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ON THE CHARACTERIZATION OF ABELIAN
VARIETIES FOR LOG PAIRS IN ZERO

AND POSITIVE CHARACTERISTIC

by Yuan WANG (*)

Abstract. — Let (X, ∆) be a pair. We study how the values of the log Ko-
daira dimension and log plurigenera relates to surjectivity and birationality of the
Albanese map and the Albanese morphism of X in both characteristic 0 and char-
acteristic p > 0. In particular, we generalize some well known results for smooth
varieties in both zero and positive characteristic to varieties with various types of
singularities. Moreover, we show that if X is a normal projective threefold in char-
acteristic p > 0, the coefficients of the components of ∆ are 6 1 and −(KX + ∆) is
semiample, then the Albanese morphism of X is surjective under certain assump-
tions on p and the singularities of the general fibers of the Albanese morphism.
This is a positive characteristic analogue in dimension 3 of a result of Zhang on a
conjecture of Demailly–Peternell–Schneider.
Résumé. — Soit (X, ∆) une paire. Nous étudions comment la dimension de Ko-

daira logarithmique et les plurigenres logarithmiques contrôlent la surjectivité et la
birationalité de l’application d’Albanese ou du morphisme d’Albanese en caracté-
ristique positive ou nulle. En particulier, nous généralisons certains résultats bien
connus pour les variétés lisses à la fois en caractéristique zéro et caractéristique
positive sous certaines variétés avec différents types de singularités. En outre, nous
montrons que si X est une variété projective normale de dimension 3 en carac-
téristique p > 0, les coefficients des composantes de ∆ sont 6 1 et −(KX + ∆)
est semiample, alors le morphisme Albanese de X est surjectif sous des certaines
hypothèses sur p et les singularités des fibres générales du morphisme Albanese.
C’est un analogue en caractéristique positive et en dimension 3 d’un résultat de
Zhang sur une conjecture de Demailly–Peternell–Schneider.

1. Introduction

Over the past few decades, there have been many interesting discoveries
on the birational geometry of the Albanese morphism in both zero and
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positive characteristic, especially in higher dimensions. The theorem [19,
Theorem 1] of Kawamata shows that for a smooth complex projective va-
riety X, if the Kodaira dimension of X is 0 then the Albanese morphism of
X is an algebraic fiber space. Later, Chen and Hacon ([3, 4]) proved that,
assuming the irregularity of X is equal to the dimension of X, then as long
as one of the plurigenera H0(X,OX(mKX)) is 1 for some m > 2, X is
birational to an abelian variety. This solves a conjecture of Kollár. More
recently, Hacon, Patakfalvi and L. Zhang established some positive charac-
teristic analogs of Kawamata’s result for smooth varieties and for possibly
singular varieties of maximal Albanese dimension (see [13, 14, 15]). More
specifically, this result in positive characteristic shows that, for a smooth
projective variety X, if the Frobenius stable Kodaira dimension κS(X) is 0,
then the Albanese morphism of X is surjective; moreover, if the dimension
of X is equal to that of the Albanese variety of X, then X is birational
to an abelian variety. It is then natural to ask whether such results hold
for singular varieties as well. Therefore, we formulate this question in the
language of pairs as follows:
Question 1.1. — For a pair (X,∆) (possibly with some assumption

on the singularities), how do the log Kodaira dimension κ(KX + ∆), the
log plurigenera h0(X,OX(m(KX + ∆))) as well as the dimension of the
Albanese variety of X characterize abelian varieties?
Another motivation originates from the following conjecture of Demailly–

Peternell–Schneider:
Conjecture 1.2 ([8, Conjecture 2]). — Let X be a compact Kähler

manifold with −KX nef. Then the Albanese morphism of X is surjective.
In [41], Q. Zhang confirms Conjecture 1.2 when X is a smooth projective

variety. Moreover he shows that in this case the Albanese morphism of X
has connected fibers. Later Q. Zhang generalized this result to the cases of
log canonical pairs ([42, Corollary 2]). More specifically, he showed that if
X is a projective variety and ∆ is an effective Q-divisor such that the pair
(X,∆) is log canonical and −(KX +∆) is nef, then the Albanese morphism
from any smooth model of X is an algebraic fiber space.
From the characteristic p perspective, the above results by Q. Zhang

induces the following natural question:
Question 1.3. — Does a statement similar to [42, Corollary 2] hold in

positive characteristic?
In this paper, we answer a large part of Question 1.1 in all dimensions

and answer Question 1.3 in dimension 3. The first main result of this paper
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is as follows. It generalizes [3, the main theorem], [4, Corollary 2], [13,
Theorem 1.1.1] and [15, Theorem 0.1] to the cases of log pairs as follows.

Theorem 1.4 (Theorems 3.2 and 4.6). — Let (X,∆) be a projective
pair over an algebraically closed field k. Suppose that one of the following
conditions holds:

(1) char(k) = 0, (X,∆) is klt, h0(X,OX(m(KX + ∆))) = 1 for some
m > 2, and either dim(Alb(X)) = dimX or dim(Alb(X)) = dimX.

(2) char(k) = 0, (X,∆) is log canonical, h0(X,OX(m(KX + ∆))) =
h0(X,OX(2m(KX + ∆))) = 1 for some m > 1, and either
dim(Alb(X)) = dimX or dim(Alb(X)) = dimX.

(3) char(k) = p > 0, κS(X + ∆) = 0, the index of KX + ∆ is not
divisible by p, and dim(Alb(X)) = dimX.

Then X is birational to an abelian variety.

Note that unlike the smooth case, in the log setting the converse of
Theorem 1.4 can easily fail. For example we can take X to be an abelian
variety and ∆ a sufficiently ample divisor with small coefficient. Alb(X)
and Alb(X) in Theorem 1.4 means the Albanese variety constructed from
the Albanese morphism and the Albanese map respectively, and they are
different in general for singular varieties (see Section 2). Theorem 1.4 is
sharp in the sense that it does not work without the condition that (X,∆)
is lc, as is illustrated by Example 3.3.
To prove part (3), we use the same techniques as in [13, Theorem 1.1.1]

and [15, Theorem 0.1]. Nevertheless, part (3) is interesting in the sense
that to the best of the author’s knowledge, there is no result of this kind
in characteristic 0.

In the course of establishing part (1), we also prove the following result
on the structure of the Albanese map and Albanese morphism which gen-
eralizes [19, Theorem 1] beyond the log canonical case. Although it turns
out that Theorem 1.4(1) can be proven without using this result, it might
still be of independent interest.

Theorem 1.5 (Theorem 4.4). — Let X be a normal complex projective
variety, (X,∆) a pair such that κ(KX +∆) = 0. Suppose that the Albanese
map aX : X 99K Alb(X) (respectively the Albanese morphism aX : X →
Alb(X)) of X is not an algebraic fiber space. Then the non-lc locus of
(X,∆) dominates aX(X) (respectively aX(X)).

An essential tool to prove Theorem 1.4(1), (2) and Theorem 1.5 is the
generic vanishing for log pairs developed by Popa and Schnell ([33]), as well
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as the theorem on the structure of cohomologiy support loci by Shibata
([37]).
We next present our positive characteristic analog of [42, Corollary 2] in

dimension 3 as follows. The proof of this result is inspired by some ideas
in the previous paper [39] of the author.

Theorem 1.6 (Theorem 3.5). — LetX be a normal projective threefold
over an algebraically closed field k of characteristic p > 0, and (X,∆) a pair
such that the coefficients of the components of ∆ are 6 1 and −(KX + ∆)
is semiample. Suppose that

(1) p > max{ 2
δ , ibpf(−(KX + ∆))}, where δ is the minimal non-zero

coefficient of ∆.
(2) There is a fiber X0 of the Albanese morphism aX of X such that

(X0,∆|X0) is normal and sharply F -pure.
Then aX is surjective.

Here ibpf(−(KX + ∆)) is the base-point-free index of −(KX + ∆), which
is the smallest integer m > 0 such that −m(KX + ∆) is base point free
(cf. Definition 3.4). In particular if we assume that ∆ = 0 and |−KX | is
base point free, then condition 1 is automatically satisfied, and in that case,
Theorem 1.6 works in small characteristics as well.
It is worth noting that Theorems 1.4 and 1.5 as well as [42, Corollary 2]

does not hold in general if (X,∆) is not log canonical, even in dimension 2,
as is shown in Example 3.3. The example is a projective cone S over a
non-hyperelliptic curve of genus > 2 such that KS ∼lin 0, so obviously
its Albanese map of S is not surjective (but the Albanese morphism of S
is). Observe that in this case the vertex of S is its non-lc center, and the
exceptional divisor over the vertex dominates the image of the Albanese
map of S, which is the image of the curve in its Jacobian.
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2. Notations and preliminaries

Throughout the article, we work over an algebraically closed field k. As
we will consider the cases in both characteristic 0 and characteristic p > 0,
we do not make any restriction on the characteristic of k in advance.

We set up the following conventions.
(1) For definitions related to singularities in birational geometry (e.g.

pairs, discrepancy, klt, lc) we follow [12, Part I, Chapter 3].
(2) For a morphism f : X → Y of varieties we use both FX/Y and Ff

to denote a general fiber of f , and we say that f is an algebraic
fiber space if it is surjective and has connected fibers.

2.1. Albanese variety, Albanese map, Albanese morphism,
derived categories, Fourier–Mukai transform and generic

vanishing

We first present the definitions for the Albanese map and the Albanese
morphism. These can be found in [23] and [10].

Theorem 2.1. — Let X be a variety over k. There exists an abelian
variety Alb(X) together with a rational map aX : X 99K Alb(X) such that

• aX(X) generates Alb(X), i.e. aX(X) is not contained in a translate
of any proper abelian subvariety of Alb(X).

• For every rational map f : X 99K A from X to an abelian variety
A, there exists a homomorphism g : Alb(X) → A and a constant
a ∈ A such that f = g ◦ aX + a.

We call aX the Albanese map of X and Alb(X) the Albanese variety via
the Albanese map of X.

TOME 72 (2022), FASCICULE 6
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Theorem 2.2. — Let X be a normal projective variety over k. There
exists an abelian variety Alb(X) together with a morphism aX : X →
Alb(X) such that

• aX(X) generates Alb(X), i.e. aX(X) is not contained in a translate
of any proper abelian subvariety of Alb(X).

• For every morphism f : X → A from X to an abelian variety A,
there exists a homomorphism h : Alb(X)→ A and a constant b ∈ A
such that f = h ◦ aX + b.

We call aX the Albanese morphism of X and Alb(X) the Albanese variety
via the Albanese morphism of X.

Throughout the article, unless otherwise stated, for a normal projective
variety X we use aX : X 99K Alb(X) (aX : X → Alb(X)) to denote the
Albanese map (Albanese moprhism) of X. We refer to [23, Chapter II, §3]
and [10, Chapter 9] for more details about the Albanese map and the Al-
banese morphism respectively. The Albanese map and the Albanese mor-
phism agree in characteristic 0 for normal proper varieties with rational
singularities (see [34, Proposition 2.3] or [20, Lemma 8.1]). But they do not
agree in general, as is illustrated by the following

Example 2.3. — Let X be a projective cone over any curve C of genus
> 1. Since X is covered by rational curves passing through the vertex and
the Albanese morphism contracts all the rational curves, we see that the
Albanese morphism of X has to be a morphism from X to a point. On the
other hand, let X ′ be the blow-up of X at the vertex, ν : X 99K X ′ the
natural birational map, p : X ′ → C the natural P1 fibration from X ′ to
C and j : C ↪→ Jac(C) the embedding from C to its Jacobian. Then the
Albanese map of X is j ◦ p ◦ ν, whereas the Albanese morphism (and also
the Albanese map) of X ′ is j ◦ p.

Remark 2.4. — Example 2.3 is also an example of the fact that the Al-
banese variety via the Albanese map is a birational invariant, but the Al-
banese variety via the Albanese morphism is not. Still, by definition, for
a normal projective variety X, there exists a surjective homomorphism α

from Alb(X) to Alb(X) such that aX = α ◦ aX .

For convenience, in characteristic 0 we say that the Albanese map of X
is an algebraic fiber space if the Albanese morphism of any smooth model
of X is an algebraic fiber space.
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Definition 2.5. — For an abelian variety A and a coherent sheaf F on
A, we define V i(F), the i-th cohomology support locus, as

V i(F) = {P ∈ Pic0(A) |hi(A,F ⊗ P ) > 0}.

F is called a GV-sheaf, if codimPic0(A)V
i(F) > i for all i > 0.

Theorem 2.6 ([11, Corollary 3.2(1)]). — Let F be a GV-sheaf on an
abelian variety A. For any P ∈ Pic0(A), if i > 0 and Hi(A,F ⊗ P ) = 0,
then Hi+1(A,F ⊗ P ) = 0.

Theorem 2.7 ([33, Variant 5.5]). — Let f : X → A be a morphism
from a normal complex projective variety to an abelian variety. If (X,∆)
is an lc pair and k > 0 is any integer such that k(KX + ∆) is Cartier, then
f∗OX(k(KX + ∆)) is a GV-sheaf.

For a normal projective variety of dimension n, we denote by D(X) the
derived category of OX modules, and denote by Dqc(X) the full subcat-
egory of D(X) consisting of bounded complexes with quasi-coherent co-
homologies. We denote the dualizing complex of X by ω·X and define the
dualizing functor DX by DX(F ) := RHom(F, ω·X [n]) for any F ∈ Dqc(X).

Definition 2.8 ([26]). — Let A be an abelian variety and Â its dual
abelian variety. Let pA : A × Â → A and pÂ : A × Â → Â be the natural
projection morphisms and P the Poincaré line bundle on A× Â. We define
the Fourier–Mukai transform RŜ : Dqc(A)→ Dqc(Â) and RS : Dqc(Â)→
Dqc(A) with respect to the kernel P by

RŜ( · ) = RpÂ,∗(p
∗
A( · )⊗ P), RS( · ) = RpA,∗(p∗Â( · )⊗ P).

For an abelian variety A of dimension g, RgŜ gives an equivalence in
categories between unipotent vector bundles on A and the category of Ar-
tinian OÂ,0̂-modules of finite length on Â (see [26, Example 2.9] and [5,
Section 1.2]).

Lemma 2.9. — Suppose that char(k) = 0. Let (X,∆) be a log canonical
pair and f : X → A an algebraic fiber space from X to an abelian variety
A. If κ(KFf

+ ∆|Ff
) > 0, then κ(KX + ∆) > 0.

Proof. — If κ(KFf
+ ∆|Ff

) > 0, then H0(Ff ,OFf
(m(KFf

+ ∆|Ff
))) 6=

0 for a sufficiently divisible m such that m(KX + ∆) is Cartier. So by
cohomology and base change we have that f∗(OX(m(KX +∆))) 6= 0. Next,
by Theorem 2.7 we know that f∗OX(m(KX + ∆)) is a GV sheaf, so by [16,
Lemma 7.4], V 0(f∗OX(m(KX + ∆))) 6= ∅. On the other hand, by [37,
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Theorem 1.3], V 0(f∗OX(m(KX+∆))) is a finite union of torsion translates
of abelian subvarieties of Pic0(A). In particular,

0 6= H0(A, f∗OX(m(KX + ∆))⊗ P ) = H0(X,OX(m(KX + ∆))⊗ f∗P )

for some torsion elements P ∈ Pic0(A). This implies that

H0(X,OX(m′(KX + ∆))) 6= 0

for sufficiently divisible m′, hence κ(KX + ∆) > 0. �

2.2. F -singularities

We recall the definitions of some basic concepts of F -singularity. We refer
to [7, 17, 31, 36] for more details. Let k be of characteristic p > 0 and X a
normal projective variety over k. Let (X,∆) be a pair such that the index
of KX + ∆ is not divisible by p. Let

Le,∆ := OX((1− pe)(KX + ∆))

where e is a positive integer where e is a positive integer such that (pe −
1)(KX + ∆) is integral. Then there is a canonically determined morphism
φe : F e∗Le,∆ → OX (see [17, Section 2.3]). We define the non-F -pure ideal
σ(X,∆) (the test ideal τ(X,∆)) to be the unique biggest (smallest) ideal
J ⊆ OX such that (φe ◦ F eX)(J · Le,∆) = J for any e. We say that (X,∆)
is sharply F -pure (strongly F -regular) if σ(X,∆) = OX (τ(X,∆) = OX).
For an integral subscheme Z ⊆ X with generic point ηZ , we say that Z is
an F -pure center of (X,∆) if

• ∆ is effective at ηZ ,
• (X,∆) is F -pure at ηZ , and
• φ(F e∗ IZ · Le,∆) · OX,ηZ

⊆ IZ · OX,ηZ
.

Lemma 2.10. — Let (X,∆) be a sharply F -pure pair such that the
index of (KX + ∆) is not divisible by p. Let D be a divisor such that D
does not contain any F -pure center of (X,∆). Then there is a positive
integer n such that (X,∆ + 1

nD) is sharply F -pure.

Proof. — We first construct a stratification for the F -pure centers of
(X,∆). Let W ∗i (X,∆) be the union of 6 i-dimensional F -pure centers of
(X,∆). Let

Wi(X,∆) := W ∗i (X,∆) \W ∗i−1(X,∆)
and W k

i (X,∆) the irreducible components of Wi(X,∆). Then X is a dis-
joint union of W k

i (X,∆), and each W k
i (X,∆) is a minimal F -pure center
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of (X,∆). In particular W k
i (X,∆) is normal. For each W k

i (X,∆), by [35,
(i) and (iv) of Main Theorem] there is an effective divisor ∆Wk

i
(X,∆) on

W k
i (X,∆) such that (KX + ∆)|Wk

i
(X,∆) = KWk

i
(X,∆) + ∆Wk

i
(X,∆) and

(W k
i (X,∆),∆Wk

i
(X,∆)) is strongly F -regular. Then there is a positive in-

teger nki > 0 such that (W k
i (X,∆),∆Wk

i
(X,∆) + 1

nk
i

D|Wk
i

(X,∆)) is strongly
F -regular. Hence by [35, (iii) of Main Theorem], (X,∆ + 1

nk
i

D) is sharply
F -pure near W k

i (X,∆). Finally let n := max{nki } and we are done. �

Let f : X → Y be a morphism between normal projective varieties and
M a line bundle on X. We define the subsheaf S0f∗(σ(X,∆)⊗M) ⊆ f∗M
as

S0f∗(σ(X,∆)⊗M) :=
⋂
g>0

Image(F ge∗ f∗(Lge,∆ ⊗Mpge

) Φge−−→ f∗M)(2.1)

where Φge is induced by φge using the projection formula and the commu-
tativity of F and f . In the case Y = Spec k, f∗( · ) is the same as H0( · ),
and in this case we use S0(X,∆;M) to denote S0f∗(σ(X,∆)⊗M). Since
H0(X,M) is finite dimensional, we have

S0(X,∆;M) = Image(H0(X,Fme∗ (Lme,∆ ⊗Mpme

)) Φme−−−→ H0(X,M))

for some m� 0.
The following definition is analogous to that in [13, 4.1].

Definition 2.11. — Let (X,∆) be a pair and r > 0 an integer such
that r(KX + ∆) is Cartier. The Frobenius stable Kodaira dimension of
(X,∆) is defined as

κS(KX + ∆) := max
{
k

∣∣∣∣dimS0(X,∆;OX(mr(KX + ∆))) = O(mk)
for m sufficiently divisible

}
.

It is easy to see that κS(KX + ∆) is independent of r.

2.3. A canonical bundle formula in characteristic p

The following theorem is a slight modification of [39, Theorem 4.3], which
is a canonical bundle formula for morphism from a threefold to a surface
whose general fibers are P1. The same proof in [39] works.

Theorem 2.12. — Let f : X → Y be a proper surjective morphism,
where X is a normal threefold and Y is a normal surface over an alge-
braically closed field k of characteristic p > 0. Assume that Q =

∑
iQi

is a divisor on Y such that f is smooth over (Y − Supp(Q)) with fibers

TOME 72 (2022), FASCICULE 6
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isomorphic to P1. Let D be an effective Q-divisor on X, which satisfies the
following conditions:

(1) (X,D) is lc on a general fiber of f .
(2) Suppose D = Dh + Dv where Dh is the horizontal part and Dv

is the vertical part of D. Then p = char(k) > 2
δ , where δ is the

minimum non-zero coefficient of Dh.
(3) KX +D ∼Q f

∗(KY +M) for some Q-Cartier divisor M on Y .
Then M is Q-linearly equivalent to an effective Q-divisor.

3. Results in characteristic p > 0

In this section we first prove the following result about the surjectivity
of Albanese morphism in positive characteristic.

Proposition 3.1. — Let (X,∆) be a projective pair in characteristic
p > 0. Assume that κS(KX + ∆) = 0 and the index of KX + ∆ is not
divisible by p. Then the Albanese morphism of X is surjective.

Proof. — For convenience, in this proof we use a : X → A to denote
the Albanese morphism of X. κS(KX + ∆) = 0 implies that there is a
positive integer r such that r(KX+∆) is integral and S0(X,∆;OX(r(KX+
∆))) 6= 0. By [13, Lemma 4.1.3] we know that κ(KX + ∆) = 0. We fix an
e > 0 such that pe − 1 is divisible by the index of KX + ∆. Let 0 6= f ∈
H0(X,OX(r(KX+∆))) = S0(X,∆;OX(r(KX+∆))), then for anym� 0,
the section f is in the image of the homomorphism

Ψm
∆ : H0(X,Fme∗ OX((pmer + (1− pme))(KX + ∆)))

−→ H0(X,OX(r(KX + ∆))),

which is the H0 of the trace map

Fme∗ OX((1− pme)(KX + ∆)) −→ OX

twisted by OX(r(KX + ∆)). Since κ(KX + ∆) = 0, we must have f =
Ψm

∆(αfpme+ 1−pme

r ) for some α ∈ k∗. Let G ∈ |r(KX + ∆)| be the unique
element corresponding to f and D := r−1

r G and consider the homomor-
phism

Φm∆+D : H0(X,Fme∗ OX(pmer(KX + ∆) + (1− pme)(KX + ∆ +D)))

−→ H0(X,OX(r(KX + ∆))),

ANNALES DE L’INSTITUT FOURIER
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which is the H0 of the trace map

Fme∗ OX((1− pme)(KX + ∆ +D)) −→ OX
twisted by OX(r(KX + ∆)). Note that S0(X,∆ + D;OX(r(KX + ∆)))
is given by the image of Φm∆+D for any m � 0. We claim that 0 6= f ∈
S0(X,∆+D;OX(r(KX+∆))). To see this, note that Φm∆+D factors through
Ψm

∆ and the inclusion

ι : H0(X,Fme∗ OX(pmer(KX + ∆) + (1− pme)(KX + ∆ +D)))

−→ H0(X,Fme∗ OX((pmer + (1− pme)(KX + ∆))))

is induced by multiplication by the section f r−1
r (pme−1). Since f generates

H0(X,OX(pmer(KX + ∆) + (1− pme)(KX + ∆ +D)))

= H0(X,OX(r(KX + ∆))),

it follows that fpme+ 1−pme

r = f ·f r−1
r (pme−1) is in the image of the inclusion

ι above and hence f is in the image of Φm∆+D.
Then the natural inclusion (see [13, Lemma 2.2.2])

S0(X,∆ +D;OX(r(KX + ∆))) ⊆ H0(A,Ω0) ⊆ H0(X,OX(r(KX + ∆)))

are equalities, where Ω0 = S0a∗(σ(X,∆ + D) ⊗ OX(r(KX + ∆))). We
consider the following diagram

F
(m+1)e
∗ a∗OX(r(KX + ∆)) Fme∗ a∗OX(r(KX + ∆))

F
(m+1)e
∗ Ω0 Fme∗ Ω0

a∗F
(m+1)e
∗ OX(r(KX + ∆)) a∗F

me
∗ OX(r(KX + ∆))

= =

where the bottom two horizontal arrows are from [30, Lemma 2.6]. After
applying H0(A, · ) we get that the bottom row is an isomorphism as the
stable image of these maps is exactly S0(X,∆ + D;OX(r(KX + ∆))) =
H0(X,OX(r(KX+∆))), which is proved above. Therefore the natural maps

H0(A,F (m+1)e
∗ Ω0) −→ H0(A,Fme∗ Ω0)

and

H0(X,F (m+1)e
∗ OX(r(KX + ∆))) −→ H0(X,Fme∗ OX(r(KX + ∆)))
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are isomorphisms.
Now by assumption there is a unique G ∈ |r(KX + ∆)|. We use the

following notation

Ωm := Fme∗ S0a∗(σ(X,∆ +D)⊗OX(r(KX + ∆))) and Ω = lim←−Ωm.

It is easy to see that r|(pme − 1) for every m > 0. According to [30,
Lemma 2.6] and [1, Lemma 8.1.4] we know that Ω(m+1) → Ωm is sur-
jective for every m > 0. Further by the above argument, S0a∗(σ(X,∆ +
D)⊗OX(r(KX + ∆))) 6= 0. So for every m, Ωm 6= 0, hence Ω 6= 0.
Next we claim that since κ(KX + ∆) = 0, there is a neighborhoold U of

the origin of Â such that

V 0(OX(r(KX + ∆))) ∩ U = 0Â.

Let g := dimA. Suppose that this is not the case and let T ∈ Â be a
positive dimensional irreducible component of V 0(OX(r(KX+∆))) through
the origin. Let ξ : T g+1 → Â be the natural morphism. For dimensional
reason, every fiber of ξ is of positive dimension. Moreover since 0 ∈ T , 0 is
in the image of ξ. Consider for (P1, . . . , Pg+1) ∈ ξ−1(OA) the maps

H0(X,OX(r(KX + ∆))⊗ a∗P1)⊗ · · · ⊗H0(X,OX(r(KX + ∆))⊗ a∗Pg+1)

−→ H0(X,OX((g + 1)r(KX + ∆))).

Since h0(X,OX((g + 1)r(KX + ∆))) = 1, there are only finitely many
choices for the divisors in |r(KX+∆)+a∗Pi| for Pi ∈ pi(ξ−1(OA)). However
there exists an i such that pi(ξ−1(OA)) is an infinite set, and we also have
(Pic0(X))red = Pic0(A) = Â (see [24, Proposition A.6]). In particular the
map Pic0(A) → Pic0(X) is injective. So we get a contradiction, hence the
claim holds.
Since H0(A,S0aX,∗(σ(X,∆ + D) ⊗ OX(r(KX + ∆))) ⊗ P ) ⊆ H0(X,

OX(r(KX + ∆)) ⊗ a∗P ) we have that H0(A,Ω0 ⊗ P ) is zero for every
OA 6= P ∈ U . Moreover H0(A,Ω0) 6= 0 as shown above, so by [13, Corol-
lary 3.2.1] we have that H0(Λ0) is Artinian in a neighborhood of the origin
and H0(Λ0)⊗ k(0) 6= 0, where

Λm := RŜ(DA(Ωm)).

Therefore we can write H0(Λ0) as H0(Λ0) = C0 ⊕ B0, where B0 is Ar-
tinian and supported at 0 and 0 /∈ Supp C0. This induces a similar decom-
position Cm ⊕ Bm of H0(Λm) ∼= V ∗H0(Λ0), where V is the Verschiebung
isogeny (see [25, (5.18) Definition]). Furthermore, the morphismH0(Λm)→
H0(Λm+1) is the direct sum of morphisms Cm → Cm+1 and Bm → Bm+1.

ANNALES DE L’INSTITUT FOURIER



CHARACTERIZATION OF ABELIAN VARIETIES FOR LOG PAIRS 2527

Hence

Λ := lim−→Λm = (lim−→Cm)⊕ (lim−→Bm),

where Bm is Artinian for every m > 0.
Now by [13, Corollary 3.2.1] we have Hm ⊗ k(0) ∼= Bm ⊗ k(0) ∼=

H0(A,Fm∗ Ω0)∨, so the morphism Bm⊗k(0)→ Bm+1⊗k(0) can be identified
with H0(A,Fm∗ Ω0)∨ → H0(A,Fm+1

∗ Ω0)∨. However by the above argument
the latter morphism is an isomorphism, and H0(A,Ω0) 6= 0. Therefore we
know that lim−→(Bm⊗ k(0)), hence lim−→Bm, is nonzero. Finally by [13, Corol-
lary 3.2.3] we are done. �

Proposition 3.1 then implies that

Theorem 3.2. — Let (X,∆) be a projective pair in characteristic p > 0.
Assume that κS(X + ∆) = 0, dim(Alb(X)) = dimX and the index of
KX + ∆ is not divisible by p. Then X is birational to an ordinary abelian
variety.

Proof. — By Proposition 3.1, aX is surjective, hence generically finite.
By [15, Proposition 1.4], aX is separable. So we have KX = a∗XKAlb(X)+R,
where R is an effective Q-divisor supported on the ramification locus of aX .
This implies that 0 = κS(KX+∆) = κ(KX+∆) > κ(KX) > κ(KAlb(X)) =
0 (note that we have proved κ(KX + ∆) = κS(KX + ∆) = 0 in the proof of
Proposition 3.1), which forces that κ(X) = 0, and by [14, Theorem 0.1(2)]
we are done. �

The second main theorem in this section is a characteristic p analog
of [42, Corollary 2] in dimension 3. Before we present that we would like
to point out that [42, Corollary 2] does not hold without the assumption
that (X,D) is lc. This is illustrated by the following

Example 3.3. — Let C be a smooth non-hyperelliptic curve of genus
g > 2. By [18, Chapter IV, Proposition 5.2], KC is very ample. Let C ↪→ Pr
be the embedding induced by |KC |. Let S be the projective cone over C,
ν : S′ → S the blow-up at the vertex of S, π : S′ → C the induced
morphism and E the exceptional divisor of ν. We then have that E2 =
−degKC = 2− 2g, and we can write

ν∗KS = KS′ + λE

for some λ. By adjunction formula we see that

2g − 2 = (KS′ + E) · E = (1− λ)E2 = (λ− 1)(2g − 2),
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so λ = 2. If we denote a fiber of π by f , then

h0(S,OS(KS)) = h0(S′, ν∗OS(KS)) = h0(S′,OS′(KS′ + 2E))

= h0(S′,OS′(−2E + (2g − 2− degKC)f + 2E)) = h0(S′,OS′) = 1,

where the third equality is implied by the fact that KS′ ∼lin −2E + (2g −
2 − degKC)f as KC is very ample. In the above calculation we actually
get that ν∗OS(KS) = OS′ , Hence KS ∼lin 0. In particular −KS is nef and
κ(S) = 0. On the other hand, by the construction of S we know that its
Albanese map is not surjective. When g = 2, (S′, 2E) provides a counter-
example to Theorem 1.4 and 1.5 without the log canonical assumption. We
also note that by the argument in Example 2.3, the Albanese morphism of
S is the morphism from S to a point. In particular it is an algebraic fiber
space, hence surjective.

We now show the second main theorem. For convenience we give the
following definition.

Definition 3.4. — For a Q-Cartier divisorD on a projective varietyX,
we define the base-point-free index of D to be the smallest number m > 0
such that |mD| is base point free and denote it as ibpf(D).

Theorem 3.5. — Let X be a normal projective threefold over an al-
gebraically closed field k of characteristic p > 0, and (X,∆) a pair such
that the coefficients of the components of ∆ are 6 1 and −(KX + ∆) is
semiample. Suppose that

(1) p > max{ 2
δ , ibpf(−(KX + ∆))}, where δ is the minimal non-zero

coefficient of ∆.
(2) There is a fiber X0 of the Albanese morphism aX of X such that

X0 is normal and (X0,∆|X0) is sharply F -pure.
Then aX is surjective.

Lemma 3.6. — Let X be a normal projective surface. Suppose that X
has at most log canonical singularities and κ(X) = 0. Then the Albanese
map (hence the Albanese morphism) of X is surjective.

Proof. — Let µ : X ′ → X be a minimal resolution of singularities for X,
then we have κ(X ′) 6 κ(X).
If κ(X ′) = 0 then this is straight forward by the Enriques–Kodaira clas-

sification.
If κ(X ′) = −∞ then there is a birational morphism g : X ′ → X ′′ where

X ′′ is a ruled surface over a curve C with a P1 fibration π : X ′′ → C. We
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can write
KX′ = µ∗KX −

∑
i

aiEi = g∗KX′′ +
∑
j

bjFj

where ai, bj > 0 and Ei and Fj are exceptional curves on X ′ for µ and g
respectively. By assumption we have

0 6= H0(X,OX(mKX)) = H0(X ′, µ∗OX(mKX))

= H0
(
X ′,OX′

(
m

(
KX′ +

∑
i

aiEi

)))
= H0

(
X ′,OX′

(
m

(
g∗KX′′ +

∑
j

bjFj +
∑
i

aiEi

)))

⊆ H0
(
X ′′,OX′′

(
m

(
KX′′ +

∑
i

aig∗Ei

)))
for any sufficiently divisible m. Since X ′′ is a ruled surface, there must be
an i such that g∗Ei dominates the base curve C. Since X is log canonical,
by [22, 3.30] the genus of Ei, hence that of C, is at most 1. In particular
C is surjective onto its Jacobian. So according to the structure of aX′′ :
X ′′ → Alb(X ′′) explained in Example 2.3 we are done. �

Proof of Theorem 3.5. — Let X aX−−→ Z = aX(X) ⊆ Alb(X) be the
Albanese morphism of X. We denote the Stein factorization of aX by

X
p−→ Y

q−→ Z.

We can assume that Y is normal. As is shown in Lemma 4.5 below, it suffices
to show that the Albanese morphism of Y is surjective. We consider the
following cases according to the dimension of Y (or equivalently, that of Z).

Case 1. — If dimY = 0, this is trivial.
Case 2. — If dimY = 1, then Y is smooth. Since |−m(KX + ∆)| is

base point free, we can choose a suitable prime divisor D ∼lin −m(KX +
∆) such that p > m and D|X0 does not contain any F -pure center of
(X0,∆|X0). Then by Lemma 2.10 there is a positive integer n such that
(X0,∆|X0 + 1

nD|X0) is sharply F -pure. Then by applying [32, Theorem B]
on the projection X0 × PH0(X0,OX0(D|X0)) → PH0(X0,OX0(D|X0)) we
know that there is a positive integer n such that (X0,∆|X0 + 1

nDX0) is
sharply F -pure for any divisor DX0 ∈ |D|X0 | in a neighborhood of D|X0 .
In particular the pair(

X0,∆|X0 + 1
mn(dimX0 + 1)

(
D1
X0

+ · · ·+DdimX0+1
X0

))
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is sharply F -pure for any Di
X0
∈ |D|X0 | in a neighborhood of D|X0 . So

by using the techniques in [38, Idea of Theorem 1] we get that there is a
Q-divisor D′ ∼Q

1
mD such that (X0, (∆ +D′)|X0) is sharply F -pure. Since

X0 is normal it is S2, G1 and regular in codimension 1. Moreover we have
KX + ∆ +D′ ∼Q KX + ∆ + 1

mD ∼Q 0. So by [29, Theorem 3.10] we have
that KX/Y + ∆ +D′ is nef, hence −KY is nef. Since Z generates Alb(X),
Y and Z have to be elliptic curves and we are done.
Case 3. — If dimY = 2, we denote a general fiber of p by F . By as-

sumption F is a smooth curve. We observe that κ(Y ) > 0, otherwise Y ,
hence Z, is covered by rational curves and this would be a contradiction to
the construction that Z ⊆ Alb(X). We consider the following subcases.

Subcase 3.1. — If g(F ) = 0, then F ∼= P1. In this case we can choose
the prime divisor D ∼lin −m(KX + ∆) such that (F, (∆ + 1

mD)|F ) is lc.
By Theorem 2.12 there is an effective Q-divisor M on Y such that

0 ∼Q KX + ∆ + 1
m
D ∼Q p

∗(KY +M),

hence KY + M ∼Q 0 and in particular κ(Y ) 6 0. Let ν : Y ′ → Y be a
minimal resolution of Y . If M 6= 0 or Y has non-canonical singularity, then
κ(Y ′) < 0 and Y ′ is birationally ruled. This is a contradiction to the fact
that Y has a finite map q : Y → Z ⊆ Alb(X) onto its image. Therefore Y
has canonical singularities and by Lemma 3.6 we are done.
Subcase 3.2. — If g(F ) > 1, then after possibly doing a base change and

a resolution, WLOG we can assume that both X and Y are smooth. Then
by [6, 3.2] we have κ(ωX/Y ) > 0. This together with κ(X) 6 0 implies that
κ(Y ) 6 0. Again by the argument in Subcase 3.1 and Lemma 3.6 we are
done.

Case 4. — If dimY = 3 then the aX is generically finite. Moreover since
X0 is normal it is reduced, hence aX is separable. So by [14, Theorem 0.2]
we are done. �

4. Results in characteristic 0

In this section we work in characteristic 0.

Definition 4.1. — Let (X,∆) be a pair and a : X 99K Y a rational
map from X to another variety Y . We say that the non-lc locus of (X,∆)
dominates a(X) if there is a divisor E of discrepancy < −1 that dominates
a(X).

ANNALES DE L’INSTITUT FOURIER



CHARACTERIZATION OF ABELIAN VARIETIES FOR LOG PAIRS 2531

Lemma 4.2. — Let f : X → Z be a morphism of varieties. Let E be a
divisor over X and g : Z ′ → Z a birational morphism. Then E dominates
Z if and only if E dominates Z ′.

Proof. — Obvious. �

Proposition 4.3. — Let (X,∆) be a projective pair. If one of the fol-
lowing conditions holds:

(1) (X,∆) is lc, h0(X,OX(m(KX+∆))) = h0(X,OX(2m(KX+∆))) =
1 for some integer m > 1.

(2) (X,∆) is klt, h0(X,OX(m(KX + ∆))) = 1 for some integer m > 2.

then both the Albanese map aX : X 99K Alb(X) and the Albanese mor-
phism aX : X 99K Alb(X) of X are surjective.

Proof. — We first reduce Proposition 4.3 to the case of the Albanese
map. Assume that Proposition 4.3 holds for Albanese maps. We take a log
resolution for (X,∆) and denote it by µ : X ′ → X. Then aX′ = aX′ is a
morphism from X ′ to Alb(X). We can write

KX′ + µ−1
∗ ∆ = µ∗(KX + ∆) + E − F,

where E and F are effective exceptional Q-divisors on X ′ which have no
common component. Clearly, for every m > 1, (X ′, µ−1

∗ ∆+F + 1
m (dmEe−

mE)) has the same type of singularity as (S,∆), and

h0(X,OX(m(KX + ∆))) = h0(X ′,OX′(µ∗(m(KX + ∆)) + dmEe))

= h0
(
X ′,OX′

(
m

(
KX′ + µ−1

∗ ∆ + F + 1
m

(dmEe −mE)
)))

.

So if aX′ , hence aX , is surjective, then by Remark 2.4, aX = α ◦ aX is
surjective.
Next, we prove (1). By selecting a proper birational model for (X,∆),

we can assume that (X,∆) is log smooth, and in particular the Albanese
map of X is a morphism. We first show that OX is an isolated point of
V 0(OX(m(KX + ∆))). The proof of this fact is the same as [9, Propo-
sition 2.1] (cf. [21, Theorem 17.10]). Since h0(X,OX(m(KX + ∆))) = 1,
OX lies in V 0(OX(m(KX + ∆))). Suppose that it is not an isolated point.
By [37, Theorem 1.3], V 0(OX(m(KX + ∆))) contains a subgroup S of pos-
itive dimension, and therefore for each P ∈ S the image of

(4.1) H0(X,OX(m(KX + ∆))⊗ P )⊗H0(X,OX(m(KX + ∆))⊗ P∨)

−→ H0(X,OX(2m(KX + ∆)))
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is non-zero. Since a given divisor in |2m(KX + ∆)| has only finitely may ir-
reducible components, it follows that as y varies over the positive dimesional
torus S, the image of (4.1) must vary as well. Therefore h0(X,OX(2m(KX+
∆))) > 1, a contradiction.

By Theorem 2.7, aX,∗OX(m(KX + ∆)) is a GV-sheaf. For convenience,
for the rest of the proof we denote A := Alb(X), g := dimA, and denote
aX,∗OX(m(KX+∆)) by F . OX being an isolated point of V 0(OX(m(KX+
∆))) implies that there is a summand of R0Ŝ(F) supported only at the
origin 0̂ of Â. We have that

RŜ ◦DA(F) = R0Ŝ ◦DA(F) = (−1Â)∗((DÂ ◦R
0Ŝ(F))[−g]),

where the first equality is by [11, Theorem 1.2] and [28, Theorem A], and the
second equality is by [26, (3.8)]. So the sheaf RŜ(DA(F)) has a summand
which is supported only at the origin 0̂. Then by [26, Example 2.9] (note
also that ωA ∼= OA), there is a summand of F∨ which is a unipotent vector
bundle. Therefore by the definition of F , aX is surjective.
Now we prove (2). By (1) (or by Theorem 4.4), we can assume that

κ(KX + ∆) > 0. We construct a commutative diagram following [4, The-
orem 1]. Let f : X → V be a birational model of the Iitaka fibration for
KX + ∆. As explained in the last paragraph, we can assume that (X,∆)
is log smooth. Since X is smooth now, the Albanese map of X is a mor-
phism which we denote by aX : X → Alb(X). We construct the following
diagram:

V W S

X Z Alb(X)

h

j

i

f p
g

aX

Here S and p are defined in the following way. Denote the general fiber
of f by Xf . We then have that (Xf ,∆|Xf

) is klt (for a proof see [40,
Lemma 2.7]). So by (1), the Albanese morphism of Xf is surjective. In
particular, aX(Xf ) is some translation of an abelian subvariety of Alb(X),
which we denote by K. Then we define S := Alb(X)/K and define p
to be the quotient morphism. Now we have a rational map from V to
S, and we can arrange the birational model of the Iitaka fibration of X
so that we actually have a morphism from V to S. Define Z := aX(X),
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W := p(aX(X)), i and j the natural inclusions. Again, we can arrange f
birationally such that X and V admit morphisms to Z andW respectively.
For the rest of the proof we assume that m = 2. The proof proceeds

analogously for any m > 2.
We fix a positive integerm1 such that dim(|m1(KX+∆)|) > 0. Replacing

X by an appropriate birational model, we may assume that the linear
system |m1(KX + ∆)| has base locus of pure codimension 1. For general
member B1 ∈ |m1(KX + ∆)| we write

B1 = D1 +
r∑
i=1

aiEi

where D1 denotes the free part and
∑r
i=1 aiEi denotes the base divisor.

Recall that the Iitaka fibration of X with respect to KX +∆ is constructed
as the morphism induced by the base-point-free part |M | of |m(KX + ∆)|
for some m. In particular, there is an integer m2 > 0 and an ample divisor
A on W such that |m2(KX + ∆) − g∗A| is not empty. We fix such an m2
and choose a B2 ∈ |m2(KX + ∆)− g∗A|. We can similarly write

B2 = D2 +
s∑
j=1

bjFj

where D2 is the free part and {Fj} are the base divisors. We can move
D1 and D2 such that D1,2 do not coincide with Ei, Fj or any component
of ∆. By choosing a birational model of X properly, we may assume that
Supp(B1) ∪ Supp(B2) ∪ Supp(∆) is simple normal crossing.
Consider the divisor

B := kB1 +B2 ∈ |(km1 +m2)(KX + ∆)− g∗A|

We want to show that for k � 0, for any component P in
⌊

B
km1+m2

+ ∆
⌋
,

multP
(

B

km1+m2
+ ∆

)
< multP

(
2
m1

r∑
i=1

aiEi

)
+1 6 multP F+1.(4.2)

The equality on the right always holds, and this is easily seen as m1
2 |2(KX+

∆)| ⊆ |m1(KX + ∆)|. For the equality on the left, we proceed by simply
observing the multiplicities of each component. We have B = kD1 +D2 +∑r
i=1 kaiEi +

∑s
j=1 bjFj , and obviously

⌊
k

km1+m2

⌋
=
⌊ 1
km1+m2

⌋
= 0. Let

∆ =
∑
l dl∆l where ∆l are the irreducible components of ∆ and dl ∈ [0, 1).

The worst case now is that P is a common component of {Ei}, {Fj} and
∆. In this case its multiplicity is

kai + bj
km1 +m2

+ dl,
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which is easily seen as strictly less that 2ai

m1
+ 1 for k � 0. So (4.2) holds,

hence ⌊
B

km1 +m2
+ ∆

⌋
� F.

Define

L := KX + 2∆−
⌊

B

km1 +m2
+ ∆

⌋
.

We have that

L ≡num
1

km1 +m2
π∗H +

{
B

km1 +m2
+ ∆

}
By constuction it is easy to see that for k � 0, (X, { B

km1+m2
+ ∆}) is klt.

So L is numerically equivalent to the sum of the pull back of a nef and big
Q-divisor on X and a klt Q-divisor on W .

Therefore we have that |2(KX + ∆)| = |KX + L|+
⌊

B
km1+m2

+ ∆
⌋
, and

h0(X,OX(KX + L)) = 1. So by [21, Corollary 10.15], hi(W, g∗OX(KX +
L)⊗ P ) = 0 for all i > 0 and P ∈ Pic0(W ). It follows that

h0(W, g∗OX(KX + L)⊗ P ) = χ(W, g∗OX(KX + L)⊗ P )

= χ(W, g∗OX(KX + L)) = h0(W, g∗OX(KX + L)) = 1

for all P ∈ Pic0(S). We also have that g∗OX(KX + L) is a torsion free
coherent sheaf on X. So by [4, Proposition 1.2.1], g∗OX(KX + L) is sup-
ported on an abelian subvariety S′ of S. Since g∗OX(KX + L) is a torsion
free and the image of X generates S, we see that S′ = S. Hence aX is
surjective. �

Theorem 4.4. — Let (X,∆) a pair such that κ(KX + ∆) = 0. Suppose
that the Albanese map aX : X 99K Alb(X) (the Albanese morphism aX :
X → Alb(X)) of X is not an algebraic fiber space. Then the non-lc locus
of (X,∆) dominates aX(X) (aX(X)).

Proof of Theorem 4.4. — We first deal with the case of the Albanese
map. The proof for the Albanese moprhism is almost the same and will be
explained at the end of the proof. Let µ : Y → X be a log resolution of
(X,∆). We can write

KY + ∆̃ = µ∗(KX + ∆) + E+ − E−

where ∆̃ is the strict transform of ∆, and E+ and E− are effective excep-
tional divisors of µ with no common components. Denote D := ∆̃ + E−
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and for convenience we denote the Albanese morphism of Y by a as well.
We have κ(KY +D) = κ(KX + ∆) = 0 (see [27, Lemma II.3.11]). Let

Y
g−→ Z

h−→ aY (Y ) ⊆ Alb(Y )(4.3)

be the Stein factorization of aY .

Lemma 4.5. — If the Albanese morphism of Z is an algebraic fiber
space, then so is that of Y .

Proof. — After possibly passing to a smooth model of Z we can as-
sume that the Albanese map of Z is a morphism. By universality, h factors
through the Albanese morphism aZ of Z, and aZ ◦ g factors through aY .
So we have the following diagram:

Y Alb(Y )

Z Alb(Z)

aY

aZ

hg sh

By construction we have that
• s ◦ t ◦ aZ ◦ g = s ◦ h ◦ g = s ◦ aY = aZ ◦ g;
• t ◦ s ◦ aY = t ◦ aZ ◦ g = h ◦ g = aY .

Since g is surjective, we see that s ◦ t = idaZ(Z) and t ◦ s = idaY (Y ). Since
aZ(Z) and aY (Y ) generate Alb(Z) and Alb(Y ) respectively we know that
s and t are isomorphisms. Moreover since g and aZ are both algebraic fiber
spaces we are done. �

Suppose that no components of D with coefficients > 1 dominate aY (Y ),
or equivalently, Z. By [19, Theorem 13], there is an étale cover q : Z ′ → Z

such that Z ′ ∼= B × W where B is an abelian variety, W is birational
to a smooth variety which is of general type and of maximal Albanese
dimension. Let Y ′ := Y ×Z Z ′. We then take a resolution ν : V → W and
let Z ′′ and Y ′′ be the corresponding base changes. Let D′ := p∗D, and
ρ : Y ] → Y ′′ be a log resolution of (Y ′′, r−1

∗ D′), where r−1
∗ D′ is the strict

transform of D′ on Y ′′. The situation is as follows.
By construction, V is smooth, of general type and of maximal Albanese

dimension. We define D] via the following equality:

KY ] +D] = (r ◦ ρ)∗(KY ′ +D′) + E,
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where D] and E are effective and have no common components. Then D]

has snc support as well. Since p is an étale cover and r ◦ ρ is a birational
morphism, by [27, Lemma II.3.11] we have

0 = κ(KY +D) = κ(KY ] +D]).

By Lemma 4.2, no components of D] with coefficient > 1 dominate Z ′′. We
denote the horizontal part of D] with respect to g′′ ◦ ρ as (D])hor. Then
the coefficients of (D])hor are in [0, 1]. By [2, Theorem 4.2 and Remark 4.3]
we know that

κ(KY ] + (D])hor) > κ((KY ] + (D])hor)|F
Y ]/V

) + κ(V ).(4.4)

and κ(V ) > 0 as V is of general type.
On the other hand, we have

κ(KF
Y ]/Z′′

+ (D])hor|F
Y ]/Z′′

) = κ(KF
Y ]/Z′′

+D]|F
Y ]/Z′′

) > 0.

So by Lemma 2.9, κ((KY ] + (D])hor)|F
Y ]/V

) > 0, and by (4.4) we have
κ(KY ] + (D])hor) > 0. We also have κ(KY ] + D]) = 0, which forces that
κ(KY ] + (D])hor) = 0. Again by (4.4), we obtain κ(V ) = 0. But V is of
general type by construction, so V , hence W , has to be a point. Now we
consider the composition of maps

B
q−→ Z

h−→ Alb(Y ).

Since q and h are finite and h(Z) generates Alb(Y ), the composite h ◦ q
has to be an isogeny, hence Z is birational to an abelian variety. Finally by
Lemma 4.5 we are done.
For the case of the Albanese moprhism, we just do the Stein factorization

as in (4.3) for aX without taking the resolution, and the rest of the proof
is the same. �

Theorem 4.6. — Let (X,∆) be a projective pair. Assume one of the
following conditions holds:

(1) (X,∆) is lc, h0(X,OX(m(KX+∆))) = h0(X,OX(2m(KX+∆))) =
1 for some integer m > 1.

(2) (X,∆) is klt, h0(X,OX(m(KX + ∆))) = 1 for some integer m > 2.
Moreover, assume that either dim(X) = dim(Alb(X)) or dim(X) =
dim(Alb(X)), then X is birational to an abelian variety.

Proof of Theorem 4.6. — We only show the case of dim(X) =
dim(Alb(X)), and the proof for the Albanese morphism is the same. After
possibly taking a log resolution for (X,∆) we can assume that (X,∆) is
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log smooth. In particular, q(X) = dim(X). By Proposition 4.3, aX is sur-
jective. This combining with the condition dim(Alb(X)) = dim(X) implies
that aX is generically finite onto Alb(X).
Next by [3, Lemma 3.1] (by letting Y = A = C = Alb(X) there) we get

that

1 = Pm′(Alb(X)) 6 Pm′(X) 6 h0(X,OX(m′(KX + ∆))) = 1.

Here m′ = 2m in 1 and m′ = m in 2. This forces that Pm′(X) = 1 and
m′ > 2, so by [4, Corollary 2] we are done. �
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