Well-posedness for the Boussinesq system in critical spaces via maximal regularity
Annales de l'Institut Fourier, Volume 73 (2023) no. 1, pp. 1-20.

We establish the existence and the uniqueness for the Boussinesq system in 3 in the critical space 𝒞([0,T],L 3 ( 3 ) 3 )×L 2 (0,T;L 3/2 ( 3 )).

Nous prouvons des résultats d’existence et unicité pour le système de Boussinesq dans 3 dans 𝒞([0,T],L 3 ( 3 ) 3 )×L 2 (0,T;L 3/2 ( 3 )), espace critique pour ce système.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3523
Classification: 35A02, 76D03, 35Q35
Keywords: Maximal regularity, Boussinesq system, critical space, uniqueness, existence
Mot clés : Régularité maximale, système de Boussinesq, espaces critiques, unicité, existence

Brandolese, Lorenzo 1; Monniaux, Sylvie 2

1 Institut Camille Jordan Université de Lyon, Université Lyon 1 43 bd. du 11 Novembre 69622 Villeurbanne Cedex (France)
2 Aix Marseille Univ, CNRS, I2M Marseille (France)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2023__73_1_1_0,
     author = {Brandolese, Lorenzo and Monniaux, Sylvie},
     title = {Well-posedness for the {Boussinesq} system in critical spaces via maximal regularity},
     journal = {Annales de l'Institut Fourier},
     pages = {1--20},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {73},
     number = {1},
     year = {2023},
     doi = {10.5802/aif.3523},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3523/}
}
TY  - JOUR
AU  - Brandolese, Lorenzo
AU  - Monniaux, Sylvie
TI  - Well-posedness for the Boussinesq system in critical spaces via maximal regularity
JO  - Annales de l'Institut Fourier
PY  - 2023
SP  - 1
EP  - 20
VL  - 73
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3523/
DO  - 10.5802/aif.3523
LA  - en
ID  - AIF_2023__73_1_1_0
ER  - 
%0 Journal Article
%A Brandolese, Lorenzo
%A Monniaux, Sylvie
%T Well-posedness for the Boussinesq system in critical spaces via maximal regularity
%J Annales de l'Institut Fourier
%D 2023
%P 1-20
%V 73
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3523/
%R 10.5802/aif.3523
%G en
%F AIF_2023__73_1_1_0
Brandolese, Lorenzo; Monniaux, Sylvie. Well-posedness for the Boussinesq system in critical spaces via maximal regularity. Annales de l'Institut Fourier, Volume 73 (2023) no. 1, pp. 1-20. doi : 10.5802/aif.3523. https://aif.centre-mersenne.org/articles/10.5802/aif.3523/

[1] Amann, H. Linear and quasilinear parabolic problems. Vol. I. Abstract linear theory, Monographs in Mathematics, 89, Birkhäuser Boston, Inc., Boston, MA, 1995, xxxvi+335 pages | DOI | MR | Zbl

[2] Bahouri, H.; Chemin, J.-Y.; Danchin, R. Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343, Springer, Heidelberg, 2011, xvi+523 pages | DOI | MR | Zbl

[3] Brandolese, L.; He, J. Uniqueness theorems for the Boussinesq system, Tohoku Math. J. (2), Volume 72 (2020) no. 2, pp. 283-297 | DOI | MR | Zbl

[4] Coulhon, T.; Duong, X. T. Maximal regularity and kernel bounds: observations on a theorem by Hieber and Prüss, Adv. Differential Equations, Volume 5 (2000) no. 1-3, pp. 343-368 | MR | Zbl

[5] Danchin, R.; Paicu, M. Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Phys. D, Volume 237 (2008) no. 10-12, pp. 1444-1460 | DOI | MR | Zbl

[6] Danchin, R.; Paicu, M. Les théorèmes de Leray et de Fujita–Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. Math. France, Volume 136 (2008) no. 2, pp. 261-309 (French, with English and French summaries) | DOI | Numdam | MR | Zbl

[7] Dore, G.; Venni, A. On the closedness of the sum of two closed operators, Math. Z., Volume 196 (1987) no. 2, pp. 189-201 | DOI | MR | Zbl

[8] Eskauriaza, L.; Serëgin, G. A.; Šveràk, V. L 3, -solutions of Navier–Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, Volume 58 (2003) no. 2(350), pp. 3-44 (Russian, with Russian summary) | DOI | MR | Zbl

[9] Furioli, G.; Lemarié-Rieusset, P.-G.; Terraneo, E. Unicité dans L 3 ( 3 ) et d’autres espaces fonctionnels limites pour Navier–Stokes, Rev. Mat. Iberoamericana, Volume 16 (2000) no. 3, pp. 605-667 | DOI | MR | Zbl

[10] Gallagher, I.; Koch, G. S.; Planchon, F. A profile decomposition approach to the L t (L x 3 ) Navier-Stokes regularity criterion, Math. Ann., Volume 355 (2013) no. 4, pp. 1527-1559 | DOI | MR | Zbl

[11] Hieber, M.; Prüss, J. Heat kernels and maximal L p -L q estimates for parabolic evolution equations, Comm. Partial Differential Equations, Volume 22 (1997) no. 9-10, pp. 1647-1669 | DOI | MR | Zbl

[12] Karch, G.; Prioux, N. Self-similarity in viscous Boussinesq equations, Proc. Amer. Math. Soc., Volume 136 (2008) no. 3, pp. 879-888 | DOI | MR | Zbl

[13] Kato, T. Strong L p -solutions of the Navier–Stokes equation in R m , with applications to weak solutions, Math. Z., Volume 187 (1984) no. 4, pp. 471-480 | DOI | MR | Zbl

[14] Kozono, H.; Yamazaki, M. Local and global unique solvability of the Navier–Stokes exterior problem with Cauchy data in the space L n, , Houston J. Math., Volume 21 (1995) no. 4, pp. 755-799 | MR | Zbl

[15] Ladyženskaja, O. A.; Solonnikov, V. A.; Uralʼceva, N. N. Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968, xi+648 pages (translated from the Russian by S. Smith) | DOI | MR

[16] Lemarié-Rieusset, P.-G. Recent developments in the Navier–Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, Boca Raton, FL, 2002, xiv+395 pages | DOI | MR | Zbl

[17] Meyer, Y. Wavelets, paraproducts, and Navier–Stokes equations, Current developments in mathematics, 1996 (Cambridge, MA), Int. Press, Boston, MA, 1997, pp. 105-212 | MR | Zbl

[18] Monniaux, S. Uniqueness of mild solutions of the Navier–Stokes equation and maximal L p -regularity, C. R. Acad. Sci. Paris Sér. I Math., Volume 328 (1999) no. 8, pp. 663-668 | DOI | MR | Zbl

[19] Phuc, N. C. The Navier–Stokes equations in nonendpoint borderline Lorentz spaces, J. Math. Fluid Mech., Volume 17 (2015) no. 4, pp. 741-760 | DOI | MR | Zbl

[20] Prüss, J. Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in L p -spaces, Math. Bohem., Volume 127 (2002) no. 2, pp. 311-327 Proceedings of EQUADIFF, 10 (Prague, 2001) | DOI | MR | Zbl

[21] de Simon, L. Un’applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova, Volume 34 (1964), pp. 205-223 | MR | Zbl

[22] Sobolevskiĭ, P. E. Fractional powers of coercive-positive sums of operators, Sibirsk. Mat. Ž., Volume 18 (1977) no. 3, p. 637-657, 719 | MR

Cited by Sources: