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CONSTANT MEAN CURVATURE ISOMETRIC
IMMERSIONS INTO S2 × R AND H2 × R AND

RELATED RESULTS

by Benoît DANIEL,
Iury DOMINGOS & Feliciano VITÓRIO (*)

Abstract. — In this article, we study constant mean curvature isometric im-
mersions into S2 × R and H2 × R and we classify these isometric immersions when
the surface has constant intrinsic curvature. As applications, we use the sister sur-
face correspondence to classify the constant mean curvature surfaces with constant
intrinsic curvature in the 3-dimensional homogenous manifolds E(κ, τ) and we use
the Torralbo–Urbano correspondence to classify the parallel mean curvature sur-
faces in S2 × S2 and H2 × H2 with constant intrinsic curvature. It is worthwhile to
point out that these classifications provide new examples.

Résumé. — Dans cet article, nous étudions les immersions à courbure moyenne
constante dans S2 × R et H2 × R et nous classifions ces immersions quand la sur-
face est à courbure intrinsèque constante. Comme applications, nous utilisons la
correspondance des surfaces sœurs pour classifier les surfaces à courbure moyenne
constante et courbure intrinsèque constante dans les variétés de dimension 3 homo-
gènes E(κ, τ) et nous utilisons la correspondance de Torralbo–Urbano pour classifier
les surfaces à courbure moyenne parallèle et courbure intrinsèque constante dans
S2 × S2 et H2 × H2. Il est important de noter que ces classifications fournissent de
nouveaux exemples.

1. Introduction

This paper deals with the classification of constant mean curvature sur-
faces and parallel mean curvature surfaces with constant intrinsic curvature
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in some ambient manifolds. In R3, it is a classical result that an H-constant
mean curvature surface with constant intrinsic curvature K is either part
of a plane, when H = 0, or part of a right circular cylinder with K = 0
or part of a round sphere of radius 1/H with K = H2, when H ̸= 0
(Levi-Civita [20]).

In the 3-space forms M3
c , surfaces with H and K constants are isopara-

metric surfaces, that is, the two principal curvatures are constant. In this
direction, the first results of local classification in S3

c and H3
c started with E.

Cartan [5] and since then many related results have been obtained. For ex-
ample, minimal surfaces with constant intrinsic curvature in 3-dimensional
space forms M3

c are either totally geodesic with K = c or a part of the
Clifford torus with K = 0 in S3

c (Chen [6], Lawson [18]).
In codimension 2, for 4-dimensional space forms M4

c , minimal surfaces
with constant intrinsic curvature are either totally geodesics with K = c, or
a part of Clifford torus with K = 0 in a totally geodesics S3

c of S4
c , or a part

of Veronese surfaces with K = c/3 in S4
c (Kenmotsu [16]). For parallel mean

curvature surfaces with constant intrinsic curvature in the same ambient
manifold either K = 0 or K = H2 + c. If c ⩾ 0, then the surface is either a
part of product of circles with K = 0 or a part of 2-sphere with K = H2+c,
where H denotes the norm of the mean curvature vector (Hoffman [15]).
When the ambient manifold is a complex 2−dimensional space form (C2,
CH2(c), CP2(c)), parallel mean curvature surfaces with constant intrinsic
curvature are either a product of circles, or a cylinder, or a round sphere,
or a slant surface or one of the Hirakawa examples (Hirakawa [14]).

The aim of the work is to generalize these results to some other ambient
homogeneous manifolds.

First, we classify the constant mean curvature surfaces with constant
intrinsic curvature in S2 ×R and H2 ×R (Theorem 3.3). The minimal case
has been treated by the first author in [9]: either K = 0 or K = c and
the surface is totally geodesic, or K = c < 0 and the surface is part of an
associate surface of the parabolic generalized catenoid in H2

c × R. In this
paper we consider the non-minimal case. Our study is based on a system of
partial differential equations satisfied by the metric, the angle and height
functions of the surface (which holds, more generally, without the condition
of constant intrinsic curvature).

We show that apart from the vertical cylinders with K = 0, there are
exactly two examples of H-constant mean curvature surfaces in H2×R with
constant intrinsic curvature. Both satisfy the relation K = 4H2+c < 0. The
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CMC ISOMETRIC IMMERSIONS INTO S2 × R AND H2 × R 205

first one is a surface found in the classification of surfaces whose Abresch–
Rosenberg differential vanishes [1] and the second one is a helicoidal surface
that appears in the study of screw motion surfaces in S2 × R and H2 × R,
due to Sa Earp and Toubiana [23]; however, it was not explicit there that
this surface has both constant intrinsic and mean curvatures.

In particular, this classification provides an example of two CMC isomet-
ric immersions of the same Riemannian surface with a same mean curvature
and which are not congruent up to an isometric reparametrization; this an-
swers a question by Torralbo and Urbano [25, Remark 1].

We mention that Aledo, Espinar and Gálvez [3, 4] obtained some classi-
fication and non-existence results for complete constant intrinsic curvature
K (but not necessarily CMC) surfaces: in S2 × R, there exists a unique
such surface (up to congruences) if K > 1 and there is no such surface if
K < −1 or 0 < K < 1; in H2 × R, there exists a unique such surface (up
to congruences) if K > 0 and there is no such surface if K < −1.

As a corollary (Theorem 4.6), using the sister surface correspondence [7],
we obtain a classification of CMC surfaces with constant intrinsic curvature
in the homogeneous 3-manifolds E(κ, τ), for τ ̸= 0 and κ − 4τ2 ̸= 0. We
show that apart from the cases with constant angle functions, we get either
a minimal surface in E(κ, τ) invariant by parabolic isometries with K = κ

or one of twin helicoidal surfaces in E(κ, τ) with K = 4H2 + κ < 0. The
first one is a surface found by Peñafiel in [21] and the second ones are
motivated by the study of screw motion surfaces in P̃SL2(R) in [22] of the
same author.

Next, as an application of the classification in M2
c × R and the results

by Torralbo and Urbano [25], we obtain a classification of non-minimal
parallel mean curvature (PMC) surfaces with constant intrinsic curvature
in M2

c × M2
c (Theorems 5.11 and 5.12). Note that M2

c × M2
c are Kähler-

Einstein manifolds and are among the 19 models of geometry in dimension
4 (see for instance [28]). In particular, in H2 × H2 we obtain a new family
of such surfaces; for some of them, the group of isometries induced by
congruences (i.e., isometries of the ambient manifold) is discrete. Up to our
knowledge, this also provides the first examples of PMC surfaces with non
identically zero extrinsic normal curvature.

This work is organized as follows: In Section 2, we fix some notations and
we recall previous results about surfaces in S2 × R and H2 × R. Moreover,
from of study the angle and height functions and compatibility equations
obtained in [7, Theorem 3.3], we establish necessary and sufficient condi-
tions for a Riemannian surface to be isometrically immersed as a constant
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206 Benoît DANIEL, Iury DOMINGOS & Feliciano VITÓRIO

mean curvature surface in S2 × R or H2 × R (Theorem 2.2). After, we de-
rive an additional order-1 equation using the classical Weitzenböck-Bochner
formula.

In Section 3, we suppose that the metric of the surface has constant
intrinsic curvature and we consider a function associated to the Abresch–
Rosenberg differential. This function satisfies a new differential partial
equation that can be reduced to an order-0 equation by the previous re-
sults. We get the classification for the H-constant mean curvature surfaces
in M2

c × R with constant intrinsic curvature (Theorem 3.3).
In Section 4, we give the first application of Theorem 3.3. We use the

sister surface correspondence [7, Theorem 5.2] to get the classification of
H-constant mean curvature surfaces in E(κ, τ) with constant intrinsic cur-
vature, for τ ̸= 0.

Finally, in Section 5, we use Theorem 3.3 and the correspondence by
Torralbo and Urbano [25] between PMC immersions into M2

c × M2
c and

pairs of CMC immersions into M2
c ×R to classify PMC surfaces in M2

c ×M2
c

with constant intrinsic curvature. The main difficulty is that the Torralbo–
Urbano correspondence relates immersions and not surfaces.

2. The angle and height functions

We fix real numbers c and H such that c ̸= 0. Let M2
c be the simply

connected Riemannian manifold of constant intrinsic curvature c, that is,
M2

c = S2
c is the 2-sphere for c > 0 and M2

c = H2
c is the hyperbolic plane for

c < 0. For simplicity, we sometimes use the normalization c = ±1. In this
case, S2

1 = S2 and H2
−1 = H2.

Theorem 2.1 (Daniel, [8]). — Let (Σ, d s2) be an oriented simply con-
nected Riemannian surface, ∇ its Riemannian connection and K be the
intrinsic curvature of d s2. Let S : T Σ → T Σ be a field of symmetric op-
erators, T ∈ X (Σ) and ν : Σ → [−1, 1] be a smooth function. Then there
is an isometric immersion f : Σ → M2

c × R such that the shape operator
with respect to the normal N associated to f is

d f ◦ S ◦ d f−1

and such that

∂t = d f(T ) + νN
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if and only if the 4-uple (d s2, S, T, ν) satisfies the following equations on
Σ:

K = det S + cν2,(C1)
∇XSY − ∇Y SX − S[X, Y ] = cν

(
⟨Y, T ⟩X − ⟨X, T ⟩Y

)
,(C2)

∇XT = νSX,(C3)
d ν(X) + ⟨SX, T ⟩ = 0,(C4)

∥T∥2 + ν2 = 1.(C5)

Moreover the immersion is unique up to an isometry of M2
c × R that

preserve both orientations of M2
c and R.

We will say that (d s2, S, T, ν) are Gauss–Codazzi data of the immersion
f and that ν is its angle function. The height function of f is the map
h = p ◦ f where p : M2

c × R → R is the projection onto the factor R.
As a first result, we derive from Theorem 2.1 a system of compatibility

equations for H-constant mean curvature surfaces in M2
c × R in terms of

the angle and height functions. We will say that an isometry of M2
c × R is

horizontal if it is the identity on the factor R.

Theorem 2.2. — Let Σ be an H-constant mean curvature surface in
M2

c × R. Then the angle function ν : Σ → [−1, 1] and the height function
h : Σ → R of Σ satisfy the following system

∥∇ν + H∇h∥2 = (H2 − K + cν2)(1 − ν2),(2.1)

∆ν = (2K − c(1 + ν2) − 4H2)ν,(2.2)

∥∇h∥2 = 1 − ν2,(2.3)
∆h = 2Hν,(2.4)

where K denotes the intrinsic curvature of Σ.

Conversely, let (Σ, d s2) be an oriented simply connected Riemannian
surface, with curvature K. Assume that ν : Σ → (−1, 1) and h : Σ →
R are smooth functions satisfying the system of four partial differential
equations above. Then there is an H-constant mean curvature isometric
immersion f : Σ → M2

c × R such that ν and h are the angle function and
the height function of Σ, respectively. Moreover the immersion is unique
up to horizontal isometries of M2

c ×R that preserves the orientation of M2
c .

Proof. — Let Σ be an H-constant mean curvature surface in M2
c ×R. Let

(d s2, S, T, ν) be the Gauss–Codazzi data on Σ and J the rotation of angle

TOME 73 (2023), FASCICULE 1
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π/2 on T Σ. By the symmetry of S and tr S = 2H, a straightforward com-
putation shows that SJ + JS = 2HJ , and the compatibility equation (C1)
implies that ∇ν = −ST . Away from the points where T = 0, we consider
the orthonormal frame {T/∥T∥, JT/∥T∥}. Then S has the form

S = 1
∥T∥2

(
− d ν(T ) − d ν(JT )

− d ν(JT ) 2H∥T∥2 + d ν(T )

)
.

For the height function definition we have that

d h(X) = ⟨X, ∂t⟩, for every X ∈ T Σ,

that is, T = ∇h and then

det S = − 1
∥T∥2

(
∥∇ν∥2 + 2H⟨∇ν, ∇h⟩

)
.

Hence, the equations (C1) and (C5) imply that

(K − cν2)(1 − ν2) = −∥∇ν∥2 − 2H⟨∇ν, ∇h⟩,

i.e., (2.1) holds. When ν2 = 1, the right and left sides of (2.1) are equals
to zero, then for this case (2.1) also holds.

Let L be the Jacobi operator of Σ, given by L = ∆ + ∥S∥2 + Ric(N),
where Ric is the Ricci tensor of M2

c × R. Since ∥S∥2 = 4H2 − 2 det S and
Ric(N) = c(1 − ν2), the equation (C1) implies that

L = ∆ − 2K + c(1 + ν2) + 4H2.

On the other hand, as ∂t is a Killing field and ν = ⟨∂t, N⟩ then Lν = 0,
so (2.2) holds.

Since ∇h = T , equation (2.3) follows directly from equation (C5). More-
over, equation (C3) gives that ∇X∇h = νSX, which concludes (2.4) by
the definition of divergence, finishing the first assertion. Note that also
by equation (C3), if ν2 ̸= 1, T satisfies the following equation for every
X ∈ T Σ:

(2.5) ∇XT = − ν

1 − ν2 d ν(X)T − ν

1 − ν2

(
d ν(JX) + 2H⟨T, JX⟩

)
JT.

We now prove the second part of the theorem. Let (Σ, d s2) be a real ana-
lytic simply connected Riemannian surface, ν : Σ → (−1, 1) and h : Σ → R
smooth functions on Σ satisfying equations (2.1), (2.2), (2.3) and (2.4).

Claim 2.3. — The vector field T = ∇h ∈ T Σ satisfies equation (2.5).
By equation (2.3) and symmetry of the Hessian of h, that is ⟨∇X∇h, Y ⟩ =
⟨∇Y ∇h, X⟩ for every X, Y ∈ T Σ, we have

∇∇h∇h = −ν∇ν.
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Since ν2 < 1, considering the orthonormal frame {∇h/∥∇h∥, J∇h/∥∇h∥},
by the symmetry of the Hessian of h we have

∇X∇h = − ν

1 − ν2 d ν(X)∇h + 1
1 − ν2 ⟨∇J∇h∇h, X⟩J∇h

for every X ∈ T Σ. On the other hand, again by the symmetry of the
Hessian of h we have

∇JX∇h + J∇X∇h = ∆hJX, for every X ∈ T Σ.

Since equation (2.4) holds, we obtain that

∇X∇h = − ν

1 − ν2 d ν(X)∇h − ν

1 − ν2

(
d ν(JX) + 2H⟨∇h, JX⟩

)
J∇h,

that is, the vector field ∇h satisfies equation (2.5).

Since T = ∇h does not vanish on Σ, because ν2 < 1, there is a unique
symmetric operator S : T Σ → T Σ with constant trace 2H, such that
ST = −∇ν.

We affirm that the 4-uple (d s2, S, T, ν) is Gauss–Codazzi data on Σ.
To prove this, it is sufficient to show the equations (C1) and (C2). This
is because (C4) is follows of definition of S, (C5) is the same of (2.3)
and the (C3) follows of (2.5), when we write any X ∈ T Σ in the basis
{∇h/∥∇h∥, J∇h/∥∇h∥} and use ∇ν = −ST .

In a previous calculation, from the fact that ∇ν = −ST and S is a
symmetric operator with tr S = 2H, we have shown that

det S = − 1
∥T∥2

(
∥∇ν∥2 + 2H d ν(T )

)
.

Using equations (2.1) and (2.3) we obtain the Gauss equation (C1), that
is,

K = det S + cν2.

To show equation (C2), it is sufficient to verify for X = T and Y = JT .
Since the rotation J of angle π/2 on T Σ commutes with ∇X , for every
X ∈ T Σ, and SJ + JS = 2HJ , by the equation (C3) we get

[T, JT ] = 2ν(JS − HJ)T.

By the symmetry of S and ST = −∇ν we have

⟨S[T, JT ], T ⟩ = 2Hν d ν(JT ).

Furthermore, again since the rotation J of angle π/2 on T Σ commutes
with ∇X , SJ + JS = 2HJ , ∇T T = −ν∇ν and ST = −∇ν, we get

∇T SJT − ∇JT ST = −2HνJ∇ν + J∇T ∇ν + ∇JT ∇ν,

TOME 73 (2023), FASCICULE 1
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and, by the symmetry of the Hessian of ν and since J2 = − I, we have

⟨∇T SJT − ∇JT ST, T ⟩ = 2Hν d ν(JT ),

then
⟨∇T SJT − ∇JT ST − S[T, JT ], T ⟩ = 0.

On the other hand, again by the symmetry of S, SJ + JS = 2HJ ,
ST = −∇ν and the fact that J is an isometry, we have

⟨S[T, JT ], JT ⟩ = −2ν
(
∥∇ν∥2 + 3H d ν(T ) + 2H2∥T∥2).

Moreover, since J is an isometry

⟨∇T SJT − ∇JT ST, JT ⟩ = ∥T∥2∆ν − 2Hν d ν(T ).

Then

⟨∇T SJT − ∇JT ST − S[T, JT ], JT ⟩

= ∥T∥2(∆ν + 4H2ν
)

+ 2ν
(
∥∇ν∥2 + 2H d ν(T )

)
and by equations (2.1), (2.2) and (2.3), we obtain

⟨∇T SJT − ∇JT ST − S[T, JT ], JT ⟩ = −cν(1 − ν2)2.

On the other hand, computing cν
(
⟨Y, T ⟩X − ⟨X, T ⟩Y

)
for X = T and

Y = JT , respectively, we get

cν
〈
⟨T, JT ⟩T − ⟨T, T ⟩JT, T

〉
= 0

and
cν
〈
⟨T, JT ⟩T − ⟨T, T ⟩JT, JT

〉
= −cν(1 − ν2)2.

Thus we showed the Codazzi equation (C2) and then (d s2, S, T, ν) are
Gauss–Codazzi data on U . Since the operator S and the vector field T are
determined in a unique way, the uniqueness follows from Theorem 2.1 and
the fact that the height function is prescribed. □

Remark 2.4. — Assuming ν2 < 1 for the converse, it is possible to rewrite
Theorem 2.2 changing the gradient ∇h by vector field T if the function ν

and the a vector field T satisfy

∥∇ν + HT∥2 = (H2 − K + cν2)(1 − ν2),

∆ν = (2K − c(1 + ν2) − 4H2)ν,

∥T∥2 = 1 − ν2,

div T = 2Hν,

⟨∇T T, JT ⟩ = ⟨∇JT T, T ⟩.
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This is because the last equation is equivalent to the fact that the 1−form
⟨T, ·⟩ is closed and this is a necessary condition to show that T satisfies
equation (2.5).

Remark 2.5. — The minimal case has been studied by the first author
in [9]. He obtained a slightly different result, involving only ν and equa-
tions (2.1) and (2.2).

Remark 2.6. — For a fixed H, the pair (ν, ∇h) satisfies (2.1), (2.2), (2.3)
and (2.4) for H if and only if the pair (−ν, −∇h) does for H and the pairs
(ν, −∇h) and (−ν, ∇h) do for −H. The isometric immersions correspond-
ing to the pairs (ν, ∇h) and (−ν, −∇h) are the same up to a π-rotation
around a horizontal geodesic of M2

c × R. For the pair (ν, −∇h) (respec-
tively, (−ν, ∇h)), its correspondent isometric immersion is the same of the
isometric immersion correspond to (ν, ∇h) up to an isometry of M2

c × R
that preserves the orientation of M2

c and reverses the orientation of R (re-
spectively, reverses the orientation of M2

c and preserves the orientation of
R), see also [8, Proposition 3.8].

From Theorem 2.2 follows the next result that characterizes H-constant
mean surfaces in M2

c × R with constant angle function. This result was
already proved by Espinar and Rosenberg in [12].

Before that, we consider the smooth function q : Σ → R introduced
by Espinar and Rosenberg, in [12]. This function q is a normalization of
the squared norm of the Abresch–Rosenberg differential; it will play an
important role in the case of H-constant mean curvature surface Σ in M2

c×R
with constant intrinsic curvature in the next section.

In [12, Lemma 2.2], the authors show that

∥∇ν∥2 = 4H2 + c − cν2

4c
(4(H2 − K + cν2) + c(1 − ν2)) − q

c
.

Combining this relation and Theorem 2.2, we can see that q satisfies

(2.6) q = 2Hc⟨∇ν, ∇h⟩+4H2(H2 −K +cν2)+2H2c(1−ν2)+ c2

4 (1−ν2)2.

Example 2.7 (Horizontal surfaces and vertical cylinders). — The simplest
examples of H-CMC surfaces in M2

c ×R are the horizontal surfaces and the
vertical cylinders over curves of constant geodesic curvature.

Given a ∈ R, then M2
c ×{a} is a totally geodesic surface in M2

c ×R (then
H = 0) with intrinsic curvature K = c. The height function is constant
and, since the normal vector N of M2

c × {a} is parallel to ∂t and both are
unitary vectors, the angle function ν satisfies ν2 = 1, in particular it is
constant.

TOME 73 (2023), FASCICULE 1



212 Benoît DANIEL, Iury DOMINGOS & Feliciano VITÓRIO

Let γ ⊂ M2
c be a curve with constant geodesic curvature k. Then γ × R

is a (k/2)-CMC surface in M2
c × R with intrinsic curvature K = 0. Since

the normal vector N of γ × R is orthogonal to ∂t, then the angle function
vanishes and the gradient of the height function is a principal direction of
Σ by equation (C4) and 2H = k.

Example 2.8 (ARL-surfaces). — Abresch and Rosenberg [1] classified
CMC surfaces with vanishing Abresch–Rosenberg differential. In partic-
ular, when c < 0 they proved that, for each H such that 0 < 4H2 < −c,
there exists a unique H-CMC surface PH in H2

c ×R invariant by parabolic
isometries such that its Abresch–Rosenberg differential vanishes. Moreover,
Leite [19] proved that PH has constant intrinsic curvature K = 4H2+c. We
note that, in the limit, PH is a horizontal surface of H2 × R when H → 0
and a vertical cylinder of H2 × R when 4H2 → −c.

In this work, we say that PH is an Abresch–Rosenberg–Leite surface, ab-
breviated ARL-surface. In the Abresch–Rosenberg classification of surfaces
with vanishing Abresch–Rosenberg differential, we can also see that ARL-
surfaces are the only ones that the angle function ν is constant with 0 <

ν2 < 1. More explicitly, the ARL-surfaces PH have the following properties:
• The constant mean curvature H satisfies 0 < 4H2 < −c.
• PH has constant intrinsic curvature K = 4H2 + c.
• The function q vanishes identically on PH .
• The function ν is constant on PH , satisfying ν2 = 4H2+c

c ∈ (0, 1).
• PH is foliated by horizontal horocycles of principal curvature 2H

orthogonally crossed by geodesics in H2
c × R.

In [25], Torralbo and Urbano gave a conformal parametrization of the
ARL-surfaces, found earlier by Leite in [19]. Considering the hyperbolic
plane model

(
(−π/2, π/2) × R, 1

−K cos2 x (d x2 + d y2)
)
, in [25, Example 4]

it is shown that the height function is given by

h(x, y) = 2H√
−K

(y − log cos x).

For future computations, we consider the following change of coordinates:

(x, y) 7→ z = i e−(y+i x)
√

−K
.

This is a diffeomorphism between
(

−π/2, π/2)×R and {z ∈ C : Im(z) >

0}. The metric 1
−K cos2 x (d x2 + d y2) reads as

d s2 = 4
K(z − z)2 | d z|2,
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and the height function in the complex parameter z is given by

h(z) = − 2H√
−K

log
(√

−K

2 i (z − z)
)

.

Corollary 2.9 ([12]). — Let Σ be an H-constant mean curvature sur-
face in M2

c × R. If the angle function ν : Σ → [−1, 1] is constant then
• either ν2 = 1, K = c, H = 0 and Σ is part of a horizontal surface
M2

c × {a}, for some a ∈ R,
• or ν = 0, K = 0 and Σ is part of a vertical cylinder γ × R, where

γ ⊂ M2
c is a curve of geodesic curvature 2H,

• or 0 < ν2 < 1, K = 4H2 + c < 0 and Σ is part of an ARL-surface.

Proof. — Assume that ν2 = 1. Then (2.2) implies K = c+2H2 and (2.3)
implies that T = 0, that is, the height function h is constant on Σ, and
so H = 0, by (2.4). Hence Σ is part of a horizontal surface M2

c × {a} of
curvature K = c, for some a ∈ R.

Assume that ν = 0. Then equation (2.1) implies that K = 0. On the
other hand, ∂t = T , that is, the vertical vector is tangent to Σ and it is
a principal direction of Σ, by the equation (C4). Then the other principal
direction has eigenvalue 2H, that is, Σ is part of a vertical cylinder γ × R,
where γ ⊂ M2

c has geodesic curvature 2H.
Assume that 0 < ν2 < 1. Then equations (2.1) and (2.3) imply K = cν2.

By (2.2), we obtain the following equation

(2.7) c(1 − ν2) + 4H2 = 0.

Note that there is no solution to (2.7) if H = 0 or c > 0. Then we have
c < 0 and K = 4H2 + c. Moreover c < K < 0 because 0 < ν2 < 1. Since ν

constant and K = cν2, again by equations (2.1) and (2.7) we get that the
function q vanishes on Σ; therefore Σ is part of an ARL-surface. □

The following result will be useful to future computations.

Corollary 2.10. — Let Σ be an H-constant mean curvature surface
in M2

c × R. The function ϕ = ν + Hh is constant if and only if Σ is either
part of a minimal horizontal surface M2

c × {a}, for some a ∈ R, or part of
a minimal vertical cylinder γ × R, where γ is a geodesic of M2

c .

Proof. — If ϕ = ν + Hh is a constant function on Σ then (H2 − K +
cν2)(1 − ν2) = 0 and ν

(
2K − c(1 + ν2) − 2H2) = 0. Then from (2.1), (2.2)

and (2.4) we get a system of two algebraic equations on ν:

(H2 − K + cν2)(1 − ν2) = 0,

ν
(

− 2(H2 − K + cν2) − c(1 − ν2)
)

= 0.
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At the points where 0 < ν2 < 1, the first equation of the system above
implies H2 − K + cν2 = 0; then replacing this in the second one we have
−c(1 − ν2) = 0, which cannot occur because c ̸= 0. Then |ν| does not take
values in the interval (0, 1). Then, by connectedness and continuity, either
ν2 = 1 or ν = 0 and then Σ is part of a horizontal surface in M2

c × R or Σ
is part of a vertical cylinder γ × R, where γ ⊂ M2

c , respectively.
For the minimality of Σ, note that if ν2 = 1, Corollary 2.9 implies that

K = c and H = 0. If ν = 0, Corollary 2.9 implies that K = 0, and by the
first equation of the system above we get H = 0.

Conversely, if Σ is a minimal horizontal surface, then the unit normal
N is in the same direction of ∂t. If Σ is a minimal vertical cylinder over
a geodesic of M2

c , then the unit normal N is orthogonal to ∂t. Then both
cases imply that ν is constant on Σ. Since Σ is minimal surface, ϕ is a
constant function on Σ. □

Let Σ be an H-constant mean curvature surface in M2
c ×R with Gauss–

Codazzi data (d s2, S, T, ν). Consider a local orthonormal frame {e1, e2} on
Σ such that Je1 = e2 where J is the rotation of angle π/2 on T Σ.

Given a smooth function f : Σ → R on Σ, we will set

fi = ⟨∇f, ei⟩ and fij = (∇2f)(ei, ej),

where ∇2f is the symmetric Hessian 2-tensor of f . Then if ν and h are the
angle function and the height function of Σ, respectively, setting ϕ = ν+Hh

we found the following system of two partial differential equations from
Theorem 2.2:

ϕ2
1 + ϕ2

2 = −(1 − ν2)(K − cν2 − H2),(2.8)

ϕ11 + ϕ22 =
(
2K − c(1 + ν2) − 2H2)ν.(2.9)

Lemma 2.11. — The function ϕ satisfies

2ϕ12∥∇ϕ∥2 = (1 − ν2)(6cνϕ1ϕ2 − K1ϕ2 − K2ϕ1)(2.10)

+ 2Hν(H2 − K − c + 2cν2)(h1ϕ2 + h2ϕ1)

and

(ϕ11 − ϕ22)∥∇ϕ∥2 = (1 − ν2)
(
3cν(ϕ2

1 − ϕ2
2) − K1ϕ1 + K2ϕ2

)
(2.11)

+ 2Hν(H2 − K − c + 2cν2)(h1ϕ1 − h2ϕ2).

Proof. — Differentiating (2.8) with respect to e1 and e2, we have

2(ϕ1ϕ11 + ϕ2ϕ12) = 2
(
K − H2 + c(1 − 2ν2)

)
νν1 − (1 − ν2)K1,(2.12)

2(ϕ1ϕ12 + ϕ2ϕ22) = 2
(
K − H2 + c(1 − 2ν2)

)
νν2 − (1 − ν2)K2.(2.13)
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Making ϕ2(2.12) + ϕ1(2.13) and using (2.9) we obtain (2.10). In an anal-
ogous way, making ϕ1(2.12) − ϕ2(2.13) we find

2(ϕ2
1ϕ11−ϕ2

2ϕ22) = 2
(
K−H2+c(1−2ν2)

)
ν(ϕ2

1−ϕ2
2)−(1−ν2)(K1ϕ1−K2ϕ2)

+ 2Hν
(
K − H2 + c(1 − 2ν2)

)
(ϕ1h1 − ϕ2h2).

Since

2(ϕ2
1ϕ11 − ϕ2

2ϕ22) = (∆ϕ)(ϕ2
1 − ϕ2

2) + (ϕ11 − ϕ22)∥∇ϕ∥2,

we get (2.11), using (2.8). □

Proposition 2.12. — The functions ν and h satisfy

0 = (H2 − K + cν2)∆K + ∥∇K∥2 − 6cν⟨∇K, ∇ν⟩ − 2Hcν⟨∇K, ∇h⟩

+6Hc(H2 − K − cν2)⟨∇ν, ∇h⟩ + 4H2cν2(H2 − K − 2c + 3cν2)(2.14)

−4(H2 − K + cν2)(K − c − H2)(K + 2cν2).

Proof. — If ϕ is constant on a non empty open set of Σ, then by analyt-
icity ϕ is constant on Σ. By Corollary 2.10, ν and K are constant functions
on Σ, H = 0 and H2 − K + cν2 = 0, so (2.14) holds.

From now on, we assume that ϕ is not a constant function on Σ. By
analyticity, it is sufficient to prove equation (2.14) on a non empty set
U ⊂ Σ on which ∇ϕ does not vanish. Restricting U if necessary, we can
consider an orthonormal frame {e1, e2} on U and assume all the previous
notations. The classical Weitzenbö ck-Bochner formula reads as

1
2∆∥∇ϕ∥2 = ⟨∇ϕ, ∇∆ϕ⟩ + ∥∇2ϕ∥2 + K∥∇ϕ∥2.

Note that the Hessian term can be written

∥∇2ϕ∥2 = 1
2(∆ϕ)2 + 1

2(ϕ11 − ϕ22)2 + 2ϕ2
12.

Then by Lemma 2.11 we have

2∥∇ϕ∥4∥∇2ϕ∥2 = ∥∇ϕ∥4(∆ϕ)2

+ (1 − ν2)2∥∇ϕ∥2
{

9c2ν2∥∇ϕ∥2 + ∥∇K∥2 − 6cν⟨∇K, ∇ϕ⟩
}

− 4Hν(1 − ν2)∥∇ϕ∥2(H2 − K − c + 2cν2)⟨∇K, ∇h⟩

+ 12cHν2(1 − ν2)∥∇ϕ∥2(H2 − K − c + 2cν2)⟨∇ϕ, ∇h⟩

+ 4H2ν2(1 − ν2)∥∇ϕ∥2(H2 − K − c + 2cν2)2.
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Dividing the expression above by (1 − ν2)∥∇ϕ∥2 and using (2.4) we get

(2.15) 2(H2 − K + cν2)∥∇2ϕ∥2 = (H2 − K + cν2)(∆ϕ)2

+ (1 − ν2)
{

9c2ν2∥∇ϕ∥2 + ∥∇K∥2 − 6cν⟨∇K, ∇ϕ⟩
}

− 4Hν(H2 − K − c + 2cν2)⟨∇K, ∇h⟩

+ 12cHν2(H2 − K − c + 2cν2)⟨∇ν, ∇h⟩

+ 4H2ν2(H2 − K − c + 2cν2)(H2 − K − cν2 + 2c).

By equation (2.8), and since ∆ν2 = 2(ν∆ν + ∥∇ν∥2), we have

−1
2∆∥∇ϕ∥2 = 1

2(1 − ν2)∆K − 2ν⟨∇K, ∇ν⟩

+ (H2 − K − c + 2cν2)ν∆ν + (H2 − K − c + 6cν2)∥∇ν∥2,

and by equation (2.9)

⟨∇ϕ, ∇∆ϕ⟩ = 2ν⟨∇K, ∇ν⟩ + 2Hν⟨∇K, ∇h⟩

+ (−2H2 + 2K − c − 3cν2)∥∇ν∥2

+ H(−2H2 + 2K − c − 3cν2)⟨∇ν, ∇h⟩.

Since equation (2.8) implies K∥∇ϕ∥2 = K(H2 − K + cν2)(1 − ν2) and
equation (2.1) implies ∥∇ν∥2 = (−K + cν2)(1 − ν2) − 2H⟨∇ν, ∇h⟩, we get

− 1
2∆∥∇ϕ∥2 + ⟨∇ϕ, ∇∆ϕ⟩ + K∥∇ϕ∥2

= 1
2(1 − ν2)∆K + (H2 − K − c + 2cν2)ν∆ν

+ (−H2 + K − 2c + 3cν2)(−K + cν2)(1 − ν2)

+ 3Hc(1 − 3ν2)⟨∇ν, ∇h⟩ + 2Hν⟨∇K, ∇h⟩

+ K(H2 − K + cν2)(1 − ν2).

Multiplying the expression above by 2(H2 − K + cν2) and using (2.8),
the Weitzenböck-Bochner formula implies that

0 = (1−ν2)
{
(H2−K+cν2)∆K+∥∇K∥2−6cν⟨∇K, ∇ϕ⟩+4Hcν⟨∇K, ∇h⟩

}
+6Hc(1 − ν2)(H2 − K − cν2)⟨∇ν, ∇h⟩ + ∥∇ϕ∥2

{
9c2ν2(1 − ν2)

+ 2(−K + cν2)(−H2 + K − 2c + 3cν2) + 2K(H2 − K + cν2)
}

+(H2 −K +cν2)(∆ϕ)2 +2(H2 −K +cν2)(H2 −K −c+2cν2)ν∆ν

+ 4H2ν2(H2 − K − c + 2cν2)(H2 − K − cν2 + 2c).
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Since ∇ϕ = ∇ν + H∇h, observing that (H2 − K − cν2 + 2c) = (H2 −
K + cν2) + 2c(1 − ν2), we get

0 = (1−ν2)
{
(H2−K+cν2)∆K+ ∥∇K∥2−6cν⟨∇K, ∇ν⟩−2Hcν⟨∇K, ∇h⟩

}
+ 6Hc(1 − ν2)(H2 − K − cν2)⟨∇ν, ∇h⟩ + ∥∇ϕ∥2

{
9c2ν2(1 − ν2)

+ 2(−K + cν2)(−H2 + K − 2c + 3cν2) + 2K(H2 − K + cν2)

+3cν2(2H2 −2K +c+2cν2)
}

+8H2cν2(1−ν2)(H2 −K −c+2cν2).

Dividing by (1 − ν2) and using (2.8) we get equation (2.14). □

3. CMC surfaces with constant intrinsic curvature

Minimal surfaces in M2
c × R with constant intrinsic curvature were clas-

sified in [9, Theorem 4.2]: such a surface is either totally geodesic or part of
an associate surface of the parabolic generalized catenoid (a certain limit of
catenoids). Regarding the non minimal case, Corollary 2.9 provides some
examples of H-constant mean curvature surfaces in M2

c × R with constant
intrinsic curvature, with H ̸= 0. We will see next that these are not the
only ones in H2

c × R.
This new example is based on the work [23] by Sa Earp and Toubiana,

where they study H-constant mean curvature screw motion surfaces in
H2 × R and S2 × R.

Example 3.1 (Helicoidal surfaces in H2
c ×R satisfying K = 4H2 + c < 0).

Up to scaling, suppose that c = −1. Consider the Poincaré disk model for
H2. Let K and H be real numbers such that H ̸= 0 and K = 4H2 − 1 < 0.
Let X : R2 → H2 × R be the screw motion immersion given by
(3.1)

X(σ, τ) =
(

tanh ρ(σ)
2 cos φ(σ, τ), tanh ρ(σ)

2 sin φ(σ, τ), λ(σ) + φ(σ, τ)
)

,

where the functions ρ, λ and φ are defined as

ρ(σ) = acosh
(

cosh(
√

−Kσ)√
−K

)
,

λ(σ) = 2Hσ + arctan
(

e2
√

−Kσ +2K + 1
4H

√
−K

)
,

φ(σ, τ) =
√

−Kτ − arctan
(

e2
√

−Kσ +2K + 1
4H

√
−K

)
.
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The height function is

(3.2)
h(σ, τ) = λ(σ) + φ(σ, τ)

= 2Hσ +
√

−Kτ.

We compute

ρ′(σ) =
√

−K sinh(
√

−Kσ)√
cosh2(

√
−Kσ) + K

and

λ′(σ) = 2H
cosh2(

√
−Kσ)

cosh2(
√

−Kσ) + K
.

By [23, Proposition 9] with l = 1 we have that, choosing the appropriate
orientation, the angle function is

(3.3)
ν(σ) = sinh ρ(σ)√

1 + sinh2 ρ(σ) + (λ′(σ)/ρ′(σ))2 sinh2 ρ(σ)

=
√

−K tanh(
√

−Kσ),

and we also compute

(λ′(σ)/ρ′(σ)) sinh2 ρ(σ)√
1 + sinh2 ρ(σ) + (λ′(σ)/ρ′(σ))2 sinh2 ρ(σ)

= 2H√
−K

cosh(
√

−Kσ).

Hence the first formula of [23, Lemma 11] implies that X(R2) has con-
stant mean curvature H. Moreover, we see that equation (∗) in that lemma
is satisfied for d = 0 (see Figures 11 and 12 in [23, Theorem 17] for pictures
of this surface).

Next, a straightforward computation shows that the induced metric d s2

on X(R2) is

(3.4) d s2 = d σ2 + cosh2(
√

−Kσ) d τ2.

By standard arguments, we obtain that this metric is complete and has
intrinsic curvature K. Note that this surface when H > 0 is the surface
obtained in Theorem 19 in [23] for a =

√
−K, m = 1/a, l = 1 and U(σ) =

cosh(aσ).
Therefore, given H ∈ R satisfying 0 < 4H2 < 1, there is an H-constant

mean curvature isometric immersion of R2 endowed with the metric (3.4)
into H2 ×R, with constant intrinsic curvature K = 4H2 − 1, such that the
angle and height functions are given by (3.3) and (3.2), respectively.
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To find conformal coordinates, we consider the following change of coor-
dinates on R2 for a complex parameter z:

(σ, τ) 7→ z = e−
√

−Kτ
(

tanh(
√

−Kσ) + i sech(
√

−Kσ)
)

.

This is a diffeomorphism between R2 and {z ∈ C : Im(z) > 0}. The
metric (3.4) reads as

d s2 = 4
K(z − z)2 | d z|2.

We compute the angle and height functions above, (3.3) and (3.2), in the
complex parameter by

ν(z) =
√

−K

2|z|
(z + z)

and
h(z) = 2H√

−K
asinh i(z + z)

z − z
− log |z|.

Let Σ be an H-constant mean curvature surface in M2
c ×R; we recall the

smooth function q : Σ → R+ defined on Σ as before by

q = 2Hc⟨∇ν, ∇h⟩ + 4H2(H2 − K + cν2) + 2H2c(1 − ν2) + c2

4 (1 − ν2)2.

Since the Abresch–Rosenberg differential is holomorphic, q either has
isolated zeroes or vanishes identically. Moreover, away from its zeroes, it is
proved in [12] that the function q satisfies the following equation

∆ log q = 4K

i.e.,

(3.5) 4Kq2 = q∆q − ∥∇q∥2.

Therefore, this equation holds by continuity on the isolated zeroes of q, and
also when q vanishes identically.

If H ̸= 0, when Σ has constant mean curvature H and also constant
intrinsic curvature K, Proposition 2.12 reads as

2Hcr⟨∇ν, ∇h⟩ + W = 0

where

W = 4H2cν2(H2 −K −2c+3cν2)−4(H2 −K +cν2)(K −c−H2)(K +2cν2)

and
r = 3(H2 − K − cν2).
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Note that the condition r = 0 implies that ν is a constant function on Σ
and then Σ is characterized by Corollary 2.9. Then restricting in an open
set of Σ where r ̸= 0, by Proposition 2.12 we can written the function q as

q = p

r
where p is defined by

p = −W + r

(
4H2(H2 − K + cν2) + 2H2c(1 − ν2) + c2

4 (1 − ν2)2
)

.

Since K, H and c are constants, the functions W , p and r are polynomials
of ν on Σ. In the next lemma, we transform equation (3.5).

Lemma 3.2. — Let H ̸= 0, Σ be an H-constant mean curvature surface
in M2

c × R with constant intrinsic curvature K and U ⊆ Σ be an open set
on which r ̸= 0. If K ̸= 4H2 + c, there is an even polynomial g with degree
18, such that g ◦ ν = 0 on U .

Proof. — In the open set U ⊆ Σ, since rq = p we have that

r4q∆q = r2p∆p − p2r∆r − 2p⟨r∇p − p∇r, ∇r⟩,

r4∥∇q∥2 = r2∥∇p∥2 − 2p⟨r∇p − p∇r, ∇r⟩ − p2∥∇r∥2.

Subtracting the equations above, multiplying by r and using equation (3.5)
we get

(3.6) 4Kp2r3 − pr2(r∆p) + r2(r∥∇p∥2) − p2(r∥∇r∥2) + p2r(r∆r) = 0.

Note that the quantities between parentheses in (3.6) are all polynomial
of ν. In fact, if f ∈ C∞(Σ) is an even polynomial of ν of degree at most 6,
given by

f = f0 + f2ν2 + f4ν4 + f6ν6,

where fi are constants, we have that

∥∇f∥2 = ν2(2f2 + 4f4ν2 + 6f6ν4)2∥∇ν∥2

∆f = f2∆ν2 + f4∆ν4 + f6∆ν6

= (2f2 + 4f4ν2 + 6f6ν4)ν∆ν + (2f2 + 12f4ν2 + 30f6ν4)∥∇ν∥2.

On the other hand, since 2Hcr⟨∇ν, ∇h⟩ + W = 0, by equation (2.1) we
have

r∥∇ν∥2 = r(−K + cν2)(1 − ν2) + 1
c

W

=
[

− Kr0 + 1
c

W0

]
+
[
(K + c)r0 − Kr2 + 1

c
W2

]
ν2

+
[

− cr0 + (K + c)r2 + 1
c

W4

]
ν4 − cr2ν6
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and
ν∆ν = (2K − 4H2 − c)ν2 − cν4.

With these expressions we can see that equation (3.6) has degree at
most 20 in ν, and now we proceeds to compute its coefficients of degrees
20 and 18.

For the term 4Kp2r3, we have

(4Kp2r3)20 = 0,

(4Kp2r3)18 = 4Kp2
6r3

2.

For the term −pr2(r∆p), we have

(−pr2(r∆p))20 = − 6p2
6r3

2(ν∆ν)4 − 30p2
6r2

2(r∥∇ν∥2)6,

(−pr2(r∆p))18 = − p6r2
2
(
6p6r0(ν∆ν)4 + 4p4r2(ν∆ν)4 + 6p6r2(ν∆ν)2

+ 12p4(r∥∇ν∥2)6 + 30p6(r∥∇ν∥2)4
)

− 2p6r0r2
(
6p6r2(ν∆ν)4 + 30p6(r∥∇ν∥2)6

)
− p4r2

2
(
6p6r2(ν∆ν)4 + 30p6(r∥∇ν∥2)6

)
.

For the term r2(r∥∇p∥2), we have

(r2(r∥∇p∥2))20 = 36p2
6r2

2(r∥∇ν∥2)6,

(r2(r∥∇p∥2))18 = 72p2
6r0r2(r∥∇ν∥2)6

+ r2
2
(
36p2

6(r∥∇ν∥2)4 + 48p4p6r2
2(r∥∇ν∥2)6

)
.

For the term −p2(r∥∇r∥2), we have

(−p2(r∥∇r∥2))20 = − 4p2
6r2

2(r∥∇ν∥2)6,

(−p2(r∥∇r∥2))18 = − 4p2
6r2

2(r∥∇ν∥2)4 − 8p4p6r2
2(r∥∇ν∥2)6.

And finally, for the term p2r(r∆r), we have

(p2r(r∆r))20 = p2
6r2
(
2r2

2(ν∆ν)4 + 2r2(r∥∇ν∥2)6
)

(p2r(r∆r))18 = p2
6r2
(
2r0r2(ν∆ν)4 + 2r2

2(ν∆ν)2 + 2r2(r∥∇ν∥2)4
)

+ p2
6r0
(
2r2

2(ν∆ν)4 + 2r2(r∥∇ν∥2)6
)

+ 2p4p6r2
(
2r2

2(ν∆ν)4 + 2r2(r∥∇ν∥2)6
)
.

Summing all these terms of order 20 and 18, we get respectively

(3.6)20 = 4p2
6r2

2
(
(r∥∇ν∥2)6 − r2(ν∆ν)4

)
,
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and

(3.6)18 = 4Kp2
6r3

2 − 14p2
6r0r2

2(ν∆ν)4 − 6p4p6r3
2(ν∆ν)4 − 4p2

6r3
2(ν∆ν)2

+ 14p2
6r0r2(r∥∇ν∥2)6 + 2p4p6r2

2(r∥∇ν∥2)6 + 4p2
6r2

2(r∥∇ν∥2)4.

Since p4 = −c2(101H2 − 29K + 26c)/4, p6 = −3c3/4, r0 = 3(H2 − K),
r2 = −3c, (r∥∇ν∥2)4 = c(17H2 − 8K + 5c), (r∥∇ν∥2)6 = −cr2, (ν∆ν)2 =
−4H2 + 2K − c and (ν∆ν)4 = −c, we have that (3.6)20 = 0 and

(3.6)18 = −486c9(4H2 + c − K).

If K ̸= 4H2 + c then (3.6) implies that exists an even polynomial g of
degree 18, such that g ◦ ν = 0 on U . □

Theorem 3.3. — Let H ̸= 0 and Σ be an H-constant mean curvature
surface in M2

c × R with constant intrinsic curvature K. Then one of the
following holds:

• either K = 0 and Σ is part of a vertical cylinder γ × R, where
γ ⊂ M2

c is a curve of geodesic curvature 2H,
• or c < 0, K = 4H2 + c < 0 and Σ is part of either an ARL-surface

or a surface of Example 3.1.

Proof. — Let ν : Σ → [−1, 1] be the angle function of Σ. If r = 0 then ν

is a constant function on Σ and so Σ is characterized by Corollary 2.9. On
an open set where r ̸= 0, suppose that K ̸= 4H2 + c. Then by Lemma 3.2
there is an even polynomial g such that g ◦ ν = 0; then ν is a constant
function on Σ and again Σ is characterized by Corollary 2.9.

Suppose that K = 4H2 + c. If ν is constant on Σ then the result follows
from Corollary 2.9 and Σ is part of an ARL-surface. If ν is not a constant
function on Σ, Proposition 2.12 implies that

(3.7) c⟨∇ν, ∇h⟩ = 2H(4H2 + c − cν2)

and by Theorem 2.2 we obtain the following system

∥∇ν∥2 = −1
c

(4H2 + c − cν2)2,(3.8)

∆ν = (4H2 + c − cν2)ν.(3.9)

The equation (3.8) implies that c < 0. Using the Cauchy–Schwarz in-
equality for ⟨∇ν, ∇h⟩ in (3.7), since r ̸= 0, by equations (2.1) and (2.3) we
have that 4H2+c−cν2 < 0. Consequently, K = 4H2+c < 0 and |ν| <

√
K
c .
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The system (3.9) and (3.8) implies that the function ν is isoparametric,
that is, ∥∇ν∥2 and ∆ν are functions of ν. Then there is a local parametriza-
tion of Σ such that ν is one of coordinates (see, e.g., [17] and [11, page 163]),
i.e., there is local coordinates (x1, x2) on Σ such that ν(x1, x2) = x1, for
x1 ∈ I, where I ⊆

(
−
√

K
c ,
√

K
c

)
is an open interval, and

d s2 = 1
F (x1)2 d x2

1 + G(x1)2 d x2
2,

for F (x1) = ∥∇ν∥ and G : I → R defined by

F (x1)G(x1) = exp
(∫ ∆ν

∥∇ν∥2 d x1

)
.

By (3.8) we have

F (x1) = 1√
−c

(cx2
1 − c − 4H2)

and we compute that, up to multiplication by a positive constant,

G(x1) =
√

−c

(cx2
1 − c − 4H2)1/2 .

Let {∂x1 , ∂x2} be the coordinate fields of the local parametrization (x1, x2)
on Σ. In the basis {∂x1 , ∂x2} of T Σ, the gradient of the height function h

of Σ is written as

∇h = ∂h

∂x1
F 2∂x1 + ∂h

∂x2

1
G2 ∂x2 ,

and the following system holds:

∥∇h∥2 = 1 − ν2,(3.10)

c⟨∇ν, ∇h⟩ = 2H(4H2 + c − cx2
1).(3.11)

Since ∇ν = F 2∂x1 , equations (3.10) and (3.11) imply that
∂h

∂x1
= 2H

cx2
1 − c − 4H2 and ∂h

∂x2
= ε,

for ε = ±1 and then, up to the addition of a constant, we obtain

h(x1, x2) = 2H√
cK

atanh
(√

c

K
x1

)
+ εx2.

Considering the following change of coordinates

(x1, x2) 7→ (σ, τ) =
(

1√
cK

atanh
(√ c

K
x1

)
,

εx2√
−K

)
,
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we can see that the metric d s2, the angle and height functions of Σ are
also given, respectively, by

d s2 = −c d σ2 − c cosh2(
√

cKσ) d τ2,

ν(σ) =
√

K

c
tanh(

√
cKσ),

h(σ, τ) = 2Hσ +
√

−Kτ,

that is, up to scaling, Σ is the helicoidal surface of Example 3.1. □

Remark 3.4. — Note that Theorem 3.3 together with [9, Theorem 4.2]
give a complete classification of constant mean curvature surfaces in M2

c ×R
with constant intrinsic curvature.

Remark 3.5. — For a given H ̸= 0, the ARL-surface and the helicoidal
surface of Example 3.1 are complete surfaces in H2 × R with the same
non-zero constant mean curvature, which are intrinsically isometric but
not congruent; up to our knowledge this is the first example of such a pair
(see [25, Remark 1]).

4. CMC surfaces with constant intrinsic curvature in
E(κ, τ)

4.1. Preliminaries and first examples

In this section, as an application of Theorem 3.3, we classify constant
mean curvature surfaces in E(κ, τ), for κ − 4τ2 ̸= 0, with constant in-
trinsic curvature. The manifold E(κ, τ) is a 3-homogeneous space with a
4-dimensional isometry group; it is a Riemannian fibration of bundle curva-
ture τ over M2

κ. A comprehensive literature about constant mean curvature
surfaces in these manifolds has been developed in the past few decades. For
more details, we refer to [2, 7, 13, 24]. These spaces are classified as follows:

• When τ = 0, E(κ, 0) is the product space M2
κ × R,

• When τ ̸= 0 and κ > 0, E(κ, τ) is a Berger sphere,
• When τ ̸= 0 and κ = 0, E(0, τ) is the Heisenberg group with a left

invariant metric.
• When τ ̸= 0 and κ < 0, E(κ, τ) is the universal cover of PSL2(R)

with a left invariant metric, and we denote by P̃SL2(R).
From now on, we will assume that τ ̸= 0. As already mentioned in the

product case, some examples of H-constant mean curvature surfaces in
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E(κ, τ) with constant intrinsic curvature K appears when the angle func-
tion is constant [12]. Note that, by the recent classification by Domínguez-
Vázquez and Manzano in [10], these constant angle CMC surfaces turn out
to be the only isoparametric surfaces in E(κ, τ).

Example 4.1 (Vertical cylinders in E(κ, τ)). — Let γ ⊂ M2
κ be a curve

with constant geodesic curvature k. If π : E(κ, τ) → M2
κ is the Riemannian

fibration then π−1(γ) is a (k/2)-CMC surface in E(κ, τ) with intrinsic cur-
vature K = 0. Since the normal vector N of π−1(γ) is orthogonal to the
unit Killing vector field ξ, the angle function vanishes.

Example 4.2 (Generalized ARL-surfaces in E(κ, τ) with κ < 0). — In
this work, we call generalized ARL-surface the H-constant mean curvature
surfaces PH,κ,τ in E(κ, τ) such that:

• PH,κ,τ has constant intrinsic curvature K = 4H2 + κ < 0.
• The Abresch–Rosenberg differential vanishes identically on PH,κ,τ .
• The function ν is constant on PH,κ,τ satisfying ν2 = 4H2+κ

κ−4τ2 ∈ (0, 1).
These surfaces generalizes the ARL-surfaces and have also been studied

by Verpoort [27]. Also in [10], Domínguez-Vázquez and Manzano gave an
explicit parametrization of PH,κ,τ as an entire graph.

Moreover, in [12] it is shown that generalized ARL-surfaces are the only
H-constant mean curvature surfaces in E(κ, τ) such that the angle function
ν is constant and satisfies 0 < ν2 < 1.

4.2. New examples in P̃SL2(R)

Example 4.3 (Minimal surfaces in P̃SL2(R) with K < 0 satisfying K = κ

invariant by parabolic isometries). — Up to scaling, we suppose that κ =
−1. Consider P̃SL2(R) = {(x, y, t) ∈ R3 : y > 0} endowed with the metric

d x2 + d y2

y2 +
(

−2τ

y
d x + d t

)2
, with τ ̸= 0.

Let Ω ⊂ R2 be the open set given by Ω = R × (0, 1). Consider the
immersion X : Ω → P̃SL2(R) given by

(4.1) X(x, y) =
(

x, y,
√

4τ2 + 1 arcsin y
)

.

This surface is the one studied by Peñafiel in [21, Lemma 4.2] with d = 1
(the other examples, with d ∈ R∗, in that lemma can be reduced to this one
if we consider the isometries of P̃SL2(R) given by F1(x, y, t) = (x/d, y/d, t),
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for d > 0, and F2(x, y, t) = (x/d, −y/d, −t), for d < 0, with a change of
coordinates; for d = 0, the surface is a generalized ARL-surface). Moreover,
this surface is invariant by 1-parameter group of parabolic isometries of
P̃SL2(R) and by Peñafiel’s results, X(Ω) is a minimal surface.

The induced metric on X(Ω) is

(4.2) d s2 = 4τ2 + 1
y2 d x2 − 4τ

√
4τ2 + 1

y
√

1 − y2
d x d y + 4τ2y2 + 1

y2(1 − y2) d y2.

Choosing the appropriate orientation, the angle function ν is

(4.3) ν(y) =
√

1 − y2
√

4τ2 + 1
.

Since the coefficients of the first fundamental form of X(Ω) depend only
of y, standard computations using the Christoffel symbols show that the
intrinsic curvature K of d s2 is given by

(4.4) K(y) = 1
4(EG − F 2)2

{
Ey(EG)y − 2(EG − F 2)Eyy − 2FEyFy

}
.

We compute all terms involved in (4.4):

EG − F 2 = 4τ2 + 1
y4(1 − y2) , Ey = −2(4τ2 + 1)

y3 , Eyy = 6(4τ2 + 1)
y4 ,

Fy = −2τ
√

4τ2 + 1(2y2 − 1)
√

1 − y2

y2(1 − y2)2

and

(EG)y = 16τ2y4(4τ2 + 1) − 2y2(16τ4 − 8τ2 − 3) − 4(4τ2 + 1)
y5(1 − y2)2 .

A straightforward computation using these expressions and (4.4) shows
that X(Ω) has constant intrinsic curvature K = −1.

Therefore, X is a minimal isometric immersion of Ω endowed with the
metric (4.2) into P̃SL2(R), with constant intrinsic curvature K = −1, such
that the angle function is given by (4.3). Considering the π-rotation around
the geodesic {x = 0, t = π

2
√

4τ2 + 1}, we get a complete embedded minimal
surface invariant by parabolic isometries of P̃SL2(R) (see Figures 10 and
11 in [21, Example 4.3] for pictures of this surface).

Example 4.4 (Helicoidal surfaces in P̃SL2(R) satisfying K = 4H2+κ < 0).
Since the relation K = 4H2 + κ < 0 is invariant by scaling the metric
of P̃SL2(R), we may multiply this metric by 1/

√
−κ and so assume that
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κ = −1. Now we consider P̃SL2(R) = {(x, y, t) ∈ R3 : x2 +y2 < 1} endowed
with the metric

λ2(d x2 + d y2) +
(

2τ
λy

λ
d x − 2τ

λx

λ
d y + d t

)2
,

with λ = 2/(1 − (x2 + y2)).
Let K and H be real numbers, such that H > 0 and K = 4H2 − 1 < 0.

Let ε = ±1. We set

A = H
√

1 − 4H2
√

H2 + τ2

(√
4τ2 + 1 − 2ετ

)
,

B = −H
√

1 − 4H2
√

H2 + τ2

(√
4τ2 + 1 + 2ετ

)
,

C = − ετ
√

1 − 4H2

2H
√

H2 + τ2
.

We note that

1 − A2 =
(
ετ(1 − 4H2) + 2H2√

4τ2 + 1
)2

H2 + τ2 ;

hence 0 < A ⩽ 1, and A = 1 if and only if ετ < 0 and τ2(1 − 8H2) = 4H4.
Similarly,

1 − B2 =
(
ετ(1 − 4H2) − 2H2√

4τ2 + 1
)2

H2 + τ2 ;

hence −1 ⩽ B < 0, and B = −1 if and only if ετ > 0 and τ2(1 − 8H2) =
4H4.

Consider the screw motion invariant immersion Xε : R2 → P̃SL2(R)
given by

Xε(σ, θ) =
(

f(σ) cos(θ), f(σ) sin(θ), uε(σ) +
(

−2τ + ε
√

4τ2 + 1
)

θ
)

,

where f : R → (−1, 1) and uε : R → R are defined as follows.
If ετ > 0 or if ετ < 0 and τ2(1 − 8H2) ̸= 4H4, the function f is defined

as

f(σ) =
√

cosh(σ) − A√
cosh(σ) − B

.

If ετ < 0 and τ2(1 − 8H2) = 4H4, the function f is defined as

f(σ) = tanh(σ/2)√
4H2 tanh2(σ/2) + 1 − 4H2

.
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If τ2(1 − 8H2) ̸= 4H4, the function uε is defined as

uε(σ) = 2H
√

4τ2 + 1√
1 − 4H2

σ

+ 2
√

H2 + τ2

1 − 4H2

{
A(A − C)√

1 − A2
arctan

(√
1 + A√
1 − A

tanh(σ/2)
)

− B(B − C)√
1 − B2

arctan
(√

1 + B√
1 − B

tanh(σ/2)
)}

.

If ετ > 0 and τ2(1 − 8H2) = 4H4, the function uε is defined as

uε(σ) = 2H
√

1 − 4H2
√

1 − 8H2
σ +

√
1 − 8H2 arctan

(√
1 − 4H2

2H
tanh(σ/2)

)
.

If ετ < 0 and τ2(1 − 8H2) = 4H4, the function uε is defined as

uε(σ) = 2H
√

1 − 4H2
√

1 − 8H2
σ −

√
1 − 8H2 arctan

(
2H√

1 − 4H2
tanh(σ/2)

)
.

We note that f and uε remain unchanged if we multiply both ε and τ

by −1. In all cases, Xε is analytic and

u′
ε(σ) = 2H

√
4τ2 + 1√

1 − 4H2

(
cosh(σ) − C

)
cosh(σ)(

cosh(σ) − A
)(

cosh(σ) − B
) .

This surface is the analytic continuation of a surface that belongs to the
screw motion invariant family in P̃SL2(R) studied by Peñafiel in [22]. In
fact, if we consider the change of coordinates given by

σ(ρ) = acosh
(

H
√

1 − 4H2
√

H2 + τ2

(√
4τ2 + 1 cosh(ρ) − 2ετ

))

for ρ > acosh 2τεH
√

1−4H2+
√

H2+τ2

H
√

1−4H2
√

4τ2+1 , we obtain the screw motion invariant
surface of [22, Section 3.3] with

l = −2τ + ε
√

4τ2 + 1 and d = ετ(1 − 4H2)
H

√
4τ2 + 1

(l is the pitch if the screw motion). Indeed, we have

(uε◦σ)′(ρ) =
(
2H2√

4τ2 +1cosh(ρ)+ε(1−4H2)τ
)(√

4τ2 +1cosh(ρ)−2τε
)

sinh(ρ)
√

(1−4H2)H2
(√

4τ2 +1 cosh(ρ)−2τε
)2 −H2 −τ2

.

and f(σ(ρ)) = tanh(ρ/2). By Peñafiel’s results, Xε(R2) has constant mean
curvature H.
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The induced metric on Xε(R2) is

d s2 = E d σ2 + 2F d σ d θ + G d θ2

where the terms E, F and G are given by

E(σ) = ρ′(σ)2 + u′
ε(σ)2,

F (σ) = u′
ε(σ)

H
√

1 − 4H2
√

4τ2 + 1
(
εH
√

1 − 4H2 − 2τ
√

H2 + τ2 cosh(σ)
)
,

G(σ) = H2 + τ2

H2(1 − 4H2) cosh2(σ),

where ρ(σ) = 2 atanh(f(σ)).
Since the coefficients of the first fundamental form of Xε(R2) depend

only of σ, standard computations using the Christoffel symbols show that
the intrinsic curvature K of d s2 is given by

(4.5) K(σ) = 1
2(EG − F 2)2

{
1
2(EG − F 2)σGσ − (EG − F 2)Gσσ

}
.

We compute all terms involved in (4.5):

Gσ = 2(H2 + τ2)
H2(1 − 4H2) cosh(σ) sinh(σ),

Gσσ = 2(H2 + τ2)
H2(1 − 4H2)

(
2 cosh2(σ) − 1

)
,

EG − F 2 = H2 + τ2

H2(1 − 4H2)2 cosh2(σ),

(EG − F 2)σ = 2(H2 + τ2)
H2(1 − 4H2)2 cosh(σ) sinh(σ).

A straightforward computation using these expressions and (4.5) shows
that Xε(R2) has constant intrinsic curvature K = 4H2 − 1 < 0.

We now study the behaviour of the generating curve Γε = {Xε(σ, 0) :
σ ∈ R}. First, note that uε(σ) → +∞ when σ → +∞ and uε is odd; hence
Xε(R2) is a complete surface. We distinguish three cases in terms of ετ and
H (see Figures 4.1, 4.2 and 4.3):
Type I: If ετ > 0 or if ετ < 0 and τ2(1 − 8H2) < 4H4, then C < 1, and

so u′
ε > 0 and uε is strictly increasing on (0, +∞). Moreover, f is

even and uε is odd, so Γε is invariant by the π-rotation around the
geodesic {y = 0, t = 0}.

Type II: If ετ < 0 and τ2(1 − 8H2) > 4H4, then C > 1, and so we can
consider σ1 = acosh(C). We have u′

ε < 0 on (0, σ1) and u′
ε > 0 on

(σ1, +∞), so uε is strictly decreasing on (0, σ1) and u′
ε is strictly
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increasing on (σ1, +∞). Moreover, f is even and uε is odd, so Γε

is invariant by the π-rotation around the geodesic {y = 0, t = 0}.
Since uε changes of sign, Γε is not an embedded curve.

Type III: If ετ < 0 and τ2(1 − 8H2) = 4H4, then u′
ε > 0 and so uε is

strictly increasing on (0, +∞). Moreover, f and uε are odd, so Γε

is invariant by the π-rotation around the geodesic {x = 0, t = 0}.
Therefore, given H > 0 satisfying 0 < 4H2 < 1, there are two complete

H-constant mean curvature isometric immersions into P̃SL2(R), with con-
stant intrinsic curvature K = 4H2 − 1 < 0: X1(R2) and X−1(R2) (these
two surfaces are not congruent since they are invariant by screw motions
with different pitches l).

Figure 4.1. Generating curve Γε with τ = 1
2 and ε = 1:

(a) H = 1
4 (Type I). (b) H =

√√
2−1

2 (Type I).

(c) H =
√

2
3 (Type I).
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Figure 4.2. Generating curve Γε with τ = 1
2 and ε = −1:

(a) H = 1
4 (Type II). (b) H =

√√
2−1

2 (Type III).

(c) H =
√

2
3 (Type I).

Remark 4.5. — We explain how Type I and II surfaces converge to a
Type III surface. We fix τ and ε such that ετ < 0 and we now index by H

the previous quantities and functions. Note that the uε,H functions have
been chosen so that uε,H(0) = 0. Let H∗ be the mean curvature of the
Type III surface; it satisfies τ2(1 − 8H2

∗ ) = 4H4
∗ , hence

H2
∗ = − τ

2l
.

We note that

AH − CH =
√

1 − 4H2

2H
√

H2 + τ2

(
ετ(1 − 4H2) + 2H2

√
4τ2 + 1

)
,
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Figure 4.3. Complete screw motion surfaces in P̃SL2(R), with τ = 1
2 ,

satisfying K = 4H2 − 1 < 0:

(a) ε = 1 and H = 1
4 (Type I). (b) ε = −1 and H = 1

4 (Type II).

(c) ε = −1 and H =
√√

2−1
2

(Type III).

hence

1 − A2
H = 4H2

1 − 4H2 (AH − CH)2,

AH − CH > 0 for H > H∗ (Type I surfaces) and AH − CH < 0 for H < H∗
(Type II surfaces).
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Consequently, using the fact that l(l + 4τ) = 1 and 1 − 8H2
∗ = l2, when

H → H∗ we have AH → 1, BH → 8H2
∗ − 1, CH → 1 and

2
√

H2 + τ2

1 − 4H2
AH(AH − CH)√

1 − A2
H

→ ±|l|.

So, since
√

1+AH

1−AH
→ +∞, we have

uε,H → uε,H∗ ± |l|π2
uniformly on compact sets of (0, +∞). Here, the + signs occur when the
limit is for H > H∗ (Type I surfaces) and the − signs for H < H∗ (Type II
surfaces). On the other hand,

fH → fH∗

uniformly on compact sets of (0, +∞).
Considering the symmetries, we conclude that, when H > H∗, the curve

Γε,H converges to

T (Γ+
ε,H∗

) ∪ S ∪ (R ◦ T )(Γ+
ε,H∗

)

where Γ+
ε,H∗

= {Xε,H∗(σ, 0) : σ ∈ (0, +∞)}, S is the vertical segment
{(0, 0)} × [−|l|π/2, |l|π/2], T is the vertical translation of length |l|π/2
upward and R the π-rotation around the geodesic {y = 0, t = 0}. And
when H < H∗, the curve Γε,H converges to

T −1(Γ+
ε,H∗

) ∪ S ∪ (R ◦ T −1)(Γ+
ε,H∗

).

In both cases, this limit set generates by screw motion of pitch l a Type III
surface translated by π|l|/2 or −π|l|/2 in the vertical direction, i.e., a
Type III surface rotated by angle π/2 or −π/2, depending also on the
sign of l.

4.3. Classification

Theorem 4.6. — Let κ and τ be real numbers such that τ ̸= 0 and
κ − 4τ2 ̸= 0, and Σ be an H-constant mean curvature surface in E(κ, τ)
with constant intrinsic curvature K. Then one of the following holds:

• either K = 0 and Σ is part of a vertical cylinder over a curve γ ⊂ M2
κ

with geodesic curvature 2H,
• or κ < 0, K = 4H2 + κ < 0 and Σ is part of a generalized ARL-

surface,
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• or κ < 0, H = 0, K = κ and Σ is part of a minimal surface of
Example 4.3,

• or κ < 0, H ̸= 0, K = 4H2 + κ < 0 and Σ is part of one of twin
helicoidal surfaces of Example 4.4.

Proof. — Let ν : Σ → [−1, 1] be the angle function of Σ. If ν is a constant
function, since τ ̸= 0 by [12, Theorem 2.2] we get that either ν = 0, K = 0
and Σ is part of a vertical cylinder over a complete curve γ ∈ M2

κ with
geodesic curvature 2H, or 0 < ν2 < 1, K = 4H2 + κ < 0 and Σ is part of
a generalized ARL-surface.

From now on, suppose ν is not a constant function. Let (d s2, S, T, ν) be
the Gauss–Codazzi data on Σ into E(κ, τ). Consider H, κ ∈ R such that
H2 = H2 + τ2, κ = κ − 4τ2 and τ = 0. By the sister surface correspon-
dence [7, Theorem 5.2] the 4-uple (d s2, S, T , ν) is the Gauss–Codazzi data
of surface Σ in E(κ, 0) = M2

κ × R, where

S = eθJ(S − HI) + HI and T = eθJ T,

with θ ∈ R given by iH = ei θ(τ + i H) and therefore Σ has constant
mean curvature H and is isometric to Σ. Since d s2 has constant intrinsic
curvature and ν is not a constant function, by Theorem 3.3 we get that
κ < 0 and K = 4H2 + κ < 0, that is, κ − 4τ2 < 0 and K = 4H2 + κ < 0,
and Σ is part of the helicoidal surface of Example 3.1 in M2

κ−4τ2 × R.
However, the helicoidal surface of Example 4.4 in M2

κ−4τ2 ×R of constant
mean curvature H has at most two constant mean curvature sister surfaces
Σ1 and Σ2 in E(κ, τ): denote by Hk and (d s2, Sk, Tk, ν), with k = 1, 2, their
respective mean curvature and Gauss–Codazzi data, then H2 = H2

k + τ2,
i.e., H1 = −H2 = ±H, and

Sk = eθkJ(S − H I) + Hi I and Tk = eθkJ T ,

with θk ∈ R given by τ + i Hk = i ei θk H. Consequently, Σ is part of Σ1 or
of Σ2.

Assume H ̸= 0. Then Σ1 and Σ2 are twin surfaces [7, Theorem 5.14].
On the other hand, up to an orientation reversing isometry, Example 4.4
provided two non-congruent H-constant mean curvature surfaces in E(κ, τ)
with constant intrinsic curvature K = 4H2 + κ < 0 and non-constant
angle function. Then, these two surfaces coincide with Σ1 and Σ2, and we
conclude that Σ is part of one of the surfaces of Example 4.4.

Assume H = 0. Then Σ1 = Σ2 (since they have the same Gauss–Codazzi
data). On the other hand, Example 4.3 provided a minimal surface in
E(κ, τ) with constant intrinsic curvature K = κ < 0 and non-constant
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angle function. Then, this surface coincide with Σ1, and we conclude that
Σ is part of one of the surfaces of Example 4.3. □

5. Parallel mean curvature surfaces in S2 × S2 and H2 × H2

with constant intrinsic curvature

5.1. Preliminaries and first examples

A parallel mean curvature surface in M2
c × M2

c is a surface whose mean
curvature vector H satisfies

∇⊥H = 0,

where ∇⊥ is the normal connection. This implies in particular that the
norm of H is constant on the surface. For H > 0 we will call H-PMC
surface a parallel mean curvature surface whose mean curvature vector has
norm H. An H-PMC immersion is an immersion whose image is an H-
PMC surface. We will not consider minimal surfaces in this section, since
our results rely on the work [25] by Torralbo and Urbano where the minimal
case is not considered; we refer to [26] for some related results on minimal
surfaces in S2 × S2.

Torralbo and Urbano [25] studied PMC surfaces in M2
c×M2

c . In particular
(Theorem 1) they proved that there is a one-to-one correspondence between
classes of congruence of H-PMC immersions into M2

c × M2
c and unordered

pairs of classes of congruence of H-CMC immersions into M2
c × R (we say

that two immersions φ1 and φ2 into some Riemannian manifold M are
congruent if there exists an isometry f of M such that φ2 = f ◦ φ1).
In particular, from [25, Theorem 1] and our Theorem 2.2 follows that a
class of congruence of an H-PMC immersion of an oriented surface Σ in
M2

c × M2
c can be characterized by a metric d s2 and an unordered pair

{±(ν1, d h1), ±(ν2, d h2)} where (ν1, h1) and (ν2, h2) are solutions to (2.1),
(2.2), (2.3) and (2.4). We refer to Section 5.4 for details.

Up to scaling, we may assume that c = ±1.
The product manifold S2 × R is isometrically immersed into S2 × S2 as

a totally geodesic S2 × S1, S1 being a geodesic of S2; similarly, H2 × R is
isometrically embedded into H2 ×H2 as a totally geodesic H2 ×R, R being
a geodesic of H2. Hence, for H ̸= 0, an H-CMC surface in S2 ×R or H2 ×R
yields via these immersions an |H|-PMC surface in S2 × S2 or H2 × H2.
Moreover these immersions are characterized as follows: [Φ1] = [Φ2] if and
only if Φ is a CMC immersion into a totally geodesic S2 × S1 or a totally
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geodesic H2 × R. Then, in this case we have [Φ] = [Φ1]. For this we refer
to [25, page 788 and Theorem 1].

Using [25, Theorem 1] and our Theorem 3.3, we will classify H-PMC
surfaces in M2

c ×M2
c with constant intrinsic curvature. We have to be careful

to the fact that [25, Theorem 1] is a correspondence between immersions
and not surfaces.

We first recall examples from [25].

Example 5.1 (CMC surfaces in totally geodesic hypersurfaces, see [25,
page 788]). — Since M2

c ×R is isometrically immersed as a totally geodesic
submanifold of M2

c × M2
c (as mentioned above), all H-CMC surfaces with

constant intrinsic curvature given by Theorem 3.3 yield H-PMC surfaces
in M2

c × M2
c with constant intrinsic curvature.

Example 5.2 (products of constant curvature curves, see [25, page 789
and Example 1]). — If γ1 and γ2 are curves of constant curvatures k1 and
k2 in M2

c such that k1 and k2 are not both zero, then γ1 × γ2 is an H-PMC
surface with 4H2 = k2

1 + k2
2. In particular, when γ1 or γ2 is a geodesic of

M2
c , then this PMC surface is also one of those explained in Example 5.1.

Example 5.3 (Torralbo–Urbano surface in H2 × H2, see [25, item 3 of
Theorem 4 and Remark 6]). — Here we set c = −1. For H ∈ (0, 1

2 ), Tor-
ralbo and Urbano introduced an explicit H-PMC isometric embedding of
the hyperbolic plane of curvature K = 4H2 −1 that does not lie in a totally
geodesic H2 × R.

5.2. New examples in H2 × H2

We now describe new examples of H-PMC immersions into H2 ×H2 with
H ∈ (0, 1

2 ) and intrinsic curvature K = 4H2 − 1 < 0.
We set Ω = {z ∈ C : Im(z) > 0} and we endow Ω with the metric

d s2 = 4| d z|2

K(z − z)2 .

This is the half-plane model for the hyperbolic plane of curvature K. We
assume that Ω is oriented. Its isometry group is

Iso(Ω) = PSL2(R) ∪ PSL−
2 (R),

where PSL−
2 (R) = {f ∈ GL2(R) : det f = −1}/{± id}, with PSL2(R)

(group of orientation preserving isometries) acting on Ω by(
α β

γ δ

)
(z) = αz + β

γz + δ
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and PSL−
2 (R) (set of orientation reversing isometries) acting on Ω by(

α β

γ δ

)
(z) = αz + β

γz + δ
.

We also set

D =
{(

α 0
0 α−1

)
: α ∈ R∗

}
, T =

{(
α β

0 α−1

)
: α ∈ R∗, β ∈ R

}
,

ξ =
(

0 1
−1 0

)
, η =

(
−1 0
0 1

)
, ζ =

(
0 1

−1 1

)
.

i.e.,

ξ(z) = −1
z

, η(z) = −z, ζ(z) = 1
−z + 1 .

For f = ( α β
γ δ ) ∈ PSL2(R) we set

ρ(f) = βγ

αδ
∈ R ∪ {∞}.

Finally, for an immersion Φ : Ω → H2 × R or Φ : Ω → H2 × H2 we let

GΦ = {f ∈ Iso(Ω) : [Φ ◦ f ] = [Φ]}.

This is a subgroup of Iso(Ω).
Obviously classes of congruence of H-CMC isometric immersions of Ω

into M2
c × R are identical to classes of congruence of −H-CMC isometric

immersions of Ω into M2
c ×R because of reflections with respect to a totally

geodesic surface; such a reflection multiplies either ν or d h by −1, see
Remark 2.6. For ±H-CMC isometric immersions Φj : Ω → H2×R (j = 1, 2)
of data (νj , hj), we have [Φ1] = [Φ2] if and only if ν2 = ±ν1 and d h2 =
± d h1. Moreover, if Φ2 = Φ1 ◦ f for some f ∈ Iso(Ω), then h2 = h1 ◦ f

and ν2 = ±ν1 ◦ f according to whether f preserves or reverses orientation.
Hence [Φ1 ◦ f ] = [Φ1] if and only if ν1 ◦ f = ±ν1 and h1 ◦ f = ±h1.

We let X : Ω → H2 × R be the ARL-immersion given in Example 2.8
and Y : Ω → H2 × R the helicoidal immersion of Example 3.1. We first
determine the groups GX and GY .

Lemma 5.4. — We have

GX = T ∪ Tη

=
{(

α β

0 α−1

)
: α ∈ R∗, β ∈ R

}
∪
{(

−α β

0 α−1

)
: α ∈ R∗, β ∈ R

}
.
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Proof. — We recall from Example 2.8 that the angle function of X is
constant and its height function is

h(z) = − 2H√
−K

log
(√

−K

2 i (z − z)
)

,

so
hz(z) = − 2H√

−K(z − z)
.

We first consider an isometry f = ( α β
γ δ ) ∈ PSL2(R). The height function

of X ◦ f is h ◦ f and we have, since f is holomorphic,

(h ◦ f)z(z) = (hz ◦ f)(z)f ′(z) = − 2H√
−K

f ′(z)
f(z) − f(z)

= − 2H√
−K(z − z)

γz + δ

γz + δ
.

Since ν is constant, we have [X ◦ f ] = [X ] if and only if (hz ◦ f)f ′ = ±hz,
i.e., if and only if γ = 0. This proves that GX ∩ PSL2(R) = T .

Moreover, we have h ◦ η = h, so η ∈ GX and GX = T ∪ Tη. □

Lemma 5.5. — We have

GY = D ∪ Dξ =
{(

α 0
0 α−1

)
: α ∈ R∗

}
∪
{(

0 β

−β−1 0

)
: β ∈ R∗

}
.

Proof. — We recall from Example 3.1 that the angle function of Y is

ν(z) =
√

−K

2
z + z

|z|
and its height function is

h(z) = 2H√
−K

asinh i(z + z)
z − z

− log |z|,

so
hz(z) = − 2H√

−K

z

|z|(z − z) − 1
2z

.

We first consider an isometry f = ( α β
γ δ ) ∈ PSL2(R). Then

(ν ◦ f)(z) =
√

−K

2
2αγ|z|2 + (αδ + βγ)(z + z) + 2βδ

|αz + β||γz + δ|
.

If f ∈ GY , then ν◦f = ±ν and, considering the points where these functions
vanish, we get αγ = βδ = 0, so f ∈ D ∪ Dξ.

Conversely, we check that if f ∈ D then ν ◦ f = ν and (h ◦ f)z = hz, and
if f ∈ Dξ then ν ◦ f = −ν and (h ◦ f)z = −hz, so [Y ◦ f ] = [Y] in both
cases.

This proves that GY ∩ PSL2(R) = D ∪ Dξ.
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We now consider an isometry f = ( α β
γ δ ) ∈ PSL−

2 (R). Assume that f ∈
GY . Then ν ◦ f = ±ν, and, since ν ◦ η = −ν, we have ν ◦ (f ◦ η) = ±ν. By
the previous discussion we obtain that f ◦ η ∈ D ∪ Dξ ⊂ GY .

Consequently we get η ∈ GY . But

(h ◦ η)(z) = − 2H√
−K

asinh i(z + z)
z − z

− log |z|,

so
(h ◦ η)z(z) = 2H√

−K

z

|z|(z − z) − 1
2z

,

so (h ◦ η)z ̸= ±hz, which gives a contradiction.
Hence GY ∩ PSL−

2 (R) = ∅. □

Definition 5.6. — For f ∈ Iso(Ω), we let Af : Ω → H2 × H2 be an
H-PMC immersion corresponding to the pair ([Y], [X ◦ f ]); this immersion
is unique up to congruences in H2 × H2.

For f ∈ Iso(Ω), we let Bf : Ω → H2 × H2 be an H-PMC immersion
corresponding to the pair ([Y], [Y ◦ f ]); this immersion is unique up to
congruences in H2 × H2.

Remark 5.7. — We note that if f ∈ GY , then [Y] = [Y ◦ f ] and so, by
the discussion in [25] recalled in Section 5.1, Bf is a CMC immersion into
a totally geodesic H2 × R.

Proposition 5.8. — If f1, f2 ∈ Iso(Ω), then the immersions Af1 and
Af2 have the same image in H2 ×H2 up to congruences if and only if there
exist k ∈ GX and g ∈ GY such that

f2 = k ◦ f1 ◦ g.

Moreover, this property defines on Iso(Ω) and equivalence relation ∼
whose equivalence classes are GX GY (the class of id) and Iso(Ω) \ GX GY
(the class of ζ).

Proof. — The immersions Af1 and Af2 have the same image in H2 ×H2

up to congruences if and only if there exists g ∈ Iso(Ω) such that

[Af1 ◦ g] = [Af2 ].

This condition is equivalent to

([Y ◦ g], [X ◦ f1 ◦ g]) = ([Y], [X ◦ f2]),

i.e., to
[Y ◦ g] = [Y] and [X ◦ f1 ◦ g ◦ f−1

2 ] = [X ],
i.e., to

g ∈ GY and f1 ◦ g ◦ f−1
2 ∈ GX .

TOME 73 (2023), FASCICULE 1



240 Benoît DANIEL, Iury DOMINGOS & Feliciano VITÓRIO

Setting k = (f1 ◦ g ◦ f−1
2 )−1, this proves the first assertion.

We now study the equivalence classes of ∼.
It is clear that GX GY is the equivalence class of id.
We also notice that

GX GY = GX ∪ GX ξ =
{(

α β

γ δ

)
∈ Iso(Ω) : γ = 0 or δ = 0

}
.

Let f = ( α β
γ δ ) ∈ Iso(Ω) \ GX GY . Then γ ̸= 0 and δ ̸= 0.

If f ∈ PSL2(R) and γ
δ < 0 then(

α β

γ δ

)
=
(

1
δµ − α

µ

0 δµ

)(
0 1

−1 1

)(
µ 0
0 µ−1

)
for µ2 = − γ

δ . If f ∈ PSL2(R) and γ
δ > 0 then(

α β

γ δ

)
=
(

− µ
δ − β

µ

0 − δ
µ

)(
0 1

−1 1

)(
0 µ

−µ−1 0

)
for µ2 = δ

γ . Hence in both cases we have f ∼
( 0 1

−1 1
)
.

If f ∈ PSL−
2 (R), then, since η ∈ GX , η ◦ f ∈ PSL2(R) \ GX GY , so

f ∼ η ◦ f ∼
( 0 1

−1 1
)
.

This proves that Iso(Ω) \ GX GY is included in the equivalence class of( 0 1
−1 1

)
, and so equal to it. □

Proposition 5.9. — If f1, f2 ∈ Iso(Ω), then the immersions Bf1 and
Bf2 have the same image in H2 ×H2 up to congruences if and only if there
exist g1, g2 ∈ GY such that

f2 = g1 ◦ f1 ◦ g2.

This property defines on Iso(Ω) an equivalence relation ≈. For s ∈ R we
set

ms =
(

s 1 − s

−1 1

)
.

Then each equivalence class has exactly one representative in the set

{id, η} ∪ {ms : s ∈ [0, +∞)} ∪ {η ◦ ms : s ∈ [0, +∞)}.

Proof. — The proof of the first assertion is analogous to that of Propo-
sition 5.8.

We now study the equivalence classes of ≈. We first notice that:
• if f1 ≈ f2, then det f1 = det f2,
• the equivalence class of id is GY ,
• if f ∈ PSL2(R) \ GY and g ∈ D, then ρ(g ◦ f) = ρ(f ◦ g) = ρ(f),
• if f ∈ PSL2(R) \ GY and g ∈ Dξ, then ρ(g ◦ f) = ρ(f ◦ g) = ρ(f)−1.
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Claim A. — If f =
(

α β
γ δ

)
∈ PSL2(R)\GY , then f ≈ ms for some s ∈ R.

If γ ̸= 0 and δ ̸= 0, then:
• if γ and δ have the same sign, then(

α β

γ δ

)
=
(

− µ
δ 0

0 − δ
µ

)(
s 1 − s

−1 1

)(
0 µ

−µ−1 0

)
with s = −βγ and µ2 = δ

γ ,
• if γ and δ have opposite signs, then(

α β

γ δ

)
=
(

1
δµ 0
0 δµ

)(
s 1 − s

−1 1

)(
µ 0
0 µ−1

)
with s = αδ and µ2 = − γ

δ .
Hence, in both cases, f ≈ ms for some s ∈ R.

If γ = 0, then α ̸= 0 and, since f /∈ GY , β ̸= 0. Similarly, if δ = 0,
then β ̸= 0 and, since f /∈ GY , α ̸= 0. Hence, in both cases, applying the
previous argument to ξ ◦ f =

(
γ δ

−α −β

)
we obtain that f ≈ ξ ◦ f ≈ ms for

some s ∈ R.
This proves Claim A.

Claim B. — Let s, t ∈ R. Then ms ≈ mt if and only if
• s = t,
• or s + t = 1 and s /∈ [0, 1].

First, if s > 1 or s < 0, then −s and s − 1 do not vanish and have
opposite signs, so by the previous arguments we have

ms ≈ ξ ◦ ms =
(

−1 1
−s s − 1

)
≈ m1−s.

Conversely, let s and t such that ms ≈ mt and s ̸= t. Then ρ(ms) = ρ(mt)
or ρ(ms) = ρ(mt)−1. In the first case we have s

s−1 = t
t−1 , so s = t. In the

second case we have s
s−1 = t−1

t , so t = 1 − s.
Assume that s ∈ [0, 1]. Then s ⩾ 0 and 1 − s ⩾ 0. Let g1, g2 ∈ GY such

that m1−s = g1 ◦ ms ◦ g2. Considering the signs of the coefficients, both ms

and m1−s are of type ±
(
⩾0 ⩾0
<0 >0

)
. Since ρ(m1−s) = ρ(ms)−1, we have g1 ∈ D

and g2 ∈ Dξ or the contrary. But in the first case we obtain that m1−s

is of type ±
(
⩽0 ⩾0
<0 <0

)
and in the second case of type ±

(
<0 >0
⩽0 ⩽0

)
, which is a

contradiction in both cases. Hence we cannot have m1−s ≈ ms if s ∈ [0, 1].
This proves Claim B.

Claim C. — If f ∈ PSL2(R)\GY , then there exists a unique s ∈ [0, +∞)
such that f ≈ ms.
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By Claim A, there exists t ∈ R such that f ≈ mt. If t ⩾ 0, set s = t;
if t < 0, set s = 1 − t. Then in both cases we have s ∈ [0, +∞) and
f ≈ mt ≈ ms by Claim C.

And if there is u ∈ [0, +∞) such that u ̸= s and f ≈ mu, then by Claim
B we have s + u = 1 and s > 1, so u < 0, which is a contradiction.

This proves Claim C.

Claim D. — Let f1, f2 ∈ Iso(Ω). Then f1 ≈ f2 if and only if η◦f1 ≈ η◦f2.
This is a consequence of the fact that η commutes with all elements

of GY .

Claim E. — If f ∈ PSL−
2 (R), then either f ≈ η or there exists a unique

s ∈ [0, +∞) such that f ≈ η ◦ ms.
This is a consequence of Claim D and the fact that, either η ◦ f ∈ GY

and then η ◦ f ≈ id, or η ◦ f ∈ PSL2(R) \ GY and then we conclude
by Claim C. □

We now determine, for each of these immersions, the groups of isometries
of Ω that are induced by ambient isometries.

Proposition 5.10. — We have

GAid = D,

GAζ
= {id},

GBη = GY ,

GBms
= GBη◦ms

= {id} if s /∈ (0, 1),

GBms
= GBη◦ms

=

id,

 0
√

1−s
s

−
√

s
1−s 0

 if s ∈ (0, 1).

Proof. — Let g ∈ Iso(Ω).
We have [Aid ◦ g] = [Aid] if and only if

([Y ◦ g], [X ◦ g]) = ([Y], [X ]),

i.e., if and only if g ∈ GY ∩ GX = D. Hence GAid = D.
We have [Aζ ◦ g] = [Aζ ] if and only if

([Y ◦ g], [X ◦ ζ ◦ g]) = ([Y], [X ◦ ζ]),

i.e., if and only if g ∈ GY and ĝ = ζ ◦ g ◦ ζ−1 ∈ GX . Considering the
eigenvalues of g and ĝ, we obtain that g =

(
λ 0
0 λ−1

)
for some λ ∈ R∗ and

ĝ =
(

α β

0 α−1

)
for α = λ or λ−1 and some β ∈ R. Reporting in the relation
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ĝ ◦ ζ = ζ ◦ g we get λ = ±1 and β = 0, hence g = ĝ = id. This proves that
GAζ

= {id}.
We have [Bη ◦ g] = [Bη] if and only if

([Y ◦ g], [Y ◦ η ◦ g]) = ([Y], [Y ◦ η]),

i.e., if and only if g ∈ GY and η ◦ g ◦ η ∈ GY . Since η commutes with
elements in GY , this condition is equivalent to g ∈ GY . This proves that
GBη = GY .

Let s ∈ R. We have [Bms
◦ g] = [Bms

] if and only if

([Y ◦ g], [Y ◦ ms ◦ g]) = ([Y], [Y ◦ ms]),

i.e., if and only if g ∈ GY and ĝ = ms ◦ g ◦ ms
−1 ∈ GY . Considering the

eigenvalues of g and ĝ we can see that there are two cases:
• either g ∈ D and ĝ = g or g−1, and then we can compute that the

only possibility is g = ĝ = id,
• or g ∈ Dξ and ĝ ∈ Dξ, and then we can compute that the only

possibility is s ∈ (0, 1), g =
(

0 µ

−µ−1 0

)
with µ2 = 1−s

s and ĝ =(
0 µs

−µ−1s−1 0

)
.

This proves the claimed assertions for GBms
.

Similarly, we have [Bη◦ms
◦ g] = [Bη◦ms

] if and only if g ∈ GY and
ĝ = (η ◦ ms) ◦ g ◦ (η ◦ ms)−1 ∈ GY . Since η2 = id and elements in GY
commute with η, this is equivalent to g ∈ GY and ms ◦ g ◦ ms

−1 ∈ GY .
Hence GBη◦ms

= GBms
. □

5.3. Classification

Theorem 5.11. — Let H > 0 and K ∈ R. Let Σ be an H-PMC surface
with constant intrinsic curvature K in S2 × S2. Then K = 0 and Σ is part
of a product of two curves of constant curvatures.

Proof. — Let U be a surface with a Riemannian metric and Φ : U → S2×
S2 be an isometric immersion such that Φ(U) = Σ. Let Φ1, Φ2 : U → S2 ×R
be the two H-CMC isometric immersions given by the Torralbo–Urbano
correspondence. Then, by Theorem 3.3 for c = 1, we have K = 0 and
Φ1(U) and Φ2(U) are parts of vertical cylinders. In particular their angle
functions vanish.

But the angles functions of Φ1 and Φ2 coincide with the Kähler functions
of Φ for the two Kähler structures of S2×S2 (see [25, page 790 and the proof
of Theorem 1], precisely the relation Cj = νj). Then, by [25, Theorem 2],
Σ is part of a product of two curves of constant curvatures. □
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Theorem 5.12. — Let H > 0 and K ∈ R. Let Σ be an H-PMC surface
with constant intrinsic curvature K in H2 × H2. Then

• either K = 0 and Σ is part of a product of two curves of constant
curvatures,

• either K = 4H2 − 1 < 0 and Σ is part of
– an ARL-surface in some totally geodesic H2 × R,
– a helicoidal surface of Example 3.1 in some totally geodesic

H2 × R,
– a Torralbo–Urbano surface,
– a surface Aid(Ω),
– a surface Aζ(Ω),
– a surface Bη(Ω),
– a surface Bms

(Ω) for some s ∈ [0, +∞),
– or a surface Bη◦ms(Ω) for some s ∈ [0, +∞).

Moreover, the surfaces appearing in this list are pairwise non congruent.

Proof. — Let U be a surface with a Riemannian metric and Φ : U →
H2 ×H2 be an isometric immersion such that Φ(U) = Σ. Let Φ1, Φ2 : U →
H2 × R be the two H-CMC isometric immersions given by the Torralbo–
Urbano correspondence. Then, by Theorem 3.3 for c = −1,

• either K = 0 and Φ1(U) and Φ2(U) are parts of vertical cylinders,
• or K = 4H2 − 1 and Φ1(U) and Φ2(U) are each part of an ARL-

surface or of a helicoidal surface of Example 3.1
In the first case, we conclude as in the proof of Theorem 5.11 that Σ is

part of a product of two curves of constant curvatures.
From now on we assume that we are in the second case. Then, up to

a repara-metrization, we can assume that U is an open set of Ω and that
there exist f1, f2 ∈ Iso(Ω) such that Φ1 = X ◦ f1 or Φ1 = Y ◦ f1 and
Φ2 = X ◦ f2 or Φ2 = Y ◦ f2. In all cases Φ(U) will be part of a complete
surface so it is not restrictive to assume that U = Ω.

Assume that Φ1 = X ◦f1 and Φ2 = X ◦f2. The PMC immersion Φ admits
two holomorphic Hopf differentials, and they coincide, up to the multipli-
cation by a constant, with the Abresch–Rosenberg differentials of Φ1 and
Φ2 [25, Definition 1, Proposition 3 and Theorem 1]. Then, as the ARL-
surface has a vanishing Abresch–Rosenberg differential, the Hopf differen-
tials of Φ vanish. Consequently, by [25, Theorem 4], either Σ is an H-CMC
surface in a totally geodesic H2 × R with vanishing Abresch–Rosenberg
differential, so an ARL-surface because it also has constant curvature, or
Σ is a Torralbo–Urbano surface.
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Assume that Φ1 = Y ◦f1 and Φ2 = X ◦f2. Then the pair ([Φ1 ◦f−1
1 ], [Φ2 ◦

f−1
1 ]) corresponds to [Φ ◦ f−1

1 ], so will yield a reparametrization of Σ (up
to congruences) in H2 × H2. Hence we may assume that f1 = id. Then
Φ = Af2 (up to congruences) and, by Proposition 5.8, Σ is congruent to
Aid(Ω) or to Aζ(Ω).

Assume that Φ1 = X ◦ f1 and Φ2 = Y ◦ f2. Then, Φ is congruent to
the PMC immersion corresponding to the pair ([Φ2], [Φ1]), the conclusion
is the same as in the previous case.

Finally, assume that Φ1 = X ◦ f1 and Φ2 = Y ◦ f2. As above we can
assume that f1 = id. If f2 ∈ GY , then [Φ1] = [Φ2] and Σ is a helicoidal
surface of Example 3.1 in some totally geodesic H2 × R. If f2 /∈ GY , then
Φ = Bf2 (up to congruences) and, by Proposition 5.9, Σ is congruent to
Bη(Ω), to Bms

(Ω) or to Bη◦ms
(Ω) for some s ∈ [0, +∞).

The fact that all surfaces in this list are pairwise non congruent is a
consequence of the fact that any two of them give different pairs of classes
of congruences of CMC isometric immersions into H2 × R. □

Remark 5.13. — The extrinsic normal curvature of an H-PMC surface
in H2 × H2 is given by

K⊥ = ν2
2 − ν2

1
2

(see [25, page 790] and recall that Cj = νj). Hence the surfaces Aid(Ω),
Aζ(Ω), Bms(Ω) and Bη◦ms(Ω) for s ∈ [0, +∞) are examples of H-PMC
surfaces in H2 × H2 with non identically zero extrinsic normal curvature.
Up to our knowledge, these are the first examples of such surfaces. Note
that [25, Theorem 3] classifies H-PMC surfaces in S2 × S2 and H2 × H2

whose extrinsic normal curvature is identically zero.

Remark 5.14. — By Proposition 5.10, the group of isometries of Aid(Ω)
induced by ambient isometries is a one-parameter group (namely, GAid(Ω) =
D); hence, it should be possible to compute an explicit expression of this
surface, possibly in terms of solutions of ordinary differential equations. The
same holds for the surface Bη(Ω). However, for the surfaces Aζ(Ω), Bms

(Ω)
and Bη◦ms(Ω) for s ∈ [0, +∞), the groups of isometries induced by ambient
isometries are discrete, so such an explicit expression may not exist.

5.4. A remark on Torralbo and Urbano’s correspondence

Let H > 0. Let (Σ, d s2) be an oriented simply connected Riemannian
surface. In this section we explain in details why Torralbo and Urbano’s
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correspondence is a one-to-one correspondence between classes of congru-
ence of H-PMC immersions into M2

c × M2
c and unordered pairs of classes

of congruence of H-CMC immersions into M2
c × R.

It follows from their work and our Theorem 2.2 that a 4-uple

(ν1, d h1, ν2, d h2)

where (ν1, h1) and (ν2, h2) are solutions to (2.1), (2.2), (2.3) and (2.4) on
Σ characterizes an H-PMC immersion into M2

c ×M2
c modulo isometries in

the connected component of the identity in Iso(M2
c ×M2

c). In the notations
of [25, pages 795 and 796] we have, for j = 1, 2,

(5.1) Cj = νj , ηj = hj , γj = − i
√

2(ηj)z.

On the other hand, this 4-uple characterizes an ordered pair of H-CMC
immersions into M2

c ×R modulo isometries in the connected component of
the identity in Iso(M2

c × R) for each of them.
The isometry group of M2

c × M2
c has 8 connected components; they can

be obtained from the connected component of the identity applying the
following isometries:

G1 : (x1, x2) 7→ (F (x1), x2),
G2 : (x1, x2) 7→ (x1, F (x2)),
G3 : (x1, x2) 7→ (x2, x1),

where F : M2
c → M2

c is an orientation reversing isometry (i.e., antiholomor-
phic).

Following the notation of [25, pages 787 and 790], we let J be a conformal
structure on M2

c , ω be the corresponding Kähler form on M2
c , πj : M2

c ×
M2

c → M2
c the j-st projection (j = 1, 2), ω1 = π∗

1ω + π∗
2ω and ω2 =

π∗
1ω − π∗

2ω.
Let Φ : Σ → M2

c × M2
c be an H-PMC isometric immersion with data

(ν1, d h1, ν2, d h2).

For j = 1, 2, let Φj : Σ → M2
c × R be the H-CMC isometric immersion

with data (νj , d hj).
The manifold M2

c × M2
c has two Kähler structures, J1 = (J, J) and J2 =

(J, −J). The Kähler functions Cj (j = 1, 2) of Φ for these two Kähler
structures are defined by

Φ∗ωj = CjωΣ
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where ωΣ is the area 2-form on Σ. Moreover, by [25, equations (3.2)
and (3.3)], the “gamma” functions γj (j = 1, 2) satisfy

(5.2) γj =
√

2
H

⟨JjΦz, H⟩

where H is the mean curvature vector of Φ.
We have F ∗ω = −ω, π1 ◦ G1 = F ◦ π1 and π2 ◦ G1 = π2 so

(G1 ◦ Φ)∗ω1 = Φ∗G∗
1π∗

1ω + Φ∗G∗
1π∗

2ω = −Φ∗π∗
1ω + Φ∗π∗

2ω = −Φ∗ω2,

so the first Kähler function of G1 ◦ Φ is −C2. Similarly, the second Kähler
function of G1 ◦ Φ is −C1. Also, we have

⟨J1(G1 ◦ Φ)z, d G1(H)⟩ = −⟨J2Φz, H⟩,
⟨J2(G1 ◦ Φ)z, d G1(H)⟩ = −⟨J1Φz, H⟩,

so, using (5.2), we obtain that the “gamma” functions of G1◦Φ are −γ2 and
−γ1. Hence, taking (5.1) into account, we conclude that G1 ◦ Φ has data

(−ν2, − d h2, −ν1, − d h1).

Arguing in the same way, we can see that G2 ◦ Φ has data

(ν2, d h2, ν1, d h1).

Finally, π1 ◦ G3 = π2 and π2 ◦ G3 = π1, from what we deduce that
the Kähler functions of G3 ◦ Φ are C1 and −C2. We also check that the
“gamma” functions of G3 ◦ Φ are γ1 and −γ2. Hence G3 ◦ Φ has data

(ν1, d h1, −ν2, − d h2).

Hence, from the data of Φ and its compositions with isometries in the
group generated by G1, G2 and G3, we obtain the data of the pair (Φ1, Φ2)
and all pairs that can be obtained by possibly replacing each Φj by R ◦ Φj

where R is a π-rotation around a horizontal geodesic in M2
c ×R and possibly

permuting the two elements. Such a set exactly characterizes an unordered
pair of classes of congruence of H-CMC isometric immersions (note that
orientation reversing isometries of M2

c ×R give rise to −H-CMC immersions
and the corresponding data are not admissible for this correspondence).
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