A class formula for L-series in positive characteristic
Annales de l'Institut Fourier, Online first, 35 p.

We prove a formula for special L-values of Anderson modules, analogue in positive characteristic of the class number formula. We apply this result to two kinds of L-series.

Nous prouvons une formule pour les valeurs spéciales des séries L associées aux modules d’Anderson, cette formule étant un analogue de la formule analytique du nombre de classes. Nous appliquons nos résultats à deux types de fonctions L.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/aif.3512
Classification: 11G09,  11M38,  11R58,  11R60
Keywords: Anderson modules, tensor powers of the Carlitz module, Goss L-series, class number formula
Demeslay, Florent 1

1 LMNO, CNRS UMR 6139 Université de Caen 14032 Caen cedex (France)
@unpublished{AIF_0__0_0_A59_0,
     author = {Demeslay, Florent},
     title = {A class formula for $L$-series in positive characteristic},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2022},
     doi = {10.5802/aif.3512},
     language = {en},
     note = {Online first},
}
TY  - UNPB
TI  - A class formula for $L$-series in positive characteristic
JO  - Annales de l'Institut Fourier
PY  - 2022
DA  - 2022///
PB  - Association des Annales de l’institut Fourier
N1  - Online first
UR  - https://doi.org/10.5802/aif.3512
DO  - 10.5802/aif.3512
LA  - en
ID  - AIF_0__0_0_A59_0
ER  - 
%0 Unpublished Work
%T A class formula for $L$-series in positive characteristic
%J Annales de l'Institut Fourier
%D 2022
%I Association des Annales de l’institut Fourier
%Z Online first
%U https://doi.org/10.5802/aif.3512
%R 10.5802/aif.3512
%G en
%F AIF_0__0_0_A59_0
Demeslay, Florent. A class formula for $L$-series in positive characteristic. Annales de l'Institut Fourier, Online first, 35 p.

[1] Anderson, Greg W. t-motives, Duke Math. J., Volume 53 (1986) no. 2, pp. 457-502 | DOI | MR

[2] Anderson, Greg W.; Thakur, Dinesh S. Tensor powers of the Carlitz module and zeta values, Ann. Math., Volume 132 (1990) no. 1, pp. 159-191 | DOI | MR

[3] Anglès, Bruno; Pellarin, Federico Functional identities for L-series values in positive characteristic, J. Number Theory, Volume 142 (2014), pp. 223-251 | DOI | MR

[4] Anglès, Bruno; Pellarin, Federico; Ribeiro, F. Tavares; Demeslay, F. Arithmetic of positive characteristic L-series values in Tate algebras, Compos. Math., Volume 152 (2016) no. 1, pp. 1-61 | DOI | Zbl

[5] Anglès, Bruno; Taelman, Lenny; Bosser, Vincent Arithmetic of characteristic p special L-values, Proc. Lond. Math. Soc., Volume 110 (2015) no. 4, pp. 1000-1032 | DOI

[6] Conrad, Keith The digit principle, J. Number Theory, Volume 84 (2000) no. 2, pp. 230-257 | DOI | MR

[7] Fang, Jiangxue Special L-values of abelian t-modules, J. Number Theory, Volume 147 (2015), pp. 300-325 | DOI

[8] Goss, David Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 35, Springer, 1996, xiv+422 pages | MR

[9] Pellarin, Federico Values of certain L-series in positive characteristic, Ann. Math., Volume 176 (2012) no. 3, pp. 2055-2093 | DOI | MR

[10] van der Put, Marius; Singer, Michael F. Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer, 2003, xviii+438 pages | MR

[11] Taelman, Lenny Special L-values of Drinfeld modules, Ann. Math., Volume 175 (2012) no. 1, pp. 369-391 | DOI | MR

[12] Thakur, Dinesh S. Gauss sums for F q [T], Invent. Math., Volume 94 (1988) no. 1, pp. 105-112 | DOI | MR

Cited by Sources: