyno-
mials always vanish; or M fibers over S1 with fiber S2 or RP2.

(2). — In rank one, our result is weaker than [7]. However, even in that
case we believe that our proof, which is based on different ideas, may be of
interest.

TOME 0 (0), FASCICULE 0
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2. Sketch of the proof and content of the paper

The main idea is to express the fibering condition on u by the vanishing
of some Novikov homology associated to (G, u) and the nonvanishing of
∆H(G, u) by the vanishing of some Abelianized relative Novikov homology
associated to (G,H, u).

In turn, these vanishings are expressed by the invertibility of some matrix
in the Novikov ring associated to (G, u) and of its image in the Novikov
ring associated to (G/(H ∩ keru), u) (u being induced by u).

Then the theorem is reduced to a result about “finite detectability of
invertible matrices” for a VRTFN group.

We now describe the content of the paper.
In Section 3, we define the twisted Alexander polynomials ∆H(G, u).
In Section 4, we define the Novikov ring Z[G]u, and the Novikov homol-

ogy H∗(G, u). We quote the result of [2], building upon previous results of
Stallings and Thurston: if G = π1(M) with M a closed 3-manifold, u fibers
if and only if H1(G, u) = 0.
In Section 5, we explain the relations between twisted Alexander poly-

nomials and an “Abelian relative” version of Novikov homology.
In Section 6, we specify the computation of H1(G, u) for G = π1(M3)

with M̃ contractible, thanks to the form of a presentation of G given
by a Heegaard decomposition and Poincaré duality. We deduce that
(H1(G, u) = 0) is equivalent to the invertibility in Mp−1(Z[G]u) of some
matrix A ∈ Mp−1(Z[G]) where p is the genus of the decomposition.
Similarly, the vanishing of Hab

1 (G/(H ∩ keru)), u) is equivalent to the
invertibility of the image of A in Mp−1(Z[G/H ∩ keru]u). Thus we have
reduced Theorem 1.1 to Theorem 6.2:

If G is finitely generated and VRTFN, a matrix A ∈ Mn(Z[G]) whose
image in Mn(Z[G/H]u) is invertible for every H /f.i. G, is invertible
in Mn(Z[G]u).

The restriction to finitely generated groups is actually not necessary, but
simplifies the proof.

ANNALES DE L’INSTITUT FOURIER



FIBERED COHOMOLOGY CLASSES IN DIMENSION THREE 5

Theorem 6.2 is proven in Section 11. There are two main ingredients:

� (Sections 7 to 9) the case whenG is nilpotent, which uses three key
facts:
(1) [10] a simpleZ[G]-module is �nite;
(2) [8] when G is nilpotent and torsion-free, Z[G] has a classical

ring of quotients on the right.
� (Section 10) the fact that when G is RTFN, it is orderable, thus one

can embedZ[G] in the Mal'cev�Neumann completion QhGi , which
is a division ring (or skew �eld); moreover, by a remark of [12] the
order can be chosen so thatQhGi contains Z[G]u . Actually, we work
mostly with a sub�eld introduced by [4], which contains Z[G] and
whose elements have �controlled� support.

Notation. � In the following text, G is a �nitely generated group and
u : G ! R a nonzero homomorphism. ThusG=ker u � Zr , r = rk( u), and
Z[G=ker u] � Z[t �

1 ; : : : ; t � 1
r ] is a UFD (unique factorization domain).

3. Twisted Alexander polynomials

3.1. Order of a �nitely generated module over a Noetherian
UFD

Let M be a �nitely generated R-module whereR is a Noetherian UFD.
One de�nes (cf. [3])

� the Fitting ideal (or elementary) of order 0 Fitt 0(M ) as the ideal
of R generated by thep-minors of a matrix A 2 Mq;p(R) where

Rq � A�! Rp p
�! M

is a presentation of M with � A the multiplication on the right
by A;

� the order ordR (M ) as the greatest common divisor (gcd) of
Fitt 0(M ).

Remark 3.1. � We use multiplication on the right rather than on the
left since later we will have mostly noncommutative rings, and we prefer
to work with left modules. Thus elements ofRq, Rp are interpreted as row
vectors.

It is easy to prove that the de�nition of Fitt 0(M ) and thus of ordR (M )

does not depend on the presentation: ifRq1
� A 1�! Rp1

� 1�! M and Rq2
� A 1�!

TOME 0 (0), FASCICULE 0
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Rp2
� 2�! M are two presentations, one can lift� 1 to � B : Rm 1 ! Rm 2 and

obtain a presentation

Rq1 � Rq2 � A�! Rp1 � Rp2 � 1 + � 2�! M ; A =
�

Ip1 B
0 A2

�
:

Similarly, there is a presentation

Rq1 � Rq2 � C�! Rp1 � Rp2 � 1 + � 2�! M ; C =
�

A1 0
D Ip2

�
:

Thus the kernel of � 1 + � 2 is the row space of
�

I p 1 B
0 A 2

�
, and also that

of
�

A 1 0
D I p 2

�
: this implies (for any ring) that the ideals generated by the

p1-minors of A1 and by the p2-minors of A2 coincide.
The main property of this order is the

Proposition 3.2. � Let R be a Noetherian UFD, M an R-module
generated byp elements, andannR (M ) its annihilator. Then one has the
divisions

gcd(annR (M )) j ordR (M ) j
�

gcd(annR (M ))
� p

:

More precisely, one has the inclusions of ideals

annR (M ) � Fitt 0(M ) � (annR (M ))p = hap j a 2 annR (M )i

Proof. � Let Rq � A�! Rp p
�! M be a presentation of M , with A 2

Mq;p(R). Then

a 2 annR (M ) () aRp � RqA () (9 X 2 Mp;q (R))XA = aIp:

Let � be a p-minor of A. Changing the order of the coordinates, we
have A =

� A 1
A 2

�
where A1 2 Mp(R) with det A1 = � . Thus there exists

X 1 2 Mp(R) such that X 1A1 = � Ip, and X = ( X 1 0 ) 2 Mp;q (R) satis�es
XA = � Ip. Thus annR (M ) contains � , thus it contains Fitt 0(M ).

For the right inclusion: by the Cauchy�Binet formula for det(XA ), the
identity XA = aIn implies that ap =

P
� X;i � A;i where � X;i and � A;i are

p-minors of A and X , thus ap 2 Fitt 0(M ). �

3.2. Twisted Alexander polynomials

For every subgroupH / f:i: G, consider the left G-module Z[G=ker u]G=H ;
where G acts naturally both on G=ker u and on G=H, thus permuting the
factors Z[G=ker u]. Thus one can de�ne the homology group

H1(G; Z[G=ker u]G=H );

ANNALES DE L'INSTITUT FOURIER
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which is a module overZ[G] or over Z[G=(H \ ker u)], but not on Z[G=ker u].
On the other hand, the action of G on G=ker u descends to an action of

G=ker u on Z[G=ker u]G=H which does not permute the factorsZ[G=ker u],
and H1(G; Z[G=ker u]G=H ) becomes a module overZ[G=ker u].

Viewing H1(G; Z[G=ker u]G=H ) as a module overZ[G=ker u], which is
isomorphic to Z[Zr ] thus still a UFD, we de�ne the twisted Alexander
polynomial associated toH :

� H (G; u) := ord Z[G= ker u ](H1(G=ker u; Z[G]G=H )) ;

which is an element ofZ[G=ker u] mod � G=ker u:

Remarks 3.3.

(1) When H = G, � G (G; u) can be denoted by�( G; u) and called
�multivariate Alexander polynomial�, related to the Alexander
polynomial of links. If rk( u) = 1 , one recovers the classical Alexan-
der polynomial, as generalized by [16].

(2) If X is a �nite complex with � 1(X ) = G and bX H;u the covering
associated toker u, H and H \ ker u, we have an isomorphism of
modules overZ[H=H \ ker u] � Z[u(H )]:

H1(G; Z[G=ker u]G=H ) � H1( bX u;H ; Z):

One can deduce that

� H (G; u) = 0 is u-monic () �( H; u jH ) is u-monic:

3.3. Comparison with [6, 3.2.1 to 3.2.4]

(I change their notation from N to M ). Friedl and Vidussi start from

� a free Abelian groupF together with a morphism  : G = � 1(M ) !
F : in our case,F = G=ker u and  is the natural projection.

� a morphism 
 : G ! GL(k; Z[F ]): in our case, this is the morphism
G 7! GL(Z[G=ker u])G=H induced by the action of G on G=H but
not on G=ker u.

Thus their � = 
 
  is the morphism G 7! GL(Z[G=ker u])G=H induced
by the actions of G on G=ker u and on G=H.

Then they de�ne for any � : G ! GL(k; Z[F ]) the i-twisted Alexander
polynomial of (G; � ), denoted by � �

M;i , by

� �
G;i = ord R (H i (M ; Z[F ]k ))

TOME 0 (0), FASCICULE 0
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where the (hidden) action of G on Z[F ]k is � . In our notations, we thus
have

H i (G; Z[G=ker u]G=H ) = H i (M ; Z[F ]k ):

(for all i if fM is contractible, for i 6 1 if not). Thus

� H (G; u) = � 
 
  
M; 1 :

3.4. Fibering implies u-monicity of Alexander polynomials

Proposition 3.4. � If G = � 1(M ), M a closed manifold of any di-
mension andu 2 H 1(M; R) �bers, then � H (G; u) is always u-monic.

Proof. � Let ! be a nonsingular form in the classu, and let X be a
vector �eld on M such that ! (X ) = 1 . On the universal cover fM , ! lifts
to df , X lifts to eX with df ( eX ) = 1 . Thus the �ow (' t

X ) lifts to (' t
eX ) with

f � ' t
eX � f = t.

Fix a small cell decomposition ofM and lift it to fM , and choose lifts
� 7! e� of cells in M . For t > 0 large enough,' t

eX is equivariantly homotopic
to an equivariant chain map e' such that e' (e� ) = g(e� ) with u(g) > 0.

Thus the identity of the cell complex C� ( fM ) is homotopic over Z[G] to
a chain map A whose support in G lies in f u > 0g. Thus A induces the
identity on H1(M; Z[u(G)]G=H ). View A as a matrix in some MN (Z[G]),
and denote byA its image in MN [G:H ](Z[u(G)]) which acts onC� ( fM ) 
 Z[G]

Z[u(G)]G=H ).
Then the support of A in u(G) lies in ]0; + 1 [. On the other hand,

since A induces the identity on H1(M; Z[u(G)]G=H ) det(Id � A) annihi-
lates H � (M; Z[u(G)]G=H ) and in particular H1(M; Z[u(G)]G=H ). Since
det(Id � A) is u-monic, we are done. �

4. Novikov homology

4.1. Novikov ring

We de�ne the Novikov ring Z[G]u as the following group of formal series
over G with coe�cients in Z:

Z[G]u := f � 2 Z[[G]] j (8 C 2 R) supp(� ) \ f u 6 Cg is �nite g;

ANNALES DE L'INSTITUT FOURIER
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where f u 6 Cg = f g 2 G j u(g) 6 Cg. It is easy to see that the multiplica-
tion

X

g1 2 G

ag1 g1:
X

g2 2 G

bg2 g2 =
X

g2 G

 
X

g1 g2 = g

ag1 bg2

!

g

is well de�ned and makesZ[G]u a ring containing Z[G] as a subring.

Units of Z[G]u . � If � = 1 + a 2 Z[G]u and supp(a) � f u > 0g, � is
invertible, with inverse � � 1 =

P 1
n =0 (� a)n . Thus every element ofZ[G]u

whose u-minimal part is of the form � g with g 2 G, is a unit. We call
such elementsu-monic. More generally, if A 2 Mn (Z[G]u ) with supp(A) �
f u > 0g, In + A is invertible with (I n + A) � 1 =

P 1
n =0 (� A)n .

In the case whenZ[G] has no zero divisors, in particular for G = Zr ,
every unit of Z[G]u is u-monic, thus the units of Z[G]u coincide with u-
monic elements.

4.2. Novikov homology, relation with �bering

The Novikov homology H � (G; u) is de�ned as the homology ofG with
coe�cients in the left Z[G]-module Z[G]u :

H � (G; u) := H � (G; Z[G]u ):

Although we shall not use it explicitly, let us quote the following easy result,
which was a great inspiration for our work. Note the relation with [21].

Theorem 4.1 ([2, 19]). � If rk( u) = 1 , the kernel of u is �nitely gen-
erated if and only if

H1(G; u) = 0 = H1(G; � u):

For this paper, the interest of Novikov homology lies in the following

Theorem 4.2 ([2]). � Let G = � 1(M ), where M is a closed and con-
nected three-manifold. The following are equivalent:

� u is �bered.
� H1(G; u) = 0 .

Remarks 4.3.

(1) This is their Theorem E, reinterpreted in terms of Novikov homol-
ogy, cf. p. 456 of the paper.

(2) At the time, one needed M to contain no fake cells, and also the
hypothesis � 1(M ) 6= Z � Z=2Z (to avoid a possible fakeRP2 � S1),
restrictions removed later thanks to Perelman.

TOME 0 (0), FASCICULE 0
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(3) In [19], the equivalence between (i) and (H1(G; u) = 0 = H1(G; � u))
was proved as an immediate consequence of [21, 22] and Theo-
rem 4.1. This would su�ce to prove our main result with almost no
change.

4.3. Computation of H1(G; u)

To simplify the notations, we assume that G is �nitely presented (any-
how, we only need this case). Lethx1; : : : ; xp j r 1; : : : ; r qi be a presentation
of G, and let D1, D2 be de�ned as in Section 3. Then, denoting by(D i )u 2
Mq;p(Z[G]u ) the matrix obtained by the base changeZ[G] ! Z[G]u , we
have

H1(G; u) = ker( � (D1)u )=im( � D (2)u ):

Since u 6= 0 , there exists i 2 f 1; : : : ; pg, such that u(x i ) 6= 0 , thus x i � 1
is invertible in Z[G]u . We can assume thati = p. Denoting by D ( i )

2 the
matrix obtained by deleting the i -eth column of D2, we haveH1(G; u) �
coker(� D ( i )

2 )u .

Corollary 4.4. � We have

H (G; u) = 0 () � (D ( i )
2 )u : Z[G]qu ! Z[G]p� 1

u is onto:

Equivalently, there exists eX 2 Mp� 1;q(Z[G]u ) such that eXD ( i )
2 = I m � 1.

By truncating eX =
P

g2 G X gg, X g 2 Mp� 1;I (Z) below a su�ciently high
level of u, i.e. by de�ning the �nite sum X =

P
u(g)6 C X gg with C suf-

�ciently large, we obtain X 2 Mp� 1;I (Z[G]) such that XD ( i )
2 = I p� 1 + A

with u > 0 on supp(A). Since such a matrix is invertible over Z[G]u , we
obtain the following

Corollary 4.5. � (H1(G; u; R) = 0 ) is equivalent to the existence of
a matrix X 2 Mm � 1;I (R[G]) such that XD ( i )

2 = I m � 1 + A with u > 0 on
supp(A).

Corollary 4.6. � We have

H1(G; u) = 0 () (9 X 2 Mp� 1;q(Z[G])) u > 0 on supp(XD ( i )
2 � Ip� 1):

Proof. � By Proposition 4.4, the left hand side is equivalent to the ex-
istence of eX 2 Mp� 1;q(Z[G]u ) such that eX (D ( i )

2 ) = I p� 1. By truncating
eX =

P
g2 G X gg, X g 2 Mp� 1;q(Z[G]) below a su�ciently high level of u,

i.e. by de�ning the �nite sum X =
P

u(g)6 C X gg with C su�ciently large,

we obtain X 2 Mp� 1;q(Z[G]) such that u > 0 on supp(XD ( i )
2 � Ip� 1).

ANNALES DE L'INSTITUT FOURIER
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Conversely, since such a matrixX is invertible over Z[G]u , this proves the
corollary. �

5. Abelianized relative Novikov homology and twisted
Alexander polynomials

Consider the induced morphismu : G=ker u ! R and the associated
Novikov ring Z[G=ker u]u , which is a left Z[G]-module, and de�ne the
Abelianized Novikov homology

H ab
1 (G; u) := H1(G; Z[G=ker u]u ):

It is in fact the original homology de�ned in [Novikov 1981]. Since G=ker u
is free Abelian of rank r = rk( u), Z[G=ker u]u ) is Abelian.

If H / f:i G is a normal subgroup with �nite index, we generalize the above
de�nition. Consider the induced morphism u : G=(H \ ker u) ! R and the
associated Novikov ring Z=[G=(H \ ker u)]u , and de�ne the Abelianized
relative Novikov homology

H ab
1 (G; H; u ) := H1(G; Z[G=(H \ ker u)]u ):

Now we can state and prove the relation between Alexander polynomials
and Abelianized relative Novikov homology.

Proposition 5.1. � We have the equivalence

� H (G; u) is u- monic () H ab
1 (G; H; u ) = 0 :

Proof (inspired by the referee). � SetR = Z[G=ker u], S = Z[G=ker u]u ,
which are UFDs with R � S. Set

M R = Z[G=ker u]G=H � M S = Z[G=ker u]G=H
u :

Then M R and M S are G-modules for the natural actions onG=ker u and
on G=H, and H1(G; M R ) and H1(G; M S ) can be viewed as modules over
R and S respectively, with G=ker u acting without permuting the factors.
Moreover, we have

� H (G; u) = ord R (H1(G; M R )) ; H ab
1 (G; H; u ) = H1(G; M S ):

Recall that for an element of S, in particular of R, to be u-monic means
to be a unit in S. Denote by S� the units of S. Using Proposition 3.2, it
su�ces to prove that

(• ) annR (H1(G; M R )) \ S� 6= ; () H1(G; M S ) = 0 :
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Using a presentationhx1; : : : ; xp j r 1; : : : ; r qi be a presentation ofG, we
have an exact complex

C2 = Z[G]q � D 2�! C1 = Z[G]p � D 1�! C0 = Z[G] "�! Z ! 0;

where D1 =
� x 1 � 1

:::
x p � 1

�
and " is the augmentation. Thus H1(G; M R ) and

H1(G; M S ) are the H1 of the induced sequences withZ[G] replaced byM R

and M S . Thus we have (up to isomorphisms)

H1(G; M R ) =
ker(� B )
im( � A)

; H1(G; M S ) =
ker(� BS )
im( � AS )

;

whereA 2 Ma;b (R), B 2 Mb;c(R), and AS = A, BS = B viewed as matrices
with coe�cients in S. Also, a = q[G : H ], b = p[G : H ], c = [ G : H ] and

B =
� (x 1 � 1)I c

:::
(x p � 1)I c

�
.

The key point is that, since u 6= 0 , there exists i such that u(x i ) 6= 0 ,
thus the image x i � 1 2 R belongs toS� . We can assume thati = p, thus

B =
�
B1(xp � 1)Ic

�
with B1 2 Mb� c;c (R):

Write A = ( A 1 A 2 ), where A1 2 Ma;b� c(R) and A2 2 Ma;c (R). Similarly,
we haveAS = ( (A 1 )S (A 2 )S ). SinceAB = 0 , we have

(~ ) A1B1 + ( xp � 1)A2 = 0 :

Proposition 5.1 will result from the following lemma, a variant of 4.4.

Lemma 5.2. � Up to isomorphisms, we have

(xp � 1) coker(� A1) � H1(G; M R ) � coker(� A1)

H1(G; M S ) = coker( � (A1)S ):

Proof of Lemma 5.2. � The secund line follows from the �rst by replac-
ing R by S and using the fact that xp � 1 is invertible in S. It can also be
proved directly as Corollary 4.4. Thus it su�ces to prove the �rst line.

Step 1. � Consider the map

i : w = ( xp � 1)v 2 (xp � 1)Rb� c 7�! ((xp � 1)v; vB1) 2 ker(� B ):

If z 2 Ra , we have

i (w) = zA () (xp � 1)v = zA1 and vB1 = zA2:

In view of (~ ), the right hand side is equivalent to ((xp � 1)v = zA1). Thus
i � 1(im( � A)) � im( � A1), thus i induces an injection

(xp � 1) coker(� A1) !
ker(� B )
im( � A)

= H1(G; M R ):
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Step 2. � Denoting an element of Rb by (v; w) with v 2 Rb� c and
w 2 Rc, consider the map

� : (v; w) 2 ker(� B ) 7! v 2 Ra� c:

If � (v; w) 2 im( � A1), i.e. there existsz 2 Aa such that zA1 = v, we have

zA � (v; w) = (0 ; zA2 � w):

SinceAB = 0 and (v; w)B = 0 , this implies

(0; zA2 � w)B = ( xp � 1)(zA2 � w) = 0 ;

thus w = zA2. Thus

(v; w) = ( zA1; zA2) = zA:

Thus � � 1(im( � A1)) � im( � A), thus � induces an injection

H1(G; M R ) =
ker(� B )
im( � A)

! coker(� A1): �

End of the proof of Proposition 5.1. � Since xp � 1 2 S� , the lemma
implies

(5.1) annR (H1(G; M R )) \ S� 6= ;

() (9 � 2 R \ S� )�R b � M b� c
R A1

() (9 � 2 R \ S� ; X 2 Mb� c;a (R))XA 1 = � Ib� c

(5.2) H1(G; M S ) = 0(1) () (9 bX 2 Mb� c;a (S)) bX (A1)S = I b� c:

Clearly, (5.1) ) (5.2). Conversely, if bX (A1)S = I b� c, truncating bX below
a su�ciently high level of u gives an identity with coe�cents in R:

Y A1 = I b� c + C with u > 0 on supp(C):

Thus det(Y A1) 2 R \ S� , which implies that X = Y A1 (̂Y A1)T (transpose
of the cofactor matrix) satis�es (5.1). This �nishes the proof of Proposi-
tion 5.1. �

6. Computations in dimension three and reduction of the
main result

In this section we consider the case whereG = � 1(M ) whereM is a closed
and connected three-manifold with a contractible universal coveringfM .
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6.1. A convenient complex for computing the homology of G

Using a handle decomposition of genusp [or a self-indexing Morse func-
tion with one minimum and one maximum], one can obtain H � ( fM ; Z) by
a complex of left modules overZ[G], of the form

C� = ( Z[G] � D 3�! Z[G]p � D 2�! Z [G]p � D 1�! Z[G])

with

D1 =

0

@
x1 � 1

: : :
xp � 1

1

A ; D3 =
�
y1 � 1 � � � yp � 1

�
:

(x1; : : : ; xp) and (y1; : : : ; yp) are generating systems forG. Sinceu 6= 0 , we
can reorder them so that u(xp) and u(yp) are nonzero, thusxp � 1 and
yp � 1 are invertible in Z[G]u . Then we denote byc the column (x i � 1)i<m

and ` the row (yj � 1)j<m , so that

D1 =
�

c
xp � 1

�
; D3 =

�
` yp � 1

�
:

Without using the contractibility of fM , this complex gives a free resolution
of Z over Z[G] up to degree2, thus

H1(G; u) � ker(@1)Z[G]u =im(@2)Z[G]u ;

where we have changed the coe�cients fromZ[G] to Z[G]u .
By the contractibility of fM , it is a complete free resolution, andG is

a group with 3-dimensional Poincaré duality, which can be expressed as
follows. Denote by w the orientation morphism G ! f 1; � 1g, and de�ne
modi�ed adjoint isomorphisms

� =
X

g

agg 7! � � =
X

g

ag" (g)g� 1; A = ( ai;j ) � = ( a�
j;i ):

Then Poincaré duality can be expressed by the fact thatC� is quasi-
isomorphic to the complex (C �

i = C3� i ; � D �
4� i ).

Let us write D2 = ( A C
L a ) where A 2 Mp� 1(Z[G]), L 2 M 1;p� 1(Z[G]),

C 2 Mp� 1;1(Z[G]) and a 2 Z[G]. Note that D (p)
2 = ( A C ).

Since @1 � @2 = 0 and @2 � @3 = 0 , we haveD2D1 = 0 and D3D2 = 0 .
Working over Z[G]u , we obtain

C = Ac(1 � xp) � 1 ; a = Lc(1 � xp) � 1

L = (1 � yp) � 1`A

a = (1 � yp) � 1`C = (1 � yp) � 1`Ac(1 � xp) � 1:
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Thus (D �
3 ; D �

2 ; D �
1) has �the same shape� as(D1; D2; D3) in the following

sense: it is obtained from(D1; D2; D3) by replacing (x i ; yi ; A; C; L; a ) by
(y� 1

i ; x � 1
i ; A � ; L � ; C � ; a� ), and one hasu(yp) 6= 0 .

These computations have the following consequence.

Proposition 6.1. � Let u 2 H 1(M ; R) n f 0g. The two following prop-
erties are equivalent:

(1) u is �bered.
(2) The matrix A 2 Mp� 1(Z[G]) becomes invertible inMp� 1(Z[G]u ).

Proof. � By [2], (1) is equivalent to (H1(G; u) = 0 ) thus to the exactness
of C� 
 ZG Z[G]u in degree1. Sinceu(xp) 6= 0 , xp� 1 is a unit of Z[G]u . By 4.4,
this is equivalent to the left invertibility of

�
AL

�
with Z[G]u -coe�cients.

SinceL is of the form �A , this left invertibilty is equivalent to that of A in
Mp� 1(Z[G]u ).

Since C � is quasi-isomorphic to C� , (1) is equivalent to the exactness
of C � 
 ZG Z[G]u in degree 1. Since (D �

3 ; D �
2 ; D �

1) has the same shape as
(D1; D2; D3) in the sense explained above, we can apply the same ar-
gument to prove that (1) is equivalent to the left invertibility of A � in
Mp� 1(Z[G]� u ), i.e. the right-invertibility of A in Mp� 1(Z[G]u ). This proves
Proposition 6.1. �

Remark. � In [20] it was established that Z[G]u is always stably �nite :
a matrix A 2 Mn (Z[G]u ) is invertible if and only if it is left invertible. This
is a well-known result of Kaplansky for Z[G], which was proved by [14]
for Z[G]u when rk(u) = 1 . With Poincaré duality, this allows to prove
(H1(G; u) = 0 ) H1(G; � u) = 0 ) without using the results of Stallings
and Thurston.

Proposition 6.1 reduces the proof of the main result to the following
result.

Theorem 6.2. � Assume that G is �nitely generated and VRTFN. Let
p be a prime andn 2 N. Let A 2 Mn (Z[G]) be such that for everyH / f:i: G
its image in Mn (Z[G=H \ ker u]u ) is invertible.

Then A is invertible in Mn (Z[G]u ).

Remarks 6.3.

(1) Note that we state the result for A 2 Mn (Z[G]), not in Mn (Z[G]u ).
Presumably, the result would remain true, but it is not needed and
I have not been able to prove it.
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(2) The validity of Theorem 6.2 for a �nite index subgroup G0 � G
implies its validity for G: this follows from the fact that an n-
matrix A over Z[G]u can be represented by a(n:[G : G0])-matrix
eA over Z[G0]u j G 0

, and that the invertibility of A is equivalent to
the bijectivity of the left and right multiplications by A, thus to
the invertibility of eA (and similarly for the �nite invertibility).

Thus it su�ces to prove Theorem 6.2 when G is �nitely generated
and RTFN.

7. Finitely detectable units and full left ideals in group
rings

Definition 7.1.

(1) A matrix A 2 Mn (Z[G]) is �nitely invertible if its image in every
quotient Mn (Z[G=H]) for H / f:i: G is invertible. The ring Mn (Z[G])
has �nitely detectable units if every �nitely invertible matrix is
invertible.

(2) A left ideal I � Z[G] is �nitely full if the natural projection I H �
Z[G=H] is equal to Z[G=H] for every H / f:i: G. The ring Z[G] has
�nitely detectable full left ideals if every left ideal which is �nitely
full is equal to Z[G].

Remark 7.2. � Since Z[G] is anti-isomorphic to itself via
P

agg 7!P
agg� 1, if Z[G] has �nitely detectable full left ideals, it also has detectable

full right ideals.

Proposition 7.3. � Assume that Z[G] has �nitely detectable full left
ideals.

(1) Every left Z[G]-submodule M � Z[G]n which projects onto
Z[G=H]n for every H / f:i: G is equal to Z[G]n .

(2) For every n 2 N� , Mn (Z[G]) has �nitely detectable units.

Proof.

(1). � For n = 1 , it is the hypothesis. Assume that n > 1 and the
result is true for n � 1. Consider the setI of � 2 Z[G] such that there exists
� 1; : : : ; � n � 1 2 Z[G] with (� 1; : : : ; � n � 1; � ) 2 M . It is a left ideal, which
projects onto every quotient Z[G=H] with H / f:i: G. Thus I = Z[G], i.e. M
contains an elementx = ( � 1; : : : ; � n � 1; 1).

One has a direct sum decomposition

Z[G]n = Z[G]n � 1 � Z[G]x:
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Subtracting � n x from every element(� 1; : : : ; � n ) 2 M , one sees that

M = ( M \ Z[G]n � 1) � Z[G]x:

It su�ces to prove that M \ Z[G]n � 1 = Z[G]n � 1. Clearly, M \ Z[G]n � 1 is
a left submodule which projects onto every(Z[G=H])n � 1, H / f:i: G. Thus
the proposition follows from the induction hypothesis.

(2). � If A 2 Mn (Z[G]) is �nitely invertible, the left submodule
Z[G]n A � Z[G]n is �nitely full. Thus Z[G]n A = Z[G]n , i.e. A is left in-
vertible. Similarly, AZ[G]n = Z[G]n , thus A is right invertible. Thus A is a
unit. �

8. Facts on nilpotent groups and their group rings

We collect here a few facts that we will use about (mostly �nitely gen-
erated) nilpotent groups and their group rings.

(1) If G is nilpotent and �nitely generated, G is polycyclic ([11, Theo-
rem 17.2.2 p. 119]; [18, 5.2.17 p. 13]).

(2) If G is nilpotent and �nitely generated, it has a torsion-free sub-
group of �nite index ([11, Theorem 17.2.2 p. 119]).

(3) If G is nilpotent and �nitely generated, it is residually �nite ([11,
Exercise 17.2.8 p. 124, follows from (2) and the Mal'cev embedding
of a �nitely generated torsion-free nilpotent group in someSL(n; Z),
Theorem 17.2.8 p. 120]).

(4) If G is nilpotent and �nitely generated, every subgroup of G is
�nitely generated ([18, 5.2.18 p. 137]).

(5) If G is any group and (
 n (G)) its lower central series (
 1(G) = G,

 n +1 (G) = [ G; 
 n (G)]), the set

Gn :=
p


 n (G) := f g 2 G j (9 k 2 N� ) gk 2 
 n (G)g

is a normal subgroup, moreoverG=Gn is torsion-free and[Gn ; Gm ] �
Gn + m ([17, Lemma 1.8 p. 473]). Note that the sequence(Gn ) is �nite
i� G is nilpotent and torsion-free.

(6) If G is nilpotent and torsion-free, it is orderable, i.e. it has a total
order such that x 6 y ) xz 6 yz and zx 6 zy. (See also Section 10)
([17, Lemma 1.6 p. 587]).

(7) If G is nilpotent and torsion-free, Z[G] is a domain (easy conse-
quence of (6)).

(8) If G is polycyclic (in particular, nilpotent and �nitely generated),
Z[G] is left (and right) Noetherian ([9]; [17, Corollary 2.8 p. 425]).
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(9) Let G be a polycyclic group, M a �nitely generated left or right
module overQ[G], and z a central element ofG, making M into a
Q[t; t � 1]-module. ThenM does not contain anyQ[t; t � 1]-submodule
N having a free submoduleN0 with N =N0 torsion and having an in-
�nite family of elements with distinct annihilators ([10, Lemma 6]).

(10) If G is nilpotent and �nitely generated, a left Z[G]-module which is
simple (or irreducible) is �nite. Equivalently, if I is a maximal left
ideal of Z[G], Z[G]=I is �nite ([10, Lemma 2 and Theorem 3.1]; [17,
Corollaries 2.9 and 2.10 p. 544].).

(11) If G is nilpotent and torsion-free, Z[G] is contained in a division
ring D which is a classical ring of quotients on the right and on the
left :

D = f xy � 1 j x 2 Z[G]; y 2 Z[G] n f 0gg = f y� 1x j x 2 Z[G]; y 2 Z[G] n f 0gg:

([8, Theorem 1] and [15, Corollary 10.23 p. 304]: A right Noetherian
domain has a classical ring of quotients).

The last statement has the following consequence.

Corollary 8.1 ([15, p. 301]). � If G is nilpotent and torsion-free and
E � Z[G] is �nite, its elements can be reduced to a common denominator:
there exists x 2 Z[G] n f 0g such that E � Z[G]x � 1.

9. Theorem 6.2 for nilpotent groups

In this section, G is a �nitely generated nilpotent group. We �rst prove
the �nite detectability of full ideals, then the result in the title.

Proposition 9.1. � Let G be a �nitely generated nilpotent group.
Then Z[G] has �nitely detectable full left ideals.

Proof. � We argue by contradiction, thus we assume thatI is a �nitely
full left ideal in Z[G] which is not full. Then I is contained in a maximal
left ideal I 1, without the axiom of choice sinceZ[G] is Noetherian. Then
I 1 is again a �nitely full left ideal in Z[G] which is not full, thus we can
assume that I is maximal.

Thus M := Z[G]=I is a simpleZ[G]-module, and by [10],M is �nite.Thus

H := ker( G ! Aut( M ))

has �nite index. Thus M is isomorphic to a quotient of Z[G=H]=IH with
H / f:i: G and I H the image ofI . By hypothesis, I H = Z[G=H], thus M = 0 ,
contradiction. �
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Now we prove Theorem 6.2 for nilpotent �nitely generated groups.

Proposition 9.2. � Let G be a nilpotent and �nitely generated group,
and let A 2 Mm (Z[G]) be such that, for everyH / f:i: G, the imageAH;u of
A in Mm (Z[G=H \ ker u]u ) is invertible. Then A is invertible in Mm (Z[G]u ).

Proof. � By Remark 6.3(2), we can assume thatG is torsion-free, thus
Z[G] is contained in a division ring D which is a classical ring of fractions
on the right and on the left.

If u is injective, the result is obvious. In general, we make an induction
over the polycyclic length of G, i.e. in the torsion-free case the lengthn of
any subnormal sequence of subgroups

G = G0 > G 1 > � � � > G n > G n +1 = f 1g; Gi =Gi +1 � Z:

By the Schreier re�nement theorem ([11, 4.4.4]), this length is independent
of the sequence.

We can assume thatker u 6= f 1g and that the Proposition is already
known when the Hirsch length is smaller than that of G. Then u is not
injective on the center C(G), otherwise we would haveC(G) \ [G; G] = f 1g
thus [G; G] = f 1g and G would be Abelian, giving a contradiction.

Moreover, every element ofG which has a nontrivial power in C(G) is
already in C(G) ([11, Exercise 16.2.9]). Thus we can �ndz 2 C(G) \ ker u
such that � := G=hzi has no torsion. Then the Hirsch length of� is smaller
than that of G. �

Lemma 9.3. � There is an identity AB = xIm in Mm (Z[G]u ), with
x 2 Z[G]u n f 0g.

Proof. � The right multiplication by A is injective on (Z[G]u )n : if LA =
0, we obtain L H;u AH;u = 0 for every H / f:i: G, whereL H;u is the image ofL
in (Z[G=(H \ ker u)]u )m . Since by hypothesisAH;u is invertible, L H;u = 0 .
Since this is true for all H and G is residually �nite, L = 0 .

Thus A has an inverse in Mm (D ), which by Corollary 8.1 is of the
form A � 1 = Bx � 1 with B 2 Mm (Z[G]), x 2 Z[G] n f 0g. This proves
Lemma 9.3. �

To prove Proposition 9.2, it su�ces to prove that x divides B on the
right, i.e. B = B1x in Mn (Z[G]u ), thus (AB 1)x = xIn , and sincex 6= 0 and
Z[G]u is a domain, this implies AB 1 = I n . A similar argument with �left�
and �right� exchanged proves that A is left-invertible, thus invertible.

Lemma 9.4. � For n 2 N� , let xn ; Bn be the images of x; B in
Z[G=hzn i ]u ) and M( m; Z[G=hzn i ]u )) . Then xn divides Bn on the right.
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Proof. � The image An of A in Mm (Z[G=hzn i ]) gives rise to a matrix
eAn 2 Mmn (Z[�]) whose images in everyMmn (Z[� =H \ ker u]u ) is invert-
ible, and eAn is invertible in Mmn (Z[�] u ) if and only if An is invertible in
Mm (Z[G=hzn i ]u ).

By the induction hypothesis, eAn is invertible in Mmn (Z[�] u ) thus An is
invertible in Mm (Z[G=hzn i ]u ). Denote its inverse byA � 1

n and multiply the
identity An Bn = xn Im on the left by A � 1

n , we obtain Bn = A � 1
n xn , which

proves Lemma 9.4. �

We shall need the two following objects.

(1) For � =
P

g2 G agg 2 Z[G]u n f 0g, de�ne � = min( uj supp( z) ) and

emu (� ) =
X

gju(g)=min( u j supp( � ) )

agg 2 Z[G]:

We have emu (� ) = gmu (� ) with g 2 G and mu (� ) 2 Z[G=ker u],
wheremu (� ) is de�ned up to multiplication by an element of ker u.
We call mu (� ) the u-minimal part of � .

(2) Let � n 2 C be a primitive n-root of unity, and let � n 2 Z[t] be its
minimal polynomial (the n-th cyclotomic polynomial). The rings
Z[G] and Z[G]u can be factored by the ideal generated by� n (z),
to give quotients of Z[G=hzn i ], and Z[G=hzn i ]u . The quotients may
be expressed as twisted rings

Z[G]=(� n (z)) = Z[� n ][�]

Z[G]u =(� n (z)) = Z[� n ][�] u :

SinceZ[� n ] is a domain, these rings are also domains.

Let y be a coe�cient of B . Denote by xn and yn the images ofx and
y in Z[� n ][�] u . By Lemma 9.4, xn divides yn since they are also images of
xn ; yn 2 Z[G=hzn i ]u . Moreover, xn and yn have u-minimal parts

mu (xn ); mu (yn ) 2 Z[� n ][ker u];

de�ned up to multiplication by an element of � ker u.
Sincemu (x) 6= 0 , for n � 1 its image mu (x)n is nonzero, thus equal to

mu (xn ). And sincexn divides yn and Z[ker u] is a domain, this implies that
mu (x)n divides mu (y)n for n � 1, equivalently that mu (x) divides mu (y)
modulo � n (z) for n � 1.

To �nish the proof of Proposition 9.2, it su�ces to prove the following
lemma.
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Lemma 9.5.

(1) If P,Q ∈ Z[t] and P (ζn) divides Q(ζn) in Z[ζn] for n � 1, then P
divides Q in Z[t].

(2) If λ, µ ∈ Z[keru] and λ divides µ modulo Φn(z) for n � 1, then λ
divides µ in Z[keru].

(3) If x, y ∈ Z[G]u and mu(x) divides mu(y) modulo Φn(z) for n� 1,
then x divides y in Z[G]u.

Indeed, modulo the lemma we have B = B1x with B1 ∈ Mn(Z[G]u),
thus (AB1)x = xIn, and since x 6= 0 and Z[G]u is a domain, this implies
AB1 = In, thus A is right invertible. A similar argument as above with
“right” and “left” exchanged proves that A is left-invertible, thus A is
invertible.
Proof.
(1). — Since Z[t] is a UFD, one can reduce to the case when P is irre-

ducible. The resultants res(P,Φn) and res(P,Q) satisfy

res(P,Φn) = ±
∏

ζ∈Φ−1
n (0)

P (ζn), res(P,Q) = ±
∏

ζ∈Φ−1
n (0)

P (ζn).

Since P (ζn) divides Q(ζn) in Z[ζn] for n� 1, this implies

(∀ n� 1) res(P,Φn) divides res(P,Q) in Z.

We want to prove that res(P,Q) = 0. It suffices to prove that res(P,Φn)
takes infinitely many values.
If p is a prime number, we have

res(P,Φp) = res(P, tp−1 + · · ·+ 1) =
∏

α∈P−1(0)

(αp−1 + · · ·+ 1).

We distinguish three cases:
• The zeros α1, . . . , αd of P are not algebraic units. Then for some
non-Archimedean absolute value | · |v on Q(α1, . . . , αd) we have
|α1|v = · · · = |αd|v 6= 1. Replacing P by tdP (t−1), we can as-
sume that |α1|v > 1, thus as p → ∞ the formula for res(P,Φp)
implies that when p→∞ we have

|res(P,Φp)|v ∼ C|α1|dp, C > 0.

Thus res(P,Φp) takes infinitely many values.
• The zeros of P are algebraic units but not roots of unity. Then at
least one has modulus 1. Say that |α1|, . . . , |αk|> 1> |αk+1, . . . , αd|.
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Then the formula for res(P,Φp) implies

|res(P,Φp)| ∼ C|α1|kp, C > 0.

Again, res(P,Φp) takes infinitely many values.
• The zeros of P are roots of unity, i.e. P = ±Φk for some k. Then if
p is a large prime, it does not divides k, thus

Φkp =
p−1∑
i=0

tki,

which implies

res(Φk,Φkp) =
∏

ζ∈Φ−1
k

({0})

Φkp(ζ) = pϕ(k).

Thus res(P,Φkp) takes infinitely many values.
(2). — Let σ : G/〈z〉 → G be a section, then λ, µ can be written

uniquely
λ =

∑
γ∈G〈z〉

Pγ(z)σ(γ), µ =
∑

γ∈G〈z〉

Qγ(z)σ(γ).

Let P (z) (resp. Q(z)) be the gcd of the Pγ(z) (resp. the Qγ(z)) in Z[z, z−1],
defined up to multiplication by ±zk. The hypothesis implies that for n
large enough P (z) divides each coefficient Qγ(z) modulo Φn(z). By (1),
P (z) divides Qγ(z), thus P (z) divides µ.
Thus we are reduced to the case where P (z) = 1, i.e. λ is not divisible by

any R(z) 6= ±zk. This means that the right Z-module M = Z[G]/λZ[G] is
torsion-free over Z[z, z−1]. The image µ of µ in M is divisible by Φn(z) for
n large enough, and we want to prove that µ = 0. Assume by contradiction
that µ 6= 0, then we shall obtain a contradiction to Lemma 6 of [10], whose
statement we recall:

(♣) Let G be a polycyclic group, M a finitely generated left or right
module over Q[G], and z a central element of G, makingM into a
Q[t, t−1]-module. ThenM does not contain any Q[t, t−1]-submodule
N having a free submodule N0 with N/N0 torsion and having an
infinite family of elements with distinct annihilators.

The Z[z, z−1]-submodule

N = {x ∈M | (∃ P (z) ∈ Z[z, z−1] \ {0}) P (z)x ∈ Z[z, z−1]µ}

contrains the free submodule N0 = Z[z, z−1]µ. Moreover, N/N0 is torsion,
and for n large enough N/N0 admits an element with annihilator the prin-
cipal ideal

In = Φn(z)Z[z, z−1].
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Tensoring everything over Q, we obtain

M,N ,N0, (In)Q = Φn(z)Q[z, z−1]

which contradict (♣). Thus µ = 0, which proves (2).

(3). — We define a “division algorithm by increasing value of u” (anal-
ogous to the division algorithm in Q[[t]]). Since in (2) we can replace µ by
µ−αλ, we have that mu(x) divides mu(y−αx) for every α ∈ Z[keru]. This
allows to define by induction a sequence (xn) in Z[G]u by x0 = x, x1 = y

and
(∀ n > 2) xn = xn−1 − m̃u(xn−1)m̃u(x)−1.

By construction, we have

(♦) y = (m̃u(x1)m̃u(x)−1 + · · ·+ m̃u(xn−1)m̃u(x)−1)x+ xn

Define S = supp(y) and

T = {g−1h | h ∈ supp(m̃u(x)), g ∈ supp(tu(x))},

which is a subset of [a,+∞[ for some a > 0. For n > 2, we have

supp(xn) ⊂ supp(xn−1) ∪ T supp(xn−1).

Since supp(x1) = S, this implies

supp(xn) ⊂ E =
∞⋃
i=0

ST i, T i = {t1 . . . ti | t1, . . . , ti ∈ T}.

Let µn = min(u|supp(xn)). By construction, µn is increasing and belongs to
u(E). Since u > a > 0 on T , E has only a finite number of elements in
{u 6 C} for every C ∈ R, thus µn → +∞. Thus

∑∞
n=1 m̃u(xn)m̃u(x)−1

is a well-defined element α ∈ Z[G]u, and by (♦) we have y = αx. This
finishes the proof of Lemma 9.5 and thus of Proposition 9.2. �

10. Mal’cev–Neumann completion of Z[G]

Here we assume that G is residually torsion-free nilpotent (RTFN), i.e.
there exists a series of normal subgroups of G = G0 > G1 > · · · > Gn, such
that G/Gn is torsion-free nilpotent and

⋂
n∈N Gn = {1}. We also require

that G be finitely generated (countable would suffice).
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10.1. Order on G

Following [4], we define an order on G as follows. First, one defines

Gn :=
√
γn(G) = {x ∈ G | (∃ m > 0)xm ∈ γn(G)}.

As we recalled, since G is nilpotent they are subgroups. Clearly, they are
normal in G, and G/Gn is torsion-free. Moreover, one has [Gn, Gn] ⊂
G2n+1 ⊂ Gn+1 by [17, Lemma 1.8 p. 473]. Thus Gn/Gn+1 is torsion-free
Abelian. It is also finitely generated since it is contained in G/Gn which is
nilpotent and finitely generated.
One orders arbitrarily each Gn/Gn+1. Then one defines x ∈ G0 to be

positive if and only if, for the unique n such that x ∈ Gn \Gn+1, one has
xGn+1 > 1 in Gn/Gn+1.

In other words, an element x ∈ G is > 1 if and only if its first nontrivial
image in a subquotient Gn−1/Gn is > 1. It is clear that G+ is indeed the
positive cone of an order on G.

10.2. Mal’cev–Neumann completion, comparison with Novikov

We recall a celebrated result of A.I. Mal’cev and B.H. Neumann: if G is
a bi-invariantly ordered group, the formal series

Q〈G〉 := {λ ∈ Q[[G]] | supp(λ) is well-ordered}

form a division ring (or skew field) for the natural operations, containing
Q[G] as a subring. (Actually, one can replace Q by any field, or even any
division ring).
In presence of a nonzero morphism u : G → R, following [12], we shall

require the order to be compatible with u in the sense that (u(x) > 0 ⇒
x > 1). This is possible by changing the definition of (Gn), setting

• Gnew1 = keru
• Gnewn = Gn−1 if n > 2.

and defining the order on G/G1 by embedding it in R via u induced by u.
The interest of this is that we then have

Z[G]u ⊂ Q〈G〉.
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