Let be a pair. We study how the values of the log Kodaira dimension and log plurigenera relates to surjectivity and birationality of the Albanese map and the Albanese morphism of in both characteristic and characteristic . In particular, we generalize some well known results for smooth varieties in both zero and positive characteristic to varieties with various types of singularities. Moreover, we show that if is a normal projective threefold in characteristic , the coefficients of the components of are and is semiample, then the Albanese morphism of is surjective under certain assumptions on and the singularities of the general fibers of the Albanese morphism. This is a positive characteristic analogue in dimension 3 of a result of Zhang on a conjecture of Demailly–Peternell–Schneider.
Soit une paire. Nous étudions comment la dimension de Kodaira logarithmique et les plurigenres logarithmiques contrôlent la surjectivité et la birationalité de l’application d’Albanese ou du morphisme d’Albanese en caractéristique positive ou nulle. En particulier, nous généralisons certains résultats bien connus pour les variétés lisses à la fois en caractéristique zéro et caractéristique positive sous certaines variétés avec différents types de singularités. En outre, nous montrons que si est une variété projective normale de dimension 3 en caractéristique , les coefficients des composantes de sont et est semiample, alors le morphisme Albanese de est surjectif sous des certaines hypothèses sur et les singularités des fibres générales du morphisme Albanese. C’est un analogue en caractéristique positive et en dimension 3 d’un résultat de Zhang sur une conjecture de Demailly–Peternell–Schneider.
Revised:
Accepted:
Published online:
Keywords: abelian variety, Albanese map, Albanese morphism, canonical bundle formula, generic vanishing, Kodaira dimension, positive characteristic
Mot clés : variété abelian, cartographie Albanese, morphisme Albanese, formule de fibré canonique, annulation générique, dimension Kodaira, caractéristique positive
@article{AIF_2022__72_6_2515_0, author = {Wang, Yuan}, title = {On the characterization of abelian varieties for log pairs in zero and positive characteristic}, journal = {Annales de l'Institut Fourier}, pages = {2515--2539}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {6}, year = {2022}, doi = {10.5802/aif.3525}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3525/} }
TY - JOUR AU - Wang, Yuan TI - On the characterization of abelian varieties for log pairs in zero and positive characteristic JO - Annales de l'Institut Fourier PY - 2022 SP - 2515 EP - 2539 VL - 72 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3525/ DO - 10.5802/aif.3525 LA - en ID - AIF_2022__72_6_2515_0 ER -
%0 Journal Article %A Wang, Yuan %T On the characterization of abelian varieties for log pairs in zero and positive characteristic %J Annales de l'Institut Fourier %D 2022 %P 2515-2539 %V 72 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3525/ %R 10.5802/aif.3525 %G en %F AIF_2022__72_6_2515_0
Wang, Yuan. On the characterization of abelian varieties for log pairs in zero and positive characteristic. Annales de l'Institut Fourier, Volume 72 (2022) no. 6, pp. 2515-2539. doi : 10.5802/aif.3525. https://aif.centre-mersenne.org/articles/10.5802/aif.3525/
[1] -linear maps in algebra and geometry, Commutative algebra, Springer, 2013, pp. 123-205 | Zbl
[2] Orbifolds, special varieties and classification theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-630
[3] Characterization of abelian varieties, Invent. Math., Volume 143 (2001) no. 2, pp. 435-447
[4] On algebraic fiber spaces over varieties of maximal Albanese dimension, Duke Math. J., Volume 111 (2002) no. 1, pp. 159-175
[5] On Ueno’s conjecture K, Math. Ann., Volume 345 (2009) no. 2, pp. 287-296
[6] The subadditivity of the Kodaira dimension for fibrations of relative dimension one in positive characteristics, Math. Res. Lett., Volume 22 (2015) no. 3, pp. 675-696
[7] The -different and a canonical bundle formula, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (2017) no. 3, pp. 1173-1205
[8] Kähler manifold with numerically effective Ricci class, Compos. Math., Volume 89 (1993) no. 2, pp. 217-240
[9] Singularities of theta divisors and the birational geometry of irregular varieties, J. Am. Math. Soc., Volume 10 (1997) no. 1, pp. 243-258
[10] Fundamental algebraic geometry: Grothendieck’s FGA explained, Mathematical Surveys and Monographs, 123, American Mathematical Society, 2005
[11] A derived category approach to generic vanishing, J. Reine Angew. Math., Volume 575 (2004), pp. 173-187
[12] Classification of higher dimensional algebraic varieties, Oberwolfach Seminars, 41, Birkhäuser, 2010
[13] Generic vanishing in characteristic and the characterization of ordinary Abelian varieties, Am. J. Math., Volume 138 (2016) no. 4, pp. 963-998
[14] On the characterization of abelian varieties in characteristic (2017) (https://arxiv.org/abs/1602.01791)
[15] Birational characterization of abelian varieties and ordinary abelian varieties in characteristic (2017) (https://arxiv.org/abs/1703.06631)
[16] Algebraic fiber spaces over abelian varieties: around a recent theorem by Cao and Păun, Local and global methods in algebraic geometry (Contemporary Mathematics), Volume 712, American Mathematical Society, 2018, pp. 143-195
[17] On the three dimensional minimal model program in positive characteristics, J. Am. Math. Soc., Volume 28 (2015) no. 3, pp. 711-744
[18] Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977
[19] Characterization of abelian varieties, Compos. Math., Volume 43 (1981) no. 2, pp. 253-276
[20] Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math., Volume 363 (1985), pp. 1-46
[21] Shafarevich Maps and Automorphic Forms, M. B. Porter Lectures, Princeton University Press, 1995
[22] Singularities of the minimal model program, Cambridge Tracts in Mathematics, 200, Cambridge University Press, 2013
[23] Abelian varieties, Springer, 1983
[24] Topics in absolute anabelian geometry I: generalities, J. Math. Sci., Tokyo, Volume 19 (2012) no. 2, pp. 139-242
[25] Abelian Variety (preliminary version, available on the authors’ websites https://www.math.ru.nl/~bmoonen/research.html#bookabvar)
[26] Duality between and with its application to Picard sheaves, Nagoya Math. J., Volume 81 (1981), pp. 135-175
[27] Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004
[28] GV-sheaves, Fourier–Mukai transform, and generic vanishing, Am. J. Math., Volume 133 (2011) no. 1, pp. 235-271
[29] Semi-positivity in positive characteristics, Ann. Sci. Éc. Norm. Supér., Volume 47 (2014) no. 5, pp. 991-1025
[30] On subadditivity of Kodaira dimension in positive characteristic, J. Algebr. Geom., Volume 27 (2018) no. 1, pp. 21-53
[31] Notes for the workshop on positive characteristic algebraic geometry (2014) (https://arxiv.org/abs/1412.2203v1)
[32] -singularities in families (2013) (https://arxiv.org/abs/1305.1646v1)
[33] On direct images of pluricanonical bundles, Algebra Number Theory, Volume 8 (2014) no. 9, pp. 2273-2295
[34] Projective morphisms according to Kawamata (1983) (unpublished manuscript)
[35] -adjunction, Algebra Number Theory, Volume 3 (2009) no. 8, pp. 907-950
[36] A survey of test ideals (2011) (https://arxiv.org/abs/1104.2000v2)
[37] On generic vanishing for pluricanonical bundles (2016) (https://arxiv.org/abs/1507.03294v4)
[38] Semiample perturbations for log canonical varieties over an -finite field containing an infinite perfect field (2015) (https://arxiv.org/abs/1503.01264v3)
[39] On relative rational chain connectedness of threefolds with anti-big canonical divisors in positive characteristics (2015) (https://arxiv.org/abs/1512.06189)
[40] Rational curves on hypersurfaces, Mich. Math. J., Volume 66 (2017) no. 3, pp. 625-635
[41] On projective manifolds with nef anticanonical bundles, J. Reine Angew. Math., Volume 478 (1996), pp. 57-60
[42] On projective varieties with nef anticanonical divisors, Math. Ann., Volume 332 (2005) no. 3, pp. 697-703
Cited by Sources: