Let , , be a domain with smooth connected boundary. If is relatively compact, the Hartogs–Bochner theorem ensures that every CR distribution on has a holomorphic extension to . For unbounded domains this extension property may fail, for example if contains a complex hypersurface. The main result in this paper tells that the extension property holds if and only if the envelope of holomorphy of is . It seems that it is the first result in the literature which gives a geometric characterization of unbounded domains in for which the Hartogs phenomenon holds.
Comparing this to earlier work by the first two authors and Z. Słodkowski, one observes that the extension problem changes in character if one restricts to CR functions of higher regularity.
Soit , , un domaine à bord lisse et connexe. Si est relativement compact, le théorème de Hartogs et Bochner assure que toute distribution CR définie sur admet une extension holomorphe à . Cela ne se généralise pas forcément aux domaines non-bornés, par exemple si contient une hypersurface complexe. Le résultat principal de l’article dit que la propriété d’extension holomorphe a lieu si et seulement si l’enveloppe d’holomorphie de est . Il apparaît que cela est le premier résultat connu à donner une caracterisation géometrique des domaines non-bornés pour lesquels le phénomène de Hartogs est valide.
En se référant à des résultats antérieurs des deux premiers auteurs et Z. Słodkowski, on constate que le problème d’extension change de nature si on se restreint à des fonctions CR plus régulières.
Revised:
Accepted:
Published online:
Keywords: Hartogs–Bochner extension theorem, CR functions, unbounded domains in Stein manifolds, envelopes of holomorphy
Mot clés : Théorème d’extension de Hartogs et Bochner, fonctions CR, sous-domaines non-bornés de variétés de Stein, enveloppes d’holomorphie
Boggess, Al 1; Dwilewicz, Roman 2, 3; Porten, Egmont 4
@article{AIF_2022__72_3_1185_0, author = {Boggess, Al and Dwilewicz, Roman and Porten, Egmont}, title = {On the {Hartogs} extension theorem for unbounded domains in $\protect \mathbb{C}^n$}, journal = {Annales de l'Institut Fourier}, pages = {1185--1206}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {3}, year = {2022}, doi = {10.5802/aif.3514}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3514/} }
TY - JOUR AU - Boggess, Al AU - Dwilewicz, Roman AU - Porten, Egmont TI - On the Hartogs extension theorem for unbounded domains in $\protect \mathbb{C}^n$ JO - Annales de l'Institut Fourier PY - 2022 SP - 1185 EP - 1206 VL - 72 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3514/ DO - 10.5802/aif.3514 LA - en ID - AIF_2022__72_3_1185_0 ER -
%0 Journal Article %A Boggess, Al %A Dwilewicz, Roman %A Porten, Egmont %T On the Hartogs extension theorem for unbounded domains in $\protect \mathbb{C}^n$ %J Annales de l'Institut Fourier %D 2022 %P 1185-1206 %V 72 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3514/ %R 10.5802/aif.3514 %G en %F AIF_2022__72_3_1185_0
Boggess, Al; Dwilewicz, Roman; Porten, Egmont. On the Hartogs extension theorem for unbounded domains in $\protect \mathbb{C}^n$. Annales de l'Institut Fourier, Volume 72 (2022) no. 3, pp. 1185-1206. doi : 10.5802/aif.3514. https://aif.centre-mersenne.org/articles/10.5802/aif.3514/
[1] Real submanifolds in complex space and their mappings, Princeton Mathematical Series, 47, Princeton University Press, 1999 | DOI
[2] CR manifolds and the tangential Cauchy–Riemann complex, Studies in Advanced Mathematics, CRC Press, 1991 | MR | Zbl
[3] Hartogs phenomenon on unbounded domains – conjectures and examples, Complex analysis and potential theory (CRM Proceedings & Lecture Notes), American Mathematical Society, 2012, pp. 117-134 | DOI | Zbl
[4] Hartogs extension for generalized tubes in , J. Math. Anal. Appl., Volume 402 (2013) no. 2, pp. 574-578 | DOI | MR
[5] Hartogs-type extension for tube-like domains in , Math. Ann., Volume 363 (2015) no. 1-2, pp. 35-60 | DOI | MR | Zbl
[6] Hartogs-type extension for unbounded sets in via construction of Riemann domains, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (2017) no. 1, pp. 93-111 | MR | Zbl
[7] Analytic representation of CR functions, Math. USSR, Sb., Volume 27 (1975), pp. 526-553
[8] On Hartogs’ extension theorem on -complete complex spaces, J. Reine Angew. Math., Volume 637 (2009), pp. 41-47 | MR | Zbl
[9] Hartogs phenomena and antisyzygies for systems of differential equations, J. Geom. Anal., Volume 19 (2009) no. 2, pp. 288-300 | DOI | MR | Zbl
[10] Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., Volume 140 (1960), pp. 94-123 | DOI | MR | Zbl
[11] On the Hartogs–Bochner phenomenon for CR functions in , Proc. Am. Math. Soc., Volume 130 (2002) no. 7, pp. 1975-1980 | DOI | MR | Zbl
[12] Konvexität in der komplexen Analysis, Comment. Math. Helv., Volume 31 (1956/57), pp. 152-183 | DOI | Zbl
[13] Differential topology, Prentice Hall, 1974
[14] Analytic functions of several complex variables, Prentice-Hall Series in Modern Analysis, Prentice Hall, 1965
[15] Wermer type sets and extension of CR functions, Indiana Univ. Math. J., Volume 61 (2012) no. 1, pp. 431-459 | DOI | MR | Zbl
[16] On defining functions for unbounded pseudoconvex domains. I., Math. Z., Volume 286 (2017) no. 3-4, pp. 987-1002 | DOI | Zbl
[17] The analysis of linear partial differential operators. I: Distribution theory and Fourier analysis, Grundlehren der Mathematischen Wissenschaften, 256, Springer, 1983
[18] Extension of holomorphic functions, De Gruyter Expositions in Mathematics, 34, Walter de Gruyter, 2000 | DOI
[19] Überlagerungen und Holomorphichüllen, Math. Ann., Volume 144 (1961), pp. 126-134 | DOI | MR | Zbl
[20] Holomorphic function theory in several variables. An introduction, Universitext, Springer, 2011
[21] A new Hartogs-type extension result for the cross-like objects, Kyushu J. Math., Volume 69 (2015) no. 1, pp. 77-94 | DOI | MR | Zbl
[22] Valeurs au bord de fonctions holomorphes dans des domaines non bornés de , C. R. Math. Acad. Sci. Paris, Volume 304 (1987), pp. 67-69 | MR | Zbl
[23] Characteristic foliations on maximally real submanifolds of and removable singularities for CR functions, IMRP, Int. Math. Res. Pap., Volume 2006 (2006) no. 15, 72069, 131 pages | MR | Zbl
[24] Holomorphic extension of CR functions, envelopes of holomorphy, and removable singularities, IMRS, Int. Math. Res. Surv., Volume 2006 (2006) no. 1, 28925, 287 pages | MR | Zbl
[25] The Hartogs extension theorem on -complete complex spaces, J. Reine Angew. Math., Volume 637 (2009), pp. 23-39 | Zbl
[26] -hypoellipticity and extension of functions, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 14 (2015) no. 3, pp. 677-703 | MR | Zbl
[27] Hartogs type extension theorems on some domains in Kähler manifolds, Ann. Pol. Math., Volume 106 (2012), pp. 243-254 | DOI | Zbl
[28] Hartogs extension theorems on Stein spaces, J. Geom. Anal., Volume 20 (2010) no. 4, pp. 817-836 | DOI | MR | Zbl
[29] Hartogs phenomenon for systems of differential equations, J. Geom. Anal., Volume 24 (2014) no. 2, pp. 667-686 | DOI | MR | Zbl
[30] On the Hartogs-phenomenon and extension of analytic hypersurfaces in non-separated Riemann domains, Complex Variables, Theory Appl., Volume 47 (2002) no. 4, pp. 325-332 | DOI | MR | Zbl
[31] The Hartogs phenomenon on weakly pseudoconcave hypersurfaces, Math. Ann., Volume 354 (2012) no. 2, pp. 659-683 | DOI | MR | Zbl
[32] Hartogs–Bochner type theorem in projective space, Ark. Mat., Volume 41 (2003), pp. 151-163 | DOI | MR | Zbl
[33] Maximale holomorphe und meromorphe Abbildungen, Am. J. Math., Volume 85 (1963), pp. 298-315 | DOI | MR | Zbl
[34] Orbits of families of vector fields and integrability of distributions, Trans. Am. Math. Soc., Volume 180 (1973), pp. 171-188 | DOI | MR | Zbl
[35] Sur le prolongement holomorphe des fonctions CR définies sur une hypersurface réelle de classe dans , Invent. Math., Volume 83 (1986), pp. 583-592 | DOI
[36] Hypo-Analytic Structures. Local Theory, Princeton Mathematical Series, 40, Princeton University Press, 1992
Cited by Sources: