We establish the existence and the uniqueness for the Boussinesq system in in the critical space .
Nous prouvons des résultats d’existence et unicité pour le système de Boussinesq dans dans , espace critique pour ce système.
Revised:
Accepted:
Published online:
Keywords: Maximal regularity, Boussinesq system, critical space, uniqueness, existence
Mot clés : Régularité maximale, système de Boussinesq, espaces critiques, unicité, existence
Brandolese, Lorenzo 1; Monniaux, Sylvie 2
@article{AIF_2023__73_1_1_0, author = {Brandolese, Lorenzo and Monniaux, Sylvie}, title = {Well-posedness for the {Boussinesq} system in critical spaces via maximal regularity}, journal = {Annales de l'Institut Fourier}, pages = {1--20}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {1}, year = {2023}, doi = {10.5802/aif.3523}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3523/} }
TY - JOUR AU - Brandolese, Lorenzo AU - Monniaux, Sylvie TI - Well-posedness for the Boussinesq system in critical spaces via maximal regularity JO - Annales de l'Institut Fourier PY - 2023 SP - 1 EP - 20 VL - 73 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3523/ DO - 10.5802/aif.3523 LA - en ID - AIF_2023__73_1_1_0 ER -
%0 Journal Article %A Brandolese, Lorenzo %A Monniaux, Sylvie %T Well-posedness for the Boussinesq system in critical spaces via maximal regularity %J Annales de l'Institut Fourier %D 2023 %P 1-20 %V 73 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3523/ %R 10.5802/aif.3523 %G en %F AIF_2023__73_1_1_0
Brandolese, Lorenzo; Monniaux, Sylvie. Well-posedness for the Boussinesq system in critical spaces via maximal regularity. Annales de l'Institut Fourier, Volume 73 (2023) no. 1, pp. 1-20. doi : 10.5802/aif.3523. https://aif.centre-mersenne.org/articles/10.5802/aif.3523/
[1] Linear and quasilinear parabolic problems. Vol. I. Abstract linear theory, Monographs in Mathematics, 89, Birkhäuser Boston, Inc., Boston, MA, 1995, xxxvi+335 pages | DOI | MR | Zbl
[2] Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343, Springer, Heidelberg, 2011, xvi+523 pages | DOI | MR | Zbl
[3] Uniqueness theorems for the Boussinesq system, Tohoku Math. J. (2), Volume 72 (2020) no. 2, pp. 283-297 | DOI | MR | Zbl
[4] Maximal regularity and kernel bounds: observations on a theorem by Hieber and Prüss, Adv. Differential Equations, Volume 5 (2000) no. 1-3, pp. 343-368 | MR | Zbl
[5] Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Phys. D, Volume 237 (2008) no. 10-12, pp. 1444-1460 | DOI | MR | Zbl
[6] Les théorèmes de Leray et de Fujita–Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. Math. France, Volume 136 (2008) no. 2, pp. 261-309 (French, with English and French summaries) | DOI | Numdam | MR | Zbl
[7] On the closedness of the sum of two closed operators, Math. Z., Volume 196 (1987) no. 2, pp. 189-201 | DOI | MR | Zbl
[8] -solutions of Navier–Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, Volume 58 (2003) no. 2(350), pp. 3-44 (Russian, with Russian summary) | DOI | MR | Zbl
[9] Unicité dans et d’autres espaces fonctionnels limites pour Navier–Stokes, Rev. Mat. Iberoamericana, Volume 16 (2000) no. 3, pp. 605-667 | DOI | MR | Zbl
[10] A profile decomposition approach to the Navier-Stokes regularity criterion, Math. Ann., Volume 355 (2013) no. 4, pp. 1527-1559 | DOI | MR | Zbl
[11] Heat kernels and maximal - estimates for parabolic evolution equations, Comm. Partial Differential Equations, Volume 22 (1997) no. 9-10, pp. 1647-1669 | DOI | MR | Zbl
[12] Self-similarity in viscous Boussinesq equations, Proc. Amer. Math. Soc., Volume 136 (2008) no. 3, pp. 879-888 | DOI | MR | Zbl
[13] Strong -solutions of the Navier–Stokes equation in , with applications to weak solutions, Math. Z., Volume 187 (1984) no. 4, pp. 471-480 | DOI | MR | Zbl
[14] Local and global unique solvability of the Navier–Stokes exterior problem with Cauchy data in the space , Houston J. Math., Volume 21 (1995) no. 4, pp. 755-799 | MR | Zbl
[15] Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968, xi+648 pages (translated from the Russian by S. Smith) | DOI | MR
[16] Recent developments in the Navier–Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, Boca Raton, FL, 2002, xiv+395 pages | DOI | MR | Zbl
[17] Wavelets, paraproducts, and Navier–Stokes equations, Current developments in mathematics, 1996 (Cambridge, MA), Int. Press, Boston, MA, 1997, pp. 105-212 | MR | Zbl
[18] Uniqueness of mild solutions of the Navier–Stokes equation and maximal -regularity, C. R. Acad. Sci. Paris Sér. I Math., Volume 328 (1999) no. 8, pp. 663-668 | DOI | MR | Zbl
[19] The Navier–Stokes equations in nonendpoint borderline Lorentz spaces, J. Math. Fluid Mech., Volume 17 (2015) no. 4, pp. 741-760 | DOI | MR | Zbl
[20] Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in -spaces, Math. Bohem., Volume 127 (2002) no. 2, pp. 311-327 Proceedings of EQUADIFF, 10 (Prague, 2001) | DOI | MR | Zbl
[21] Un’applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova, Volume 34 (1964), pp. 205-223 | MR | Zbl
[22] Fractional powers of coercive-positive sums of operators, Sibirsk. Mat. Ž., Volume 18 (1977) no. 3, p. 637-657, 719 | MR
Cited by Sources: