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WELL-POSEDNESS FOR THE BOUSSINESQ SYSTEM
IN CRITICAL SPACES VIA MAXIMAL REGULARITY

by Lorenzo BRANDOLESE & Sylvie MONNIAUX (*)

Abstract. — We establish the existence and the uniqueness for the Boussinesq
system in R3 in the critical space C ([0, T ], L3(R3)3) × L2(0, T ; L3/2(R3)).

Résumé. — Nous prouvons des résultats d’existence et unicité pour le système
de Boussinesq dans R3 dans C ([0, T ], L3(R3)3)×L2(0, T ; L3/2(R3)), espace critique
pour ce système.

1. Introduction

We consider the Cauchy problem associated with the Boussinesq system
in R3:

(B)

∂tu− ∆u+ ∇π + ∇ · (u⊗ u) = θe3 in (0, T ) × R3

div u = 0 in (0, T ) × R3

∂tθ − ∆θ + u · ∇θ = 0 in (0, T ) × R3,

where u denotes the velocity of the fluid, π the pressure, θ the temperature
and e3 the third vector of the canonical basis in R. The given initial velocity
and temperature are denoted respectively u0 and θ0. The initial velocity
will be always assumed to satisfy the condition div u0 = 0. The system (B)
appears in the study of the motion of incompressible viscous flows when
one takes into account buoyancy effects arising from temperature variations
inside the fluid. When the latter are neglected (θ ≡ 0), the system boils
down to the classical Navier–Stokes equations.

Keywords: Maximal regularity, Boussinesq system, critical space, uniqueness, existence.
2020 Mathematics Subject Classification: 35A02, 76D03, 35Q35.
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The natural scaling leaving the Boussinesq system invariant is λ 7→
(uλ, θλ) with

uλ(t, x) = λu(λ2t, λx) and θλ(t, x) = λ3θ(λ2t, λx).

This motivates the study of (B) in function spaces that are left invariant by
the above scaling. Assuming (u0, θ0) ∈ L3(R)3 × L1(R), an adaptation of
Kato’s Lp-theory on strong solutions of Navier–Stokes [13], yields the local-
in-time existence and the uniqueness in appropriate scale-invariant function
spaces where the fixed point argument applies. But, as discussed in [3], the
uniqueness problem in the natural space C ([0, T ], L3(R)3)×C ([0, T ], L1(R))
seems to be out of reach, due to the lack of regularity results in this class,
and to the difficulty of giving a meaning, in the distributional sense, to
the nonlinearity ∇ · (uθ) (and, of course, to u · ∇θ) in the last equation
in (B). To circumvent this difficulty, the uniqueness for the Cauchy prob-
lem, in [3], was established in a smaller space for the temperature, namely
C ([0, T ], L1(R))∩L∞

loc(0, T ;Lq,∞(R)), for some q > 3/2. This restriction on
the temperature, however, is a bit artificial: the excluded borderline case,
q = 3/2, is precisely the most interesting one, as it corresponds to the min-
imal regularity to be imposed on the temperature, when the velocity is in
the natural space L3(R)3, to give a sense to the nonlinearity.

The scaling relations then lead us to consider solutions such that t 7→
∥θ(t)∥L3/2 is in L2. Therefore, it seems natural to address the uniqueness
problem (and the existence) in

C ([0, T ], L3(R)3) × L2(0, T ;L 3
2 (R3)).

As the Lorentz-space approach of [5, 14, 17], applied in [3], fails when q =
3/2, we have to adopt a different strategy. Our main tools will be maximal
regularity estimates. The idea of using the maximal regularity in uniqueness
problems goes back to [18], where the second author gave a short proof of
celebrated Furioli, Lemarié and Terraneo’s uniqueness theorem [9] of mild
solutions of the Navier–Stokes equations in C ([0, T ], L3(R3)). In the present
paper, we will need to use the maximal regularity in an original way, in
order to make it applicable despite the product uθ a priori just belongs to
L1(R3)3.

In fact, our approach allows us to obtain the uniqueness, and then the
regularity as a byproduct of the existence theory, in a larger class, namely

(1.1)
(
C ([0, T ], L3(R3)3) + r L∞(0, T ;L3(R3)3)

)
× L2(0, T ;L 3

2 (R3))

for some small enough r > 0.
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One could speculate that the smallness condition on the parameter r may
be unessential and that the uniqueness and the regularity could be true
in the larger space L∞(0, T ;L3(R3)3) ×L2(0, T ;L 3

2 (R3)). This would be a
nontrivial generalization for the system (B) of the deep result of Escauriaza,
Seregin and Šverák [8], about endpoint Serrin regularity criteria for the
Navier–Stokes equations. Establishing such a result would probably require
various ingredients (backward uniqueness, profile decompositions, [8, 10,
19], etc.). Whether or not such a stronger statement is true, we feel that
our main theorem would remain of interest because of its attractive proof,
entirely based on maximal regularity estimates.

2. Statement of the main results

Let T > 0 and r > 0. Let S ′(R3) denote the dual of Schwartz space. In
order to state our uniqueness result in the class

XT,r :=
(
C ([0, T ], L3(R3)3) + r L∞(0, T ;L3(R3)3)

)
× L2(0, T ;L 3

2 (R3)),

we first clarify what we mean by solution of (B). By definition, a mild
solution of (B) with inital data (u0, θ0) ∈ S ′(R3)3 × S ′(R3), and div u0 =
0, is a couple (u, θ) ∈ XT,r solving the Boussinesq system written in its
integral form (2.1) below:

u = a+B(u, u) + L(θ)
θ = b+ C(u, θ)

(2.1)

with
a(t) = et∆ u0, b(t) = et∆ θ0.

The operators B, C and L are defined, for t ∈ [0, T ], and (u, θ) ∈ XT,r, by

(2.2) B(u, v)(t) = −
∫ t

0
e(t−s)∆ P

(
∇ ·
(
u(s) ⊗ v(s)

))
ds,

(2.3) C(u, θ)(t) = −
∫ t

0
e(t−s)∆ div

(
θ(s)u(s)

)
ds,

and

(2.4) L(θ)(t) =
∫ t

0
e(t−s)∆ P(θ(s)e3) ds.

Here P denotes Leray’s projector onto divergence-free vector fields and(
et∆)

t⩾0 is the heat semigroup.
Our main result then is stated as follows.
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Theorem 2.1. — There is an absolute constant r0 > 0 such that, if
(u1, θ1) and (u2, θ2) are two mild solutions to (B) in XT,r, with the same
initial data (u0, θ0) ∈ S ′(R3)3 × S ′(R3), div u0 = 0 and 0 ⩽ r < r0, then

(u1, θ1) = (u2, θ2).

As we will see, any solution (u, θ) as in Theorem 2.1 must belong to
C ([0, T ],S ′(R3)3 × S ′(R3)), and the initial data must belong more pre-
cisely to L3(R3)3 × B−1

3/2,2(R3). The above theorem is then completed by
the corresponding existence result:

Theorem 2.2.
(i) Let (u0, θ0) ∈ L3(R3)3 × B−1

3/2,2(R3), with div u0 = 0. Then there
exists T > 0 and a solution of (2.1) (u, θ) ∈ C ([0, T ], L3(R3)3) ×
L2(0, T ;L 3

2 (R3)).
(ii) If θ0 belongs to the smaller homogeneous Besov space Ḃ−1

3/2,2(R3)
and if ∥u0∥L3 + ∥θ0∥Ḃ−1

3/2,2
is small enough, than such solution is

global and (u, θ) ∈ Cb(0,∞;L3(R3)3) × L2(0,∞;L 3
2 (R3)).

For some other existence results for the Boussinesq system in different
functional setting we refer, e.g., to [5, 6, 12].

3. Applications of the maximal regularity

The purpose of this section is to study the properties of the operators
B, C and L, respectively defined by (2.2), (2.3) and (2.4), by means of the
following maximal regularity result. The theorem below is classical. See [21]
for the case p ∈ (1,∞) and q = 2 for the negative generator of an analytic
semigroup. The general case 1 < p, q < ∞ for the Laplacian in the whole
space was first proved in [15, Chapter IV, §3]. See also [16, Theorem 7.3]
for a modern proof of the case of the Laplacian in the whole space, or [11,
Theorem 3.1] and [4, Theorem 1.2] for a slightly more general situation.
The proof of the estimates for the mixed fractional space-time derivatives
goes back to [22, Theorem 6]; see also [20, Proposition 2.4].

To begin with, let us define the fractional time derivative operator. Let
1 < p < ∞ and X be a UMD Banach space (i.e., for which the Hilbert
transform is bounded in Lp(R;X); this is in particular the case if X =
Lq(Rd) for 1 < q < ∞). Denote by d

dt the operator defined on Lp(0,∞;X)
with domain

W 1,p
0 (0,∞;X) := {f ∈ Lp(0,∞;X); ∂tf ∈ Lp(0,∞;X) and f(0, ·) = 0}.

ANNALES DE L’INSTITUT FOURIER
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This operator is invertible, sectorial in Lp(0,∞;X) and admits bounded
imaginary powers satisfying∥∥∥∥∥

(
d
dt

)is
∥∥∥∥∥

L (Lp(0,∞;X))

⩽ Cp(X)(1 + s2) e π
2 |s|, s ∈ R,

where Cp(X) is a constant which depends only on p and X (see, e.g.,
[7, Theorem 3.1] or [1, ex. 4.7.3.c p. 160]). This implies in particular that
for α ∈ [0, 1], the fractional derivative operator

( d
dt

)α is invertible and its
domain is Wα,p

0 (0,∞;X).

Theorem 3.1 (Maximal regularity). — Let 1 < p, q < ∞. Let R be the
operator defined for f ∈ L1

loc(0,∞; S ′(Rd)), d ⩾ 1, by

(3.1) Rf(t) =
∫ t

0
e(t−s)∆ f(s) ds, t > 0.

Such operator R is bounded from the space Lp
(
0,∞;Lq(Rd)

)
to the space

Ẇ 1,p
(
0,∞;Lq(Rd)

)
∩ Lp

(
0,∞; Ẇ 2,q(Rd)

)
. In other words, d

dtR, ∆R, and
(−∆)α

( d
dt

)1−α
R, for any 0 < α < 1, are bounded operators in the space

Lp
(
0,∞;Lq(Rd)

)
. Moreover, there exists a constant Cp,q such that∥∥∥∥ d

dtRf
∥∥∥∥

Lp(Lq)
+
∥∥∆Rf

∥∥
Lp(Lq) +

∥∥∥∥∥(−∆)α

(
d
dt

)1−α

Rf

∥∥∥∥∥
Lp(Lq)

⩽ Cp,q∥f∥Lp(Lq),

for all α ∈ (0, 1).

To establish Theorem 2.1, we assume that we have two mild solutions
(u1, θ1) ∈ XT,r and (u2, θ2) ∈ XT,r of (B), arising from the same initial
datum (u0, θ0) ∈ S ′(R3)3 × S ′(R3). Letting u = u1 − u2 and θ = θ1 − θ2,
we then obtain (u, θ) ∈ XT,r and

u = B(u, u1) +B(u2, u) + L(θ),
θ = C(u1, θ) + C(u, θ2).

(3.2)

The maximal regularity theorem allows us to obtain all the relevant esti-
mates for the operators B and C and L.

Proposition 3.2. — For all ε > 0, there exists r > 0 such that for all
v, w ∈ C ([0, T ], L3(R3)3) + r L∞([0, T ], L3(R3)3), and for all 1 < p < ∞,
there exists τ = τ(ε, p, v, w) > 0 such that the linear operator

B(·, v) +B(w, ·) : L4(0, τ ;L6(R3)3) −→ L4(0, τ ;L6(R3)3),(3.3)

B(·, v) +B(w, ·) : Lp(0, τ ;L3(R3)3) −→ Lp(0, τ ;L3(R3)3)(3.4)

TOME 73 (2023), FASCICULE 1
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is bounded, with operator norm less than ε.

Proof. — Let r > 0, to be chosen later. For v, w ∈ C ([0, T ], L3(R3)3) +
r L∞(0, T ;L3(R3)3), we can find vr, wr ∈ Cc([0, T ] × R3) such that

(3.5) ess sup[0,T ] ∥v − vr∥L3 + ess sup[0,T ] ∥w − wr∥L3 ⩽ 3r.

Let us introduce the functions f and g defined for s ∈ [0, T ] by

(3.6) f(s) = (−∆)−1P
(
∇ ·
(
u(s) ⊗ (v − vr)(s) + (w − wr)(s) ⊗ u(s)

))
and

g(s) = −(−∆)−3/4P
(
∇ ·
(
u(s) ⊗ vr(s) + wr(s) ⊗ u(s)

))
.

We have that

(3.7) B(u, v) +B(w, u) = ∆Rf + (−∆)3/4Rg,

where R is the vector-valued analogue of the scalar operator defined in
Theorem 3.1.

(i) Let us first consider (3.3). We easily see that the norm of f in
L4(0, τ ;L6(R3)3) is bounded by the norm of u⊗(v−vr)+(w−wr)⊗u
in L4(0, τ ;L2(R3)3×3). Indeed, the operator (−∆)−1P∇· is bounded
from L2(R3)3×3 to L6(R3)3. Hence,

∥∆Rf∥L4(0,τ ;L6(R3)3)

⩽ C4,6∥u⊗ (v − vr) + (w − wr) ⊗ u∥L4(0,τ ;L2(R3)3×3)

⩽ 3rC4,6∥u∥L4(0,τ ;L6(R3)3).

The norm of g in L4(0, τ ;L6(R3)3) is bounded by the norm of
u⊗vr +wr ⊗u in L4(0, τ ;L3(R3)3×3). To see this, first observe that
the operator (−∆)−3/4P∇· is bounded from L3(R3)3×3 to L6(R3)3.
Moreover, ∥(−∆)3/4 et∆ ∥L (L6(R3)3) ≲ t−3/4. As (−∆)3/4R is a con-
volution operator, we have

∥(−∆)3/4Rg∥L4(0,τ ;L6(R3)3)

⩽ c ∥t 7→ (−∆)3/4 et∆ ∥L1(0,τ ;L (L6(R3)3))∥g∥L4(0,τ ;L6(R3)3)

⩽ c′ τ
1
4 ∥u⊗ vr + wr ⊗ u∥L4(0,τ ;L3(R3)3×3)

⩽ c′ τ
1
4
(
∥vr∥L∞((0,τ)×R3)3) + ∥wr∥L∞((0,τ)×R3)3)

)
∥u∥L4(0,τ ;L6(R3)3).

We first choose r > 0, such that 3rC4,6 ⩽ ε
2 , next vr and wr in

Cc([0, T ] × R3)3, satisfying (3.5) and last τ > 0 such that

c′ τ
1
4
(
∥vr∥L∞((0,τ)×R3)3) + ∥wr∥L∞((0,τ)×R3)3)

)
⩽
ε

2 .

This finally establishes (3.3).

ANNALES DE L’INSTITUT FOURIER
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(ii) Let us now consider assertion (3.4). Let 1 < p < ∞. We slightly
modify the expression of B(·, v) +B(w, ·) given by (3.7):

(3.8) B(u, v) +B(w, u) = ∆Rf + (−∆)1/2Rg̃,

where we set, for s ∈ [0, T ],

(3.9) g̃(s) = −(−∆)−1/2P
(
∇ ·
(
u(s) ⊗ vr(s) + wr(s) ⊗ u(s)

))
.

The function f defined by (3.6) is bounded in Lp(0, τ ;L3(R3)3) by
3r∥u∥Lp(0,τ ;L3(R3)3), up to a multiplicative constant involving Cp,3

and the norm of bounded operator (−∆)−1P∇· from L
3
2 (R3)3×3

to L3(R3)3. The norm of g̃ in Lp(0, τ ;L3(R3)3) is bounded by the
norm of u⊗vr +wr ⊗u in Lp(0, τ ;L3(R3)3×3). Indeed, the operator
(−∆)− 1

2 P∇· is bounded from L3(R3)3×3 in L3(R3)3 and so

∥(−∆)1/2Rg̃∥Lp(0,τ ;L3)

⩽ c∥t 7→ (−∆)1/2 et∆ ∥L1(0,τ ;L (L3))∥g∥Lp(0,τ ;L3)

≲
√
τ
(
∥vr∥L∞((0,τ)×R3)3 + ∥wr∥L∞((0,τ)×R3)3

)
∥u∥Lp(0,τ ;L3).

Proceeding as in item (i) settles (3.4).
This establishes Proposition 3.2. □

Remark 3.3. — Notice that if one assumes that v and w belong to the
larger space L∞(0, T ;L3(R3)3), and if r > 0 is fixed, then in general one
cannot ensure the existence of vr and wr in L∞((0, T ) × R3) such that
ess supt∈(0,T ) ∥v(t)−vr(t)∥L3 +ess supt∈(0,T ) ∥w(t)−wr(t)∥L3 < 3r. This is
the case if, for example, v or w are of the form t−1ϕ(·/t) with ϕ ∈ L3(R3)
and r is small with respect to ∥ϕ∥L3 .

Proposition 3.4.
(1) For all ε > 0, there exists r > 0 such that all v belonging to the space

C ([0, T ], L3(R3)3)+r L∞(0, T ;L3(R3)3), there exists a positive time
τ = τ(ε, v) > 0 such that

C(v, ·) : L 4
3 (0, τ ;L2(R3)) −→ L

4
3 (0, τ ;L2(R3))

is bounded with norm less than ε.
(2) For all ε > 0 there exists r > 0 such that, for all v belonging to

the space C ([0, T ], L3(R3)3) + r L∞(0, T ;L3(R3)3), there exists a
positive time τ = τ(ε, v) > 0 such that

C(v, ·) : L2(0, τ ;L 3
2 (R3)) ∩ L

4
3 (0, τ ;L2(R3)) −→ L2(0, τ ;L 3

2 (R3))

is bounded with norm less than ε.

TOME 73 (2023), FASCICULE 1
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(3) For all ε > 0 all v ∈ L4(0, T ;L6(R3))3, there exists τ = τ(ε, v) > 0
such that

C(v, ·) : L2(0, τ ;L 3
2 (R3)) −→ L2(0, τ ;L 3

2 (R3))

is bounded with norm less than ε.
(4) For all ε > 0, all ϑ ∈ L2(0, T ;L 3

2 (R3)), there exists τ = τ(ε, ϑ) > 0
such that

C(·, ϑ) : L4(0, τ ;L6(R3)3) −→ L
4
3 (0, τ ;L2(R3))

is bounded with norm less than ε.

Proof. — We proceed as in the previous proposition. For r > 0, let us
choose vr ∈ Cc([0, T ] × R3)3 such that

(3.10) ess sup[0,T ] ∥v − vr∥L3 ⩽ 2r.

Then we have, for all θ ∈ L
4
3 (0, τ ;L2(R3)),

C(v, θ) = C(v − vr, θ) + C(vr, θ) = ∆Rf + (−∆)1/2Rg

where, now, we set f(s) = (−∆)−1 div
(
θ(s)(v(s) − vr(s))

)
and g(s) =

−(−∆)−1/2 div
(
θ(s)vr(s)

)
. As in the proof of previous proposition we see

that the norm of f in L 4
3 (0, τ ;L2(R3)) is bounded by the norm of

(
θ(v−vr)

)
in L

4
3 (0, τ ;L 6

5 (R3)3) (because of the Sobolev embedding Ẇ 1, 6
5 ↪→ L2 in

dimension 3). As ∆R is a bounded operator in L
4
3 (0, τ ;L2(R3)), we have

∥(−∆)Rf∥
L

4
3 (0,τ ;L2(R3))

⩽ C ′
4
3 ,2 C ∥θ(v − vr)∥

L
4
3 (0,τ ;L

6
5 (R3)3)

⩽ 2rC ′
4
3 ,2 C ∥θ∥

L
4
3 (0,τ ;L2(R3))

where C is the constant arising from the Sobolev embedding Ẇ 1, 6
5 ↪→ L2

in dimension 3 and r comes from the choice of vr.
The norm of g in L

4
3 (0, τ ;L2(R3)) is bounded by the norm of θ vr dans

L
4
3 (0, τ ;L2(R3)3), because (−∆)− 1

2 div is a bounded operator in L2(R3)3.
Moreover, ∥(−∆)1/2 et∆ ∥L (L2(R3)) ≲ t−1/2. Then, viewing (−∆)1/2R as
before as a convolution operator, we get

∥(−∆)1/2Rg∥
L

4
3 (0,τ ;L2(R3))

⩽ c ∥t 7→ (−∆)1/2 et∆ ∥L1(0,τ ;L (L2(R3)))∥g∥
L

4
3 (0,τ ;L2(R3))

⩽ c′ τ
1
2 ∥θ vr∥

L
4
3 (0,τ ;L2(R3)3)

⩽ c′ τ
1
2 ∥vr∥L∞((0,τ)×R3)3)∥θ∥L

4
3 (0,τ ;L2(R3))

.

ANNALES DE L’INSTITUT FOURIER
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We then choose r > 0 such that 2rC ′
4
3 ,2 C ⩽ ε

2 , next vr ∈ Cc([0, T ] × R3)3

satisfying (3.10) and last θ > 0 such that c′ τ
1
2 ∥vr∥L∞(((0,τ)×R3)3) ⩽

ε
2 . This

establishes the first assertion of the proposition.

To prove the second assertion we proceed as before: for r > 0, we
choose vr ∈ C ([0, T ] × R3)3 such that (3.10) holds. Then for all θ ∈
L2(0, τ ;L 3

2 (R3)),

(3.11) C(v, θ) = C(v − vr, θ) + C(vr, θ) = (−∆) 3
4Rf + (−∆)1/2Rg

where for s ∈ [0, τ ],

f(s) = −(−∆)− 3
4 div

(
θ(s)(v(s) − vr(s))

)
and

g(s) = −(−∆)−1/2 div
(
θ(s)vr(s)

)
.

We easily see that the norm of f in L
4
3 (0, τ ;L 3

2 (R3)) is controlled by the
norm of

(
θ(v− vr)

)
in L 4

3 (0, τ ;L 6
5 (R3)3) (owing to the Sobolev embedding

Ẇ
1
2 , 6

5 ↪→ L
3
2 in dimension 3). As

( d
dt

) 1
4 (−∆) 3

4R is a bounded operator in
L

4
3 (0, τ ;L 3

2 (R3)), we have that

∥(−∆) 3
4Rf∥

L2(0,τ ;L
3
2 (R3))

⩽ C̃

∥∥∥∥∥
(

d
dt

) 1
4

(−∆) 3
4Rf

∥∥∥∥∥
L

4
3 (0,τ ;L

3
2 )

⩽ C̃C 4
3 , 3

2
C ∥θ(v − vr)∥

L
4
3 (0,τ ;L

6
5 (R3)3)

⩽ C̃C 4
3 , 3

2
C 2r∥θ∥

L
4
3 (0,τ ;L2(R3))

.

(3.12)

Here C̃ is the constant coming from the Sobolev embedding Ẇ 1
4 , 4

3 ↪→ L2

in dimension 1, C is the constant of the Sobolev embedding Ẇ
1
2 , 6

5 ↪→
L

3
2 in dimension 3 and r comes from the choice of vr. The norm of g

in L2(0, τ ;L 3
2 (R3)) is controlled by the norm of θ vr in L2(0, τ ;L 3

2 (R3)3),
because (−∆)− 1

2 div is a bounded operator from L
3
2 (R3)3 to L

3
2 (R3). As

(−∆) 1
2R is a convolution operator, we can write

(3.13) ∥(−∆) 1
2Rg∥

L2(0,τ ;L
3
2 (R3))

⩽ c ∥t 7→ (−∆) 1
2 et∆ ∥

L1(0,τ ;L (L
3
2 (R3)))

∥g∥
L2(0,τ ;L

3
2 (R3))

⩽ c′ τ
1
2 ∥θ vr∥

L2(0,τ ;L
3
2 (R3)3)

⩽ c′ τ
1
2 ∥vr∥L∞((0,τ)×R3)3)∥θ∥L2(0,τ ;L

3
2 (R3))

.

It just remains to choose r > 0 such that 2rC̃C 4
3 , 3

2
C ⩽ ε

2 , next vr ∈
L∞((0, T ) × R3)3 such that (3.10) holds and finally θ > 0 such that
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c′ τ
1
2 ∥vr∥L∞((0,τ)×R3)3) ⩽ ε

2 . This establishes the second assertion of the
proposition.

Let us prove the third assertion. As v ∈ L4(0, T ;L6(R3)3), for an arbi-
trary r > 0 we can choose now vr ∈ L∞((0, T ) × R3)3 such that

(3.14) ∥v − vr∥L4(0,T ;L6(R3)3) < r.

If τ > 0 and θ ∈ L2(0, τ ;L 3
2 (R3)), then (v − vr)θ ∈ L

4
3 (0, τ ;L 6

5 (R3)3)
by Hölder inequality. Therefore, splitting C(v, θ) as in (3.11), the above
computations (3.12)–(3.13) can be reproduced: the only change that needs
to be done is the application of (3.14) instead of (3.10). We get in this way

∥(−∆) 3
4Rf∥

L2(0,τ ;L
3
2 (R3))

⩽ C̃C 4
3 , 3

2
C r∥θ∥

L2(0,τ ;L
3
2 (R3))

.

This, combined with (3.13) proves our third assertion.

The proof of the fourth assertion follows the same scheme. For r > 0,
choose ϑr ∈ Cc([0, T ] × R3) such that

(3.15) ∥ϑ− ϑr∥
L2(0,T ;L

3
2 (R3))

⩽ r.

Then, for all v ∈ L4(0, τ ;L6(R3)3), we have

C(v, ϑ) = C(v, ϑ− ϑr) + C(v, ϑr) = ∆Rf + (−∆)1/2Rg

where for s ∈ [0, τ ],

f(s) = (−∆)−1 div
(
(ϑ(s) − ϑr(s))v(s)

)
and

g(s) = −(−∆)− 1
2 div

(
ϑr(s)v(s)

)
.

One easily shows that the norm of f in L
4
3 (0, τ ;L2(R3)) is bounded by

Cr∥v∥L4(0,τ ;L6(R3)3), where C is the norm of (−∆)−1 div as an operator
from L6/5(R3)3 to L2(R3). Thus, as the operateur ∆R is bounded on
L

4
3 (0, τ ;L2(R3)) by C ′

4
3 ,2 = C C 4

3 ,2, we have that

∥∆Rf∥
L

4
3 (0,τ ;L2(R3))

⩽ C ′
4
3 ,2r∥v∥L4(0,τ ;L6(R3)3).

The norm of g in L 4
3 (0, τ ;L2(R3)) is bounded by the norm of ϑr in the space

L2(0, τ ;L3(R3)) and the norm of v in L4(0, τ ;L6(R3)3). As (−∆)1/2R is a
convolution operator, we deduce that

∥(−∆) 1
2Rg∥

L
4
3 (0,τ ;L2(R3))

⩽ ∥t 7→ (−∆)1/2 et∆ ∥L1(0,τ ;L (L2(R3)))∥g∥
L

4
3 (0,τ ;L2(R3))

⩽ c τ
1
2 ∥ϑr∥L2(0,τ ;L3(R3))∥v∥L4(0,τ ;L6(R3)3).
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We then choose r > 0 such that C ′
4
3 ,2r ⩽ ε

2 , next ϑr ∈ Cc([0, T ] × R3)
satisfying (3.15) and last τ > 0 such that c τ 1

2 ∥ϑr∥L2(0,τ ;L3(R3)) ⩽ ε
2 . We

thus get the last assertion of the proposition. □

Proposition 3.5. — For all τ > 0, the operator L defined by (2.4) is
linear and bounded from L2(0, τ ;L 3

2 (R3)) to L4(0, τ ;L6(R3)3 and from
L

4
3 (0, τ ;L2(R3)) to L4(0, τ ;L6(R3)3), with operator norms independent

on τ . Moreover, for all p ∈ [1,∞), L is bounded from L2(0, τ ;L 3
2 (R3))

to Lp(0, τ ;L3(R3)), with norm of order τ1/p.

Proof. — For θ ∈ L2(0, τ ;L 3
2 (R3)), we write

L(θ) =
(

d
dt

)− 1
4
((

d
dt

) 1
4

(−∆) 3
4Rφ

)
,

where φ(s) = (−∆)− 3
4 P
(
θ(s)e3

)
. Observe that φ ∈ L2(0, τ ;L6(R3)3), be-

cause of the Sobolev embedding (−∆)− 3
4 (L 3

2 ) ↪→ L6 (in dimension 3), with
norm bounded by the norm of θ in L2(0, τ ;L 3

2 (R3)). By Theorem 3.1, we
deduce that L(θ) ∈

( d
dt

)− 1
4
(
L2(0, τ ;L6(R3)3)

)
↪→ L4(0, τ ;L6(R3)3), the

last inclusion arising from the Sobolev embedding
( d

dt

)− 1
4 (L2) ↪→ L4 (in

dimension 1). This establishes the first assertion of the proposition.
When θ ∈ L

4
3 (0, τ ;L2(R3)), we write

(3.16) L(θ) =
(

d
dt

)− 1
2
((

d
dt

) 1
2

(−∆) 1
2Rψ

)
,

with ψ(s) = (−∆)− 1
2 P
(
θ(s)e3

)
. Notice that ψ ∈ L

4
3 (0, τ ;L6(R3)3), because

of the Sobolev embedding (−∆)− 1
2L2 ↪→ L6 (in dimension 3), with norm

bounded by the norm of θ in L 4
3 (0, τ ;L2(R3)). Applying Theorem 3.1 with

α = 1
2 , we get L(θ) ∈

( d
dt

)− 1
2
(
L

4
3 (0, τ ;L6(R3)3)

)
↪→ L4(0, τ ;L6(R3)3). The

last inclusion comes from the Sobolev embedding
( d

dt

)− 1
2 (L 4

3 ) ↪→ L4 (in
dimension 1). The second assertion of the proposition follows.

Next, for θ ∈ L2(0, τ ;L 3
2 (R3)), let us write L(θ) as before in (3.16).

By Sobolev embedding (−∆)− 1
2 (L 3

2 ) ↪→ L3 in dimension 3, we have ψ ∈
L2(0, τ ;L3) with norm bounded by ∥θ∥

L2(0,τ ;L
3
2 )

. By Theorem 3.1 with

α = 1
2 , we deduce that L(θ) ∈

( d
dt

)− 1
2
(
L2(0, τ ;L3)

)
↪→ Lp(0, τ ;L3) for all

1 ⩽ p < ∞. The last inclusion follows, for 2 < p < ∞, from the Hölder
injection L2((0, τ)) ↪→ Lq(0, τ) for q ∈ [1, 2] (with norm τ1/q−1/2) and
Hardy–Littlewood–Sobolev inequality

( d
dt

)− 1
2 (Lq) ↪→ Lp (in dimension 1),
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12 Lorenzo BRANDOLESE & Sylvie MONNIAUX

for all p ∈ (2,∞) and 1
p = 1

q − 1
2 . For 1 ⩽ p ⩽ 2 it is sufficient to apply

once more Hölder inequality. □

4. The proof of the uniqueness

We need a few lemmas before proving Theorem 2.1.

Lemma 4.1. — Let (u0, θ0) ∈ S ′(R3)3 × S ′(R3) with div u0 = 0, and
let (u, θ) ∈ L∞(0, T ;L3(R3)3)×L2(0, T ;L 3

2 (R3)) be a mild solution of (2.1)
with initial data (u0, θ0). Then

(u, θ) ∈ C ([0, T ],S ′(R3)3 × S ′(R3)).

Moreover, we have u0 ∈ L3(R3)3 and for every t ∈ [0, T ], u(t) does also
belong to L3(R3)3.

Proof. — Let us denote by F (t, x) the kernel of the operator et∆ P∇·.
It is well known, and easy to check, that F satisfies the scaling rela-
tions F (t, x) = t−2F (1, x/

√
t), with F (1, ·) ∈ (L1(R3) ∩ C0(R3))3×3, where

C0(R3) is the notation for continuous functions on R3 which go to 0 at in-
finity. From these properties and the dominated convergence theorem one
deduces that, for all 1 ⩽ p ⩽ ∞, that F ∈ C (0,∞;Lp(R3)). Moreover,
∥F (t, ·)∥1 = t−

1
2 ∥F (1, ·)∥1.

Now, if (u, θ) ∈ XT,r, then u⊗u ∈ L∞(0, T ;L3/2(R3)3×3). Then, recalling
the definition of the bilinear operator B and applying the above properties
of F with p = 1, next applying the L1-L3/2 convolution inequality, shows
that the map t 7→ B(u, u)(t) is continuous from (0, T ] to L3/2(R3)3. More-
over, ∥B(u, u)(t)∥L3/2 → 0 as t → 0. Hence, the map t 7→ B(u, u)(t) is
continuous from [0, T ] to L3/2(R3)3 with value 0 at t = 0.

Let us now consider L(θ). Using the fact that the heat kernel

(t, x) 7→ 1
(4πt)3/2 e− |x|2

4t

is in Cb(0,∞;L1(R3)), we readily see that L(θ) ∈ C ((0, T ];L3/2(R3)). To
study the behavior of L(θ) near t = 0 we consider φ ∈ S (R3) and observe,
computing the Fourier transform of Pθe3 with respect to the space variable,
that t 7→ ĥ(t, ·) = P̂θe3(t, ·) belongs to L2(0, T ;L3(R3)) by the Hausdorff–
Young theorem. Then we have

|⟨L(θ)(t), φ⟩| ⩽
∫ t

0
|⟨ĥ(s), e−(t−s)|·|2

φ̂⟩| ds ⩽
∫ t

0
∥ĥ(s)∥L3∥φ̂∥L3/2 ds

⩽ ∥φ̂∥L3/2

∫ t

0
∥θ(s)∥L3/2 ds ⩽ Cφ∥θ∥L2(0,T ;L3/2(R3))

√
t.

ANNALES DE L’INSTITUT FOURIER
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Therefore, L(θ)(t) → 0 as t → 0 in S ′(R3) and we deduce that L(θ) ∈
C ([0, T ],S ′(R3)3), with value 0 at t = 0.

Let us now consider C(u, θ). We have uθ ∈ L2(0, T ;L1(R3)3). Moreover,
the kernel of the operator et∆ ∇· has the same scaling properties as F .
Therefore, proceeding as for B(u, u) we see on the one hand that C(u, θ) ∈
C ((0, T ];L1(R3)3). On the other hand, we can also write

C(u, θ)(t) = div
∫ t

0
e(t−s)∆(uθ)ds.

But the L1(R3)-norm of
∫ t

0 e(t−s)∆(uθ)ds is obviously bounded by the quan-
tity

√
t∥uθ∥L2(0,T ;L1(R3)) that goes to zero as t → 0. Hence,

C(u, θ)(t) −−−→
t→0

0 in S ′(R3)3,

by the continuity of the divergence operator from L1 to S ′.
For the linear terms a and b it is obvious that they both belong to the space
C ([0, T ],S ′(R3)), with values at t = 0 given by u0 and θ0, respectively.

Summarising, from the equation (2.1) we see that

(u, θ) ∈ C ([0, T ],S ′(R3)3 × S ′(R3)),

with values at t = 0 given by (u0, θ0). But u ∈ L∞(0, T ;L3(R3)3), hence,
for all 0 ⩽ t ⩽ T , we can find a sequence tn −−−−→

n→∞
t, contained in [0, T ],

such that u(tn) ∈ L3(R3)3 for all n ∈ N, with L3-norm uniformly bounded
by ∥u∥L∞(0,T ;L3(R3)3), and u(tn) −−−−→

n→∞
u(t) in S ′(R3)3. By duality we

deduce that u(t) ∈ L3(R3)3 for every t ∈ [0, T ]. In particular, the initial
velocity u0 must belong to L3(R3)3. □

Lemma 4.2. — There exists an absolute constant r0 > 0 such that
if 0 ⩽ r < r0 and (u, θ) ∈ XT,r is a solution of (2.1), with (u0, θ0) ∈
S ′(R3)3 × S ′(R3) and div u0 = 0, then there exists τ > 0 such that
u ∈ L4(0, τ ;L6(R3)3).

Proof. — Let us take p = 2 throughout this proof (any other choice
1 < p < ∞ would do: a different choice of p would just affect the value of
r0 and τ). We know, by Proposition 3.2, that there exists r0 and τ > 0
such that if (u, θ) ∈ XT,r with 0 ⩽ r < r0, then the norm of the lin-
ear operator B(·, u) from L4(0, τ ;L6(R3)3) ∩ Lp(0, τ ;L3(R3)3) to itself is
bounded, with norm smaller than 1

2 . This shows that Id −B(·, u) is invert-
ible in L4(0, τ ;L6(R3)3) ∩ Lp(0, τ ;L3(R3)3).

Moreover, as θ ∈ L2(0, τ ;L 3
2 (R3)) by our assumption, we get from Propo-

sition 3.5 that L(θ) ∈ L4(0, τ ;L6(R3)3) ∩ Lp(0, τ ;L3(R3)3).
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As observed in the previous Lemma, we have u0 ∈ L3(R3)3. Moreover,
L3(R3) ⊂ Ḃ0

3,3(R3) ⊂ Ḃ
−1/2
6,3 (R3) ⊂ Ḃ

−1/2
6,4 (R3). See [2, Chap. 2] for gen-

eralities on Besov spaces. The characterisation of Besov spaces through
the heat kernel (see [2, Theorem 2.34]) then implies that t 7→ et∆ u0 ∈
L4(0, τ ;L6(R3)3). Since we have also that t 7→ et∆ u0 ∈ C ([0, τ ];L3(R3)3),
we obtain

a ∈ L4(0, τ ;L6(R3)3) ∩ Lp(0, τ ;L3(R3)3), for all 1 < p < ∞.

These considerations allow us to define

ũ =
(
Id −B(·, u)

)−1(
a+ L(θ)

)
.

We would like to show that u = ũ. By the assumption on u and the con-
struction of ũ, these two functions satisfy

u = B(u, u) + a+ L(θ) and ũ = B(ũ, u) + a+ L(θ).

Moreover, ũ ∈ L4(0, τ ;L6(R3)3) ∩ Lp(0, τ ;L3(R3)3). Their difference v :=
u− ũ satisfies

v ∈ Lp(0, τ ;L3(R3)3) and v = B(v, u).

Reducing (if necessary) the value of τ , we deduce from the last point of
Proposition 3.2 that

∥v∥Lp(0,τ,L3) ⩽
1
2∥v∥Lp(0,τ ;L3(R3)3).

This implies that v = 0 in Lp(0, τ ;L3(R3)3). In particular, u = ũ ∈
L4(0, τ ;L6(R3)3). □

Remark 4.3. — Under the conditions of Lemma 4.1, the initial temper-
ature θ0 must belong to the inhomogeneous Besov space B−1

3/2,2(R3). In-
deed, θ ∈ L2(0, τ ;L 3

2 (R3)), and C(u, θ) then belongs to this same space
by the third claim of Proposition 3.4 and the previous lemma, for τ >

0 small enough. Then, by the second equation of (2.1), we obtain b ∈
L2(0, τ ;L 3

2 (R3)). The characterisation of inhomogeneous Besov spaces with
negative regularity (see [16, Theorem 5.3]) then immediately gives θ0 ∈
B−1

3/2,2(R3).

Lemma 4.4. — Let 0 ⩽ r < r0 and (u1, θ1) and (u2, θ2) be two mild
solutions of (B) in XT,r arising from (u0, θ0) ∈ S ′(R3)3 × S ′(R3), with
div u0 = 0. Let also θ = θ1 − θ2. Then there exists τ > 0 such that
θ ∈ L

4
3 (0, τ ;L2(R3)).
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Proof. — Let u = u1 − u2. Then (u, θ) ∈ XT,r satisfies (3.2). We know
by Lemma 4.2 that there exists τ0 > 0 such that u1, u2 ∈ L4(0, τ0;L6(R3)3).
Applying the last two assertions of Proposition 3.4 we get C(u, θ2) ∈
L

4
3 (0, τ0;L2(R3)) ∩ L2(0, τ0;L 3

2 (R3)). The first and the second assertions
of Proposition 3.4 ensure the existence of τ > 0 (we can assume τ ⩽ τ0)
such that C(u1, ·) is bounded from L

4
3 (0, τ ;L2(R3)) ∩ L2(0, τ ;L 3

2 (R3)) to
itself, with norm less than 1

2 . Therefore we can define

θ̃ =
(
Id −C(u1, ·)

)−1(C(u, θ2)).

We see that θ̃ ∈ L
4
3 (0, τ ;L2(R3)) ∩ L2(0, τ ;L 3

2 (R3)), and moreover θ̃ =
C(u1, θ̃) + C(u, θ2). Let ψ = θ − θ̃. Then, subtracting the second equation
in (3.2), we obtain

ψ ∈ L2(0, τ ;L 3
2 (R3)) and ψ = C(u1, ψ).

But u1 ∈ L4(0, τ ;L6(R3)3) by Lemma 4.2. Hence, applying the third as-
sertion of Proposition 3.4 we get ψ = 0 and so θ = θ̃. The latter equality
implies that θ ∈ L

4
3 (0, τ ;L2(R3)). □

Proof of Theorem 2.1. Let r0 > 0 be the absolute constant determined
in Lemma 4.2. Assume that (u1, θ1) and (u2, θ2) are two mild solutions in
XT,r of (B), with 0 ⩽ r < r0, starting from (u0, θ0) ∈ S ′(R3)3×S ′(R3). In
fact, by Lemma 4.1, there is no restriction in assuming that u0 ∈ L3(R3)3.

Then, setting u = u1 − u2 and θ = θ1 − θ2, the couple (u, θ) satis-
fies (3.2). As θ1, θ2 ∈ L2(0, T ;L 3

2 (R3)) by our assumption and the first
item of Proposition 3.5, we know that L(θ) ∈ L4(0, T ;L6(R3)3). Apply-
ing Proposition 3.2, we know that there exists τ > 0 such that ∥B(u, u1) +
B(u2, u)∥L4(0,τ ;L6(R3)3) ⩽ 1

2 ∥u∥L4(0,τ ;L6(R3)3). This allows us to show, ap-
plying Lemma 4.2, next using the first equation in (3.2), that

∥u∥L4(0,τ ;L6(R3)3) ⩽ 2∥L(θ)∥L4(0,τ ;L6(R3)3).

Applying the first assertion of Proposition 3.4, with v = u1 and the last as-
sertion of Proposition 3.4 with ϑ = θ2, we deduce from the second equality
in (3.2) that, for all ε > 0, there exists 0 < τ ′ ⩽ τ such that

∥θ∥
L

4
3 (0,τ ′;L2(R3))

⩽ ε
(
∥θ∥

L
4
3 (0,τ ′;L2(R3))

+ ∥u∥L4(0,τ ′;L6(R3)3)
)
.

But the L 4
3 (0, τ ′;L2(R3))-norm of θ is finite by Lemma 4.4, so

∥θ∥
L

4
3 (0,τ ′;L2(R3))

⩽
ε

1 − ε
∥u∥L4(0,τ ′;L6(R3)3).

The second item of Proposition 3.5 allows us to take ε > 0 such that

2 ε

1 − ε
∥L∥L (L4/3(0,τ ′;L2(R3)),L4(0,τ ′;L6(R3)3) < 1.
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We conclude that u = 0 in L4(0, τ ′;L6(R3)3). This implies that θ = 0 a.e.
on (0, τ ′). The uniqueness is thus established at least during a short time
interval [0, τ ′), for a suitable 0 < τ ′ ⩽ T .

A standard argument now allows us to deduce that the uniqueness holds,
in fact, in the whole interval [0, T ]: let τ∗ be the supremum of the times
t0 ∈ [0, T ] such that (u1, θ1) = (u2, θ2) in Xt0,r. Let us show that τ∗ = T .
Indeed, otherwise, by the continuity of (u1, θ1) and (u2, θ2) from [0, T ] to
C ([0, T ],S ′(R3)3 × S ′(R3)), established in Lemma 4.1, we deduce that

(4.1) (u1(τ∗), θ1(τ∗)) = (u2(τ∗), θ2(τ∗)) ∈ S ′(R3)3 × S ′(R3).

But (u1, θ1)(·+τ∗) and (u2, θ2)(·+τ∗) are mild solutions of (B) in XT −τ∗,r,
with initial data given by (4.1). Therefore, applying the uniqueness result
in short-time intervals established before, we see that there exists τ ′′, such
that 0 < τ ′′ < T − τ∗, and (u1, θ1)(· + τ∗) = (u2, θ2)(· + τ∗) in Xτ ′′,r. Then
(u1, θ1) = (u2, θ2) in Xτ∗+τ ′′,r and this would contradict the definition of
τ∗. The uniqueness is thus granted in the whole interval [0, T ]. □

5. Existence

Let us prove Theorem 2.2, that ensures the existence of solution in the
space where we obtained the uniqueness. In fact, an existence theorem
for solutions to the Boussinesq system was established in [3], under as-
sumptions more general than that of Theorem 2.2. However, the solution
constructed in [3] a priori does not satisfy the required condition on the
temperature, θ ∈ L2(0, T ;L 3

2 (R3)). Therefore, what remains to do in order
to establish Theorem 2.2, is to show that the solution constructed in [3]
does satisfy such condition, as soon as the initial temperature does belong
to B−1

3/2,2(R3).
For this, let us introduce some useful function spaces: For 1 ⩽ p ⩽ ∞

and 0 < T ⩽ ∞, we define Zp,T to be the subspace of all vector fields
u ∈ L1

loc(0, T ;Lp(R3)3) such that

∥u∥Zp,T
= ess supt∈(0,T ) t

1
2 (1− 3

p )∥u(t)∥p < ∞.

In the same way, let Yq,T be the subspace of all the functions θ belonging
to L1

loc(0, T ;Lq(R3)) such that

∥θ∥Yq,T
= ess supt∈(0,T ) t

3
2 (1− 1

q )∥θ(t)∥q < ∞.

We will need the following bilinear estimate:
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Proposition 5.1. — For all u ∈ Z6,T and θ ∈ L2(0, T ;L 3
2 (R3)),

∥C(u, θ)∥
L2(0,T ;L

3
2 (R3))

⩽ κ∥u∥Z6,T
∥θ∥

L2(0,T ;L
3
2 (R3))

,

where κ > 0 is some constant independent on T , u and θ.

Proof. — Using that ∥u(s)∥L6 ⩽ s−1/4∥u∥Z6,T
and letting

f(s) = s−1/4∥θ(s)∥L3/2⊮R+(s), s ∈ [0, T ],

we can estimate

∥C(u, θ)(t)∥L3/2 ⩽ c∥u∥Z6,T

∫ t

0
(t− s)−3/4f(s)ds.

Here c is the L 6
5 (R3)-norm of the kernel of e∆ div. But f ∈ L

4
3 ,2(R) by

Hölder inequality in Lorentz spaces, with norm controlled by the norm of
θ in L2(0, T ;L 3

2 (R3)), independently of T . Moreover, | · |−3/4 ∈ L
4
3 ,∞(R),

hence t 7→ ∥C(u, θ)(t)∥L3/2⊮R+(t) belongs to L2,2(R) = L2(R) by Young–
O’Neil inequality (see [16, Theorem 2.3]). □

Let us now recall the local existence theorem in [3, Theorem 2.4].

Theorem 5.2 (See [3]). — If 3 < p < ∞, 3
2 < q < 3 and 2

3 <
1
p + 1

q , and
if (u0, θ0) belongs to the closure of the Schwartz class S (R3)3 × S (R3)
in the space B−(1−3/p)

p,∞ (R3)3 ×B
−3(1−1/q)
q,∞ (R3), with div u0 = 0, then there

exists T > 0 and a solution (u, θ) to (B) such that

(u, θ) ∈
(
Zp,T ∩ Z∞,T

)
×
(
Yq,T ∩ Y∞,T

)
.

Moreover,
∥u∥Zp,T ∩Z∞,T

+ ∥θ∥Yq,T ∩Y∞,T
−−−→
T →0

0.

Furthermore, if u0 ∈ L3(R3)3 ⊂ B
−(1−3/p)
p,∞ , then u ∈ C ([0, T ], L3(R3)3)

and if θ0 ∈ L1(R3) ⊂ B
−3(1−1/q)
q,∞ then θ0 ∈ C ([0, T ], L1(R3)).

Let us observe that the perturbation method used in [3] to establish The-
orem 5.2 provides the well-posedness only in the space where the solution
is constructed.

Proof of Theorem 2.2. — Under the assumptions of the first item of The-
orem 2.2, we have u0 ∈ L3(R3)3 and θ0 ∈ B−1

3
2 ,2(R3), which is continuously

embedded in B
−3(1−1/q)
q,∞ , for all q > 3/2. Moreover, the Schwartz class is

dense both in L3 and in Besov spaces with finite third index. Therefore we
may apply Theorem 5.2. Choosing, for example, p = 6 and q = 2 we obtain
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the existence, for some T > 0, of a solution (u, θ) ∈ Z6,T × Y2,T , such that
u ∈ C ([0, T ], L3(R3)3) and

(5.1) ∥u∥Z6,T
+ ∥θ∥Y2,T

−−−→
T →0

0.

By the Boussinesq equation (2.1), we have θ = b + C(u, θ). Moreover,
by the heat kernel characterisation of Besov spaces, we deduce from the
condition θ0 ∈ B−1

3
2 ,2(R3), that b = et∆ θ0 ∈ L2(0, T ;L 3

2 (R3)3). Now, reduc-
ing if necessary the length of time interval where the solution is consid-
ered, we can assume that T is such that κ∥u∥Z6,T

< 1. Hence, by Propo-
sition 5.1, we see that the linear operator C(·, u) : L2(0, T ;L 3

2 (R3)3) →
L2(0, T ;L 3

2 (R3)3) is bounded with norm less than 1. Therefore, the op-
erator T := I − C(·, u) is invertible in such space. But T (θ) = b, hence
θ = T−1(b) ∈ L2(0, T ;L 3

2 (R3)3).
Let us prove the second assertion of Theorem 2.2. If θ0 belongs to the

homogeneous Besov space Ḃ−1
3/2,2(R3), then b ∈ L2(0,∞;L 3

2 (R3)). More-
over, the norm of b is controlled by ∥θ0∥Ḃ−1

3/2,2(R3) (and conversely). If
∥u0∥L3 + ∥θ0∥Ḃ−1

3/2,2(R3) is smaller than a suitable absolute constant (or,
more in general, if ∥u0∥

Ḃ
−(1−3/p)
p,∞ (R3) + ∥θ0∥

Ḃ
−3(1−1/q)
q,∞ (R3) is smaller than

a constant depending only on p and q, where p and q are as in Theo-
rem 5.2), then the estimates in [3] provide the global existence of the solu-
tion, with u ∈ Cb(0,∞;L3(R3)). Moreover, ∥u∥Z6,∞ is controlled by the size
of the initial data (u0, θ0) in L3(R3)3 ×Ḃ−1

3/2,2(R3). Therefore, κ∥u∥Z6,∞ can
be assumed to be smaller than 1. Then the above argument applies with
T = +∞. This completely establishes Theorem 2.2. □
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