

ANNALES DE L'institut fourier

Florent DEMESLAY A class formula for *L*-series in positive characteristic Tome 72, nº 3 (2022), p. 1149-1183.

https://doi.org/10.5802/aif.3512

Article mis à disposition par son auteur selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE CCIEVAD http://creativecommons.org/licenses/by-nd/3.0/fr/

Les Annales de l'Institut Fourier sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN : 1777-5310

A CLASS FORMULA FOR *L*-SERIES IN POSITIVE CHARACTERISTIC

by Florent DEMESLAY

ABSTRACT. — We prove a formula for special L-values of Anderson modules, analogue in positive characteristic of the class number formula. We apply this result to two kinds of L-series.

RÉSUMÉ. — Nous prouvons une formule pour les valeurs spéciales des séries L associées aux modules d'Anderson, cette formule étant un analogue de la formule analytique du nombre de classes. Nous appliquons nos résultats à deux types de fonctions L.

1. Introduction

Let \mathbb{F}_q be a finite field with q elements and θ an indeterminate over \mathbb{F}_q . We denote by A the polynomial ring $\mathbb{F}_q[\theta]$ and by K the fraction field of A. For a A-module M having a finite number of elements, we denote by $[M]_A$ the monic generator of the Fitting ideal of M. The *Carlitz zeta value* at a positive integer n is defined as

$$\zeta_A(n) := \sum_{a \in A_+} \frac{1}{a^n} \in K_\infty := \mathbb{F}_q((\theta^{-1})),$$

where A_+ is the set of monic polynomials of A.

The Carlitz module C is the functor that associates to an A-algebra B the A-module C(B) whose underlying \mathbb{F}_q -vector space is B and whose A-module structure is given by the homomorphism of \mathbb{F}_q -algebras

$$\varphi_C \colon A \longrightarrow \operatorname{End}_{\mathbb{F}_q}(B)$$
$$\theta \longmapsto \theta + \tau,$$

 $K\!eywords:$ Anderson modules, tensor powers of the Carlitz module, Goss L-series, class number formula.

²⁰²⁰ Mathematics Subject Classification: 11G09, 11M38, 11R58, 11R60.

where τ is the Frobenius endomorphism $b \mapsto b^q$. Similarly, we denote by Lie(C) the functor where the A-module structure is given by scalar multiplication. For P a prime of A (i.e. a monic irreducible polynomial), one can show (see [8, Theorem 3.6.3]) that $[C(A/PA)]_A = P - 1$. Thus

(1.1)
$$\zeta_A(1) = \prod_{P \text{ prime}} \left(1 - \frac{1}{P}\right)^{-1} = \prod_{P \text{ prime}} \frac{[\text{Lie}(C)(A/PA)]_A}{[C(A/PA)]_A}$$

Recently, Taelman [11] associates, to a Drinfeld module ϕ over the ring of integers R of a finite extension of K, a finite A-module called the *class* module $H(\phi/R)$ and an L-series value $L(\phi/R)$. In particular, if ϕ is the Carlitz module and R is A, thanks to (1.1), we have

$$L(C/A) = \zeta_A(1).$$

These objects are related by a class formula: $L(\phi/R)$ is equal to the product of $[H(\phi/R)]_A$ times a regulator (see [11, Theorem 1]).

This class formula was generalized by Fang [7], using the theory of shtukas and ideas of Vincent Lafforgue, to Anderson modules over A, which are *n*-dimensional analogues of Drinfeld modules. In particular, for $C^{\otimes n}$, the n^{th} tensor power of the Carlitz module, introduced by Anderson and Thakur [2], we have

$$L(\mathbf{C}^{\otimes n}/A) = \zeta_A(n)$$

and this is related to a class module and a regulator as in the work of Taelman.

On the other hand, Pellarin [9] introduced a new class of *L*-series. Let t_1, \ldots, t_s be indeterminates over \mathbb{C}_{∞} , the completion of a fixed algebraic closure of K_{∞} . For each $1 \leq i \leq s$, let $\chi_{t_i} : A \to \mathbb{F}_q[t_1, \ldots, t_s]$ be the \mathbb{F}_q -linear ring homomorphism defined by $\chi_{t_i}(\theta) = t_i$. Then, Pellarin's *L*-value at a positive integer n is defined as

$$L(\chi_{t_1}\cdots\chi_{t_s},n):=\sum_{a\in A_+}\frac{\chi_{t_1}(a)\cdots\chi_{t_s}(a)}{a^n}\in\mathbb{F}_q[t_1,\ldots,t_s]\otimes_{\mathbb{F}_q}K_{\infty}.$$

In this paper, we prove that these series are naturally attached to some Anderson module (see Section 4.2) and that a class formula (Theorem 2.9) links these series to a class module à la Taelman [11]. Let us describe briefly our main result (Theorem 2.9).

Let L be a finite extension of K and $L_{s,\infty} := L \otimes_K \mathbb{F}_q(t_1, \ldots, t_s)((\theta^{-1}))$. Let τ be the continuous $\mathbb{F}_q(t_1, \ldots, t_s)$ -endomorphism such that $\tau(x) = x^q$ for all $x \in L \otimes_K \mathbb{F}_q((\theta^{-1}))$. For all $n \ge 1$, we naturally extend τ in a $\mathbb{F}_q(t_1,\ldots,t_s)$ -algebra endomorphism of $M_n(L_{s,\infty})$: $\tau((a_{i,j})_{1 \leq i,j \leq n}) := (\tau(a_{i,j})_{1 \leq i,j \leq n}), a_{i,j} \in L_{s,\infty}$. We set

$$R_s := \mathbb{F}_q(t_1, \ldots, t_s)[\theta] \simeq A \otimes_{\mathbb{F}_q} \mathbb{F}_q(t_1, \ldots, t_s),$$

and let $R_{L,s}$ be the integral closure of R_s in $L(t_1, \ldots t_s)$ $(R_{L,s} \simeq \mathcal{O}_L \otimes_{\mathbb{F}_q} \mathbb{F}_q(t_1, \ldots, t_s)$ where \mathcal{O}_L is the integral closure of A in L).

We recall that an Anderson t-module ψ is in particular a morphism of \mathbb{F}_q -algebras $A \to M_n(F)\{\tau\}$ where F is a \mathbb{F}_q -algebra equipped with a structure of A-module and where $\forall x \in F, \tau(x) = x^q$. In the case where F = L is a finite extension of K and $\psi : A \to M_n(\mathcal{O}_L)\{\tau\}$, Taelman ([11]) and Fang ([7]) proved an "analytic class number formula" for its associated L-series. In this article, we will replace A by R_s , \mathcal{O}_L by $R_{L,s}$, and we will be interested by a variant of Anderson modules and their associated L-series in this context. More precisely, let ϕ be an "Anderson module" defined on $R_{L,s}$, i.e. a morphism of $\mathbb{F}_q(t_1, \ldots, t_s)$ -algebras $\phi : R_s \to M_n(R_{L,s})\{\tau\}$ for a certain integer n such that

$$\phi(\theta) \equiv \theta I_n + N_\phi \mod \tau$$
, with $N_\phi \in M_n(R_{L,s})$ verifying $N_\phi^n = 0$.

If B is an $R_{L,s}$ -algebra, we denote by $\phi(B)$ the $\mathbb{F}_q(t_1, \ldots, t_s)$ -vector space B^n of column vectors with coefficients in B equipped with the R_s -module structure induced by ϕ . We also define $\operatorname{Lie}(\phi)(B)$ as the $\mathbb{F}_q(t_1, \ldots, t_s)$ -vector space B^n whose R_s -module structure is given by

$$\theta \cdot b = (\theta I_n + N_\phi) b$$
 for all $b \in \operatorname{Lie}(\phi)(B)$.

According to the work of Taelman [11], we can associate to this object the infinite product

$$L(\phi/R_{L,s}) := \prod_{\mathfrak{m}} \frac{[\operatorname{Lie}(\phi)(R_{L,s}/\mathfrak{m}R_{L,s})]_{R_s}}{[\phi(R_{L,s}/\mathfrak{m}R_{L,s})]_{R_s}}$$

where \mathfrak{m} runs through maximal ideals of \mathcal{O}_L , the integral closure of A in Land, if M is a finitely generated and torsion R_s -module, $[M]_{R_s}$ is the monic generator of the Fitting ideal of the R_s module M. This product converges to an element of $1 + \theta^{-1} \mathbb{F}_q(t_1, \ldots, t_s)((\theta^{-1}))$ (see Proposition 3.5).

For example, if L = K and $\phi_{\theta} = \theta + (t_1 - \theta) \cdots (t_s - \theta) \tau$, we have (see Propositions 4.10 and 4.13)

$$L(\phi/R_s) = \sum_{a \in A_+} \frac{\chi_{t_1}(a) \cdots \chi_{t_s}(a)}{a^n}.$$

Thus, we recover *L*-series introduced by Pellarin in [9] and we have an equality in the manner of (1.1). The interest of these series, as they are in the Tate algebra in *s* indeterminates t_1, \ldots, t_s with coefficients in $\mathbb{F}_q((\theta^{-1}))$, is that we can evaluate them specializing t_1, \ldots, t_s in elements of the algebraic closure of \mathbb{F}_q . Such specializations give us special values of Dirichlet–Goss *L*-series (see for example [4]).

Let us return to the general case and let ϕ be an Anderson module over $R_{L,s}$. There exists a unique series $\exp_{\phi} \in M_n(L(t_1,\ldots,t_s))\{\{\tau\}\}$ such that

$$\exp_{\phi}(\theta I_n + N_{\phi}) = \phi(\theta) \exp_{\phi}.$$

Moreover, \exp_{ϕ} converges on $\operatorname{Lie}(\phi)(L_{s,\infty})$ (Proposition 2.5). Then, we set

$$U(\phi/R_{L,s}) := \left\{ x \in \operatorname{Lie}(\phi)(L_{s,\infty}), \ \exp_{\phi}(x) \in \operatorname{Lie}(\phi)(R_{L,s}) \right\}$$

and
$$H(\phi/R_{L,s}) := \frac{\operatorname{Lie}(\phi)(L_{s,\infty})}{\operatorname{Lie}(\phi)(R_{L,s}) + \exp_{\phi}\left(\operatorname{Lie}(\phi)(L_{s,\infty})\right)}.$$

We show that $U(\phi/R_{L,s})$ is an R_s -lattice in $L_{s,\infty}$ and that $H(\phi/R_{L,s})$ is a finitely generated R_s -module and a torsion R_s -module (Proposition 2.8). If s = 0, these objects coincide with unit module and class module introduced by Taelman in [11]. As $U(\phi/R_{L,s})$ and $R_{L,s}$ are two R_s -lattices in $L_{s,\infty}$, we can define a "regulator" (see Section 2.3)

$$[R_{L,s}: U(\phi/R_{L,s})]_{R_s} \in \mathbb{F}_q(t_1,\ldots,t_s)((\theta^{-1}))^{\times}$$

Inspired by ideas developed by Taelman in [11], we prove that we have the class formula

$$L(\phi/R_{L,s}) = [R_{L,s} : U(\phi/R_{L,s})]_{R_s} [H(\phi/R_{L,s})]_{R_s}$$

In particular, for s = 0, we recover Theorem 1.10 of [7]. Note also that a weak version of this class formula play a significant role in [4]. We mention that one could work with a \mathbb{F}_q -algebra k instead of $\mathbb{F}_q(t_1, \ldots, t_s)$, in that case one should replace R_s by $A \otimes_{\mathbb{F}_q} k$, $R_{L,s}$ by $\mathcal{O}_L \otimes_{\mathbb{F}_q} k$, $L_{s,\infty}$ by $(L \otimes_{\mathbb{F}_q} \mathbb{F}_q((\theta^{-1}))) \otimes_{\mathbb{F}_q} k$ and $\tau : L \otimes_{\mathbb{F}_q} \mathbb{F}_q((\theta^{-1})) \to L \otimes_{\mathbb{F}_q} \mathbb{F}_q((\theta^{-1})), x \mapsto x^q$ by $\tau \otimes 1$. However, for the arithmetic applications we had in mind, we have focused on the case $k = \mathbb{F}_q(t_1, \ldots, t_s)$.

Finally, let $a \in A_+$ be squarefree and L be the cyclotomic field associated with a, i.e. the finite extension of K generated by the a-torsion of the Carlitz module. It is a Galois extension with group $\Delta_a \simeq (A/aA)^{\times}$. Let $\chi: (A/aA)^{\times} \to F^*$ be a homomorphism where F is a finite extension of \mathbb{F}_q . The special value at a positive integer n of Goss L-series associated to χ is defined as

$$L(n,\chi) := \sum_{b \in A_+} \frac{\chi(\overline{b})}{b^n} \in F \otimes_{\mathbb{F}_q} K_{\infty},$$

where b is the image of b in $(A/aA)^{\times}$. Combining the techniques used to prove Theorem 2.9 and ideas developed in [5, Section 8], we give some new

information on the arithmetic of the special values of these Dirichlet–Goss *L*-series $L(n, \chi)$. We can group all the $L(n, \chi)$ together in one equivariant *L*-value $L(n, \Delta_a)$. Then, we prove an equivariant class formula for these *L*-values (see Theorem 4.16), generalizing that of Anglès and Taelman [5] in the case n = 1.

Acknowledgements

The author sincerely thanks Bruno Anglès, Lenny Taelman and Floric Tavares Ribeiro for fruitful discussions and useful remarks. He also thanks the referees for several useful remarks and suggestions.

2. Anderson modules and class formula

Let \mathbb{F}_q be the finite field with q elements and θ an indeterminate over \mathbb{F}_q . We denote by A the polynomial ring $\mathbb{F}_q[\theta]$ and by K the fraction field of A. Let ∞ be the unique place of K which is a pole of θ and v_{∞} the discrete valuation of K corresponding to this place with the normalization $v_{\infty}(\theta) = -1$. The completion of K at ∞ is denoted by K_{∞} . We have $K_{\infty} = \mathbb{F}_q((\theta^{-1}))$. We denote by \mathbb{C}_{∞} a fixed completion of an algebraic closure of K_{∞} . The valuation on \mathbb{C}_{∞} that extends v_{∞} is still denoted by v_{∞} .

Let $s \ge 0$ be an integer and t_1, \ldots, t_s indeterminates over \mathbb{C}_{∞} . We set $k_s := \mathbb{F}_q(t_1, \ldots, t_s), R_s := k_s[\theta], K_s := k_s(\theta)$ and $K_{s,\infty} := k_s((\theta^{-1}))$. For $f \in \mathbb{C}_{\infty}[t_1, \ldots, t_s]$ a polynomial expanded as a finite sum

$$f = \sum_{i_1,\dots,i_s \in \mathbb{N}} \alpha_{i_1,\dots,i_s} t_1^{i_1} \cdots t_s^{i_s},$$

with $\alpha_{i_1,\ldots,i_s} \in \mathbb{C}_{\infty}$, we set

$$v_{\infty}(f) := \inf \{ v_{\infty}(\alpha_{i_1,\ldots,i_s}) \mid i_1,\ldots,i_s \in \mathbb{N} \}.$$

For $f \in \mathbb{C}_{\infty}(t_1, \ldots, t_s)$, there exists g and h in $\mathbb{C}_{\infty}[t_1, \ldots, t_s]$ such that f = g/h, then we define $v_{\infty}(f) := v_{\infty}(g) - v_{\infty}(h)$. We easily check that v_{∞} is a valuation, trivial on k_s , called the *Gauss valuation*. For $f \in \mathbb{C}_{\infty}[t_1, \ldots, t_s]$, we set $\|f\|_{\infty} := q^{-v_{\infty}(f)}$ if $f \neq 0$ and $\|0\|_{\infty} = 0$. The function $\|\cdot\|_{\infty}$ is called the *Gauss norm*.

We denote by $\mathbb{C}_{s,\infty}$ the completion of $\mathbb{C}_{\infty}(t_1,\ldots,t_s)$ with respect to v_{∞} .

Florent DEMESLAY

2.1. Lattices

Let k be a field of characteristic q and θ be an indeterminate over k. We set $R := k[\theta]$ and $F := k((\theta^{-1}))$. We equipped R with the discrete valuation v trivial on k and normalized such that $v(\theta) = -1$. This valuation extends naturally to F and, for $f \in F$, we set $|f| = q^{-v(f)}$ if $f \neq 0$ and |0| = 0.

Let V be a finite dimensional k-vector space and $\|\cdot\|$ be a norm on V compatible with $|\cdot|$ on F, i.e. : $\forall v \in V, \forall f \in F, \|fv\| = |f|\|v\|$. For r > 0, we denote by $B(0,r) := \{v \in V \mid \|v\| < r\}$ the open ball of radius r, which is a k-subspace of V.

DEFINITION 2.1. — A sub-*R*-module M of V is an *R*-lattice of V if it is free of rank n and the *F*-vector space spanned by M is V.

We can characterize these lattices.

LEMMA 2.2. — Let V be a F-vector space of dimension $n \ge 1$ and M be a sub-R-module of V. The following assertions are equivalent:

- (1) M is an R-lattice of V;
- (2) M is discrete in V and every open subspace of the k-vector space V/M is of finite co-dimension.

Proof. — Let us suppose that M is an R-lattice of V, i.e. there exists a family (e_1, \ldots, e_n) of elements of M such that

$$M = \bigoplus_{i=1}^{n} Re_i$$
 and $V = \bigoplus_{i=1}^{n} Fe_i$.

Any element v of V can be uniquely written as $v = \sum_{i=1}^{n} v_i e_i$ with $v_i \in F$. Then, we set $||v|| := \max \{|v_i| \mid i = 1, ..., n\}$. Since R is discrete in F, this implies that M is discrete in V. Now, let $m \ge 0$ be an integer. We have

$$B\left(0,q^{-m}\right) = \bigoplus_{i=1}^{n} \theta^{-m-1} k \llbracket \theta^{-1} \rrbracket e_i.$$

In particular, we have $V = M \oplus B(0, 1)$ and

$$\dim_k \frac{B(0, q^{-m})}{B(0, q^{-m-1})} = n.$$

This implies that every open k-subspace of V/M is of finite co-dimension.

Reciprocally, let us suppose that M is discrete in V and every open subspace of the k-vector space V/M is of finite co-dimension. Let W be the F-subspace of V generated by M and m be its dimension. There exist e_1, \ldots, e_m in M such that

$$W = \bigoplus_{i=1}^{m} Fe_i.$$

Set

$$N = \bigoplus_{i=1}^{m} Re_i.$$

This is a sub-*R*-module of M and an *R*-lattice of W. In particular, M/N is discrete in W/N. Since any open *k*-subspace of W/N is of finite codimension, we deduce that M/N is a finite dimensional *k*-vector space. This implies that M is a finitely generated *R*-module, and therefore, since R is a principal ideal domain, we conclude that M is a free *R*-module of rank m. Finally, observe that, if m < n, V/M can not satisfy the co-dimensional property and thus W = V.

In Section 2.3, we will introduce some R_s -lattices needed for the statement of the class formula.

2.2. Anderson modules and exponential map

Let L be a finite extension of K, $L \subseteq \mathbb{C}_{\infty}$. We define $R_{L,s}$ to be the subring of $L_s := L(t_1, \ldots, t_s)$ generated by k_s and \mathcal{O}_L , where \mathcal{O}_L is the integral closure of A in L. We set $L_{s,\infty} := L \otimes_K K_{s,\infty}$. This is a finite dimensional $K_{s,\infty}$ -vector space. We denote by $S_{\infty}(L)$ the set of places of L above ∞ . For a place $\nu \in S_{\infty}(L)$, we denote by L_{ν} the completion of Lwith respect to ν . Let π_{ν} be a uniformizer of L_{ν} and \mathbb{F}_{ν} be the residue field of L_{ν} . Then, we define $L_{s,\nu} := \mathbb{F}_{\nu}(t_1, \ldots, t_s)((\pi_{\nu}))$ viewed as a subfield of $\mathbb{C}_{s,\infty}$. Let's observe that $L_{s,\nu}$ is the completion of L_s for the Gauss norm attached to ν . We have an isomorphism of $K_{s,\infty}$ -algebras

$$L_{s,\infty} \simeq \prod_{\nu \in S_{\infty}(L)} L_{s,\nu}.$$

Observe that $R_{L,s}$ is an R_s -lattice in the $K_{s,\infty}$ -vector space $L_{s,\infty}$.

Let $\tau \colon \mathbb{C}_{s,\infty} \to \mathbb{C}_{s,\infty}$ be the morphism of k_s -algebras given by the q-power map on \mathbb{C}_{∞} .

LEMMA 2.3. — The elements of $\mathbb{C}_{s,\infty}$ fixed by τ are those of k_s .

Proof. — Obviously, $k_s \subseteq \mathbb{C}_{s,\infty}^{\tau=1}$. Reciprocally, observe that $\mathbb{C}_{s,\infty}^{\tau=1} \subseteq \{f \in \mathbb{C}_{s,\infty} \mid v_{\infty}(f) = 0\}$. But we have the direct sum of $\mathbb{F}_q[\tau]$ -modules

$$\{f \in \mathbb{C}_{s,\infty} \mid v_{\infty}(f) \ge 0\} = \overline{\mathbb{F}_{\shortparallel}}(t_1, \dots, t_s) \oplus \{f \in \mathbb{C}_{s,\infty} \mid v_{\infty}(f) > 0\}$$

Since $\overline{\mathbb{F}_{\shortparallel}}(t_1,\ldots,t_s)^{\tau=1} = k_s$, we get the result.

The action of τ on $L_{s,\infty} = L \otimes_K K_{s,\infty}$ is the diagonal one $\tau \otimes \tau$.

As $R_s = k_s[\theta]$, a morphism of k_s -algebras is entirely defined by the image of θ .

DEFINITION 2.4. — Let r be a positive integer. An Anderson module E over $R_{L,s}$ is a morphism of k_s -algebras

$$\phi_E \colon R_s \longrightarrow M_n(R_{L,s})\{\tau\}$$
$$\theta \longmapsto \sum_{j=0}^r A_j \tau^j$$

for some $A_0, \ldots, A_r \in M_n(R_{L,s})$ such that $(A_0 - \theta I_n)^n = 0$.

These objects are usually called *abelian t-modules* as in the terminology of [1] but, to avoid confusion between t and the indeterminates t_1, \ldots, t_s , we prefer called them Anderson modules. Note also that Drinfeld modules are Anderson modules with n = 1.

For a matrix $A = (a_{ij}) \in M_n(\mathbb{C}_{s,\infty})$, we set $v_{\infty}(A) := \min_{1 \leq i,j \leq n} \{v_{\infty}(a_{ij})\}$ and $\tau(A) := (\tau(a_{ij})) \in M_n(\mathbb{C}_{s,\infty}).$

PROPOSITION 2.5. — There exists a unique skew power series $\exp_E := \sum_{i \ge 0} e_j \tau^j$ with coefficients in $M_n(L_s)$ such that

- (1) $e_0 = I_n;$
- (2) $\exp_E A_0 = \phi_E(\theta) \exp_E in M_n(L_s)\{\{\tau\}\};$
- (3) $\lim_{j\to\infty} \frac{v_{\infty}(e_j)}{a^j} = +\infty.$

Proof. — See [1, Proposition 2.1.4].

Observe that \exp_E is locally isometric. Indeed, by the third point,

$$c := \sup_{j \ge 1} \left(\frac{-v_{\infty}(e_j)}{q^j - 1} \right)$$

is finite. Then, for any $x \in L^n_{s,\infty}$ such that $v_{\infty}(x) > c$, we have

$$v_{\infty}\left(\sum_{j\geq 0}e_{j}\tau^{j}(x)-x\right)\geq \min_{j\geq 1}\left(v_{\infty}(e_{j})+q^{j}v_{\infty}(x)\right)>v_{\infty}(x).$$

If B is an $R_{L,s}$ -algebra together with a $\mathbb{F}_q(t_1, \ldots, t_s)$ -linear endomorphism $\tau_B : B \to B$ such that $\tau_B(rb) = \tau(r)\tau_B(b)$ for all $r \in R_{L,s}$ and $b \in B$.

ANNALES DE L'INSTITUT FOURIER

1156

 \square

We denote by E(B) the k_s -vector space B^n equipped with the structure of R_s -module induced by ϕ_E . For example, if n = 1 and $\phi(\theta) = \theta + \tau$, then the action of θ on B is given by $\theta b = \theta b + \tau_B(b)$.

We can also consider the tangent space Lie(E)(B) which is the k_s -vector space B^n whose R_s -module structure is given by the morphism of k_s -algebras

$$\partial \colon R_s \longrightarrow M_n(R_{L,s})$$
$$\theta \longmapsto A_0.$$

In particular, by the previous proposition, we get a continuous R_s -linear map

$$\exp_E$$
: Lie $(E)(L_{s,\infty}) \longrightarrow E(L_{s,\infty})$.

2.3. The class formula

In this section, we define a class module and two lattices in order to state the main result.

LEMMA 2.6.

(1)
$$A_0^{q^n} = \theta^{q^n} I_n$$
;
(2) $\inf_{j \in \mathbb{Z}} \left(v_\infty(A_0^j) + j \right)$ is finite.

Proof. — See [7, Lemma 1.4].

By the second point, for any $a_j \in k_s$ and $m \in \mathbb{Z}$, the series $\sum_{j \ge m} a_j A_0^{-j}$ converges in $M_n(L_{s,\infty})$. Thus, ∂ can be uniquely extended to a morphism of k_s -algebras by

 \square

$$\partial \colon \quad K_{s,\infty} \longrightarrow M_n(L_{s,\infty})$$
$$\sum_{j \ge m} a_j \frac{1}{\theta^j} \longmapsto \sum_{j \ge m} a_j A_0^{-j},$$

where $a_j \in k_s$ and $m \in \mathbb{Z}$. Then, $\operatorname{Lie}(E)(L_{s,\infty})$ inherits a $K_{s,\infty}$ -vector space structure. Observe, by the first point of the lemma, that, for any $f \in k_s((\theta^{-q^n}))$, we have $\partial(f) = fI_n$, i.e. the action is the scalar multiplication for these elements. In particular, we get an isomorphism $\operatorname{Lie}(E)(L_{s,\infty}) \simeq L_{s,\infty}^n$ as $k_s((\theta^{-q^n}))$ -modules. We deduce that $\operatorname{Lie}(E)(L_{s,\infty})$ is a $k_s((\theta^{-q^n}))$ vector space of dimension nq^n , so of dimension n over $K_{s,\infty}$.

PROPOSITION 2.7. — The R_s -module $\text{Lie}(E)(R_{L,s})$ is an R_s -lattice of $\text{Lie}(E)(L_{s,\infty})$.

Proof. — By the first point of the previous lemma, $\operatorname{Lie}(E)(R_{L,s})$ and $R_{L,s}^n$ are isomorphic as $k_s[\theta^{q^n}]$ -modules. Thus, $\operatorname{Lie}(E)(R_{L,s})$ is a finitely generated $k_s[\theta^{q^n}]$ -module. On the other hand, the action of an element $a \in R_s$ is the left multiplication by $aI_n + N$ where N is a nilpotent matrix. Since $aI_n + N$ is an invertible matrix, $\operatorname{Lie}(E)(R_{L,s})$ is a torsion-free R_s -module. Moreover, the $k_s((\theta^{-q^n}))$ -vector space generated by $\operatorname{Lie}(E)(R_{L,s})$ and $K_{s,\infty}$ is $L_{s,\infty}^n \simeq \operatorname{Lie}(E)(L_{s,\infty})$. Therefore, $\operatorname{Lie}(E)(R_{L,s})$ is a free R_s -module of finite rank. Looking at the dimension as K_s -vector space, the rank is necessarily n.

PROPOSITION 2.8.

(1) Set

$$H(E/R_{L,s}) := \frac{E(L_{s,\infty})}{\exp_E(\operatorname{Lie}(E)(L_{s,\infty})) + E(R_{L,s})}$$

This is a finite dimensional k_s -vector space, thus a finitely generated R_s -module and a torsion R_s -module, called the class module.

(2) The R_s -module $\exp_E^{-1}(E(R_{L,s}))$ is an R_s -lattice in $\operatorname{Lie}(E)(R_{L,s})$.

Proof. — Let V be an open neighbourhood of 0 in $L_{s,\infty}^n$ on which \exp_E acts as an isometry and such that $\exp_E(V) = V$. We have a natural surjection of k_s -vector spaces

$$\frac{L_{s,\infty}^n}{R_{L,s}^n + V} \longrightarrow H(E/R_{L,s}).$$

By Proposition 2.7, the left hand side is a finite dimensional k_s -vector space, hence a fortiori $H(E/R_{L,s})$ is as well.

Now, let us prove that $\exp_E^{-1}(E(R_{L,s}))$ is an R_s -lattice in $\operatorname{Lie}(E)(L_{s,\infty})$. Since the kernel of \exp_E and $\operatorname{Lie}(E)(R_{L,s})$ are discrete in $\operatorname{Lie}(E)(L_{s,\infty})$, so is $\exp_E^{-1}(E(R_{L,s}))$. Let V be an open neighbourhood of 0 on which \exp_E is isometric and such that $\exp_E(V) = V$. The exponential map induces a short exact sequence of k_s -vector spaces

$$0 \longrightarrow \frac{\operatorname{Lie}(E)(L_{s,\infty})}{\exp_E^{-1}(E(R_{L,s})) + V} \xrightarrow{\exp_E} \frac{E(L_{s,\infty})}{E(R_{L,s}) + V} \longrightarrow H(E/R_{L,s}) \longrightarrow 0.$$

Since the last two k_s -vector spaces are of finite dimension, the first one is of finite dimension too; thus $\exp_E^{-1}(E(R_{L,s}))$ satisfies the co-dimensional property.

An element $f \in K_{s,\infty}$ is monic if

$$f = \frac{1}{\theta^m} + \sum_{i > m} x_i \frac{1}{\theta^i},$$

ANNALES DE L'INSTITUT FOURIER

where $m \in \mathbb{Z}$ and $x_i \in k_s$. For an R_s -module M which is a finite dimensional k_s -vector space, we denote by $[M]_{R_s}$ the monic generator of the Fitting ideal of M.

Let V be a finite dimensional $K_{s,\infty}$ -vector space. Let M_1 and M_2 be two R_s -lattices in V. There exists $\sigma \in \operatorname{GL}(V)$ such that $\sigma(M_1) = M_2$. Then, we define $[M_1:M_2]_{R_s}$ to be the unique monic representative of $k_s^{\times} \det \sigma$.

The aim of the next section is to prove a class formula à la Taelman for Anderson modules:

THEOREM 2.9. — Let E be an Anderson module over $R_{L,s}$. The infinite product

$$L(E/R_{L,s}) := \prod_{\substack{\mathfrak{m} \text{ maximal} \\ \text{ideal of } \mathcal{O}_L}} \frac{|\text{Lie}(E)(R_{L,s}/\mathfrak{m}R_{L,s})|_{R_s}}{[E(R_{L,s}/\mathfrak{m}R_{L,s})]_{R_s}}$$

converges in $K_{s,\infty}$. Furthermore, we have

$$L(E/R_{L,s}) = [\text{Lie}(E)(R_{L,s}) : \exp_E^{-1}(E(R_{L,s}))]_{R_s}[H(E/R_{L,s})]_{R_s}$$

3. Proof of the class formula

The proof is very close to ideas developed by Taelman in [11] so we will only recall some statements and point out differencies.

3.1. Nuclear operators and determinants

Let k be a field and V a k-vector space equipped with a non-archimedean norm $\|\cdot\|$. Let φ be a continuous endomorphism of V. We say that φ is *locally contracting* if there exist an non empty open subspace $U \subseteq V$ and a real number 0 < c < 1 such that $\|\varphi(u)\| \leq c \|u\|$ for all $u \in U$. Any such open subspace U which moreover satisfies $\varphi(U) \subseteq U$ is called a *nucleus* for φ . Observe that any finite collection of locally contracting endomorphisms of V has a common nucleus. Furthermore if φ and ϕ are locally contracting, then so are the sum $\varphi + \psi$ and the composition $\varphi\psi$.

For every positive integer N, we denote by $V[\![Z]\!]/Z^N$ the $k[\![Z]\!]/Z^N$ module $V \otimes_k k[\![Z]\!]/Z^N$ and by $V[\![Z]\!]$ the $k[\![Z]\!]$ -module $V[\![Z]\!] := \varprojlim V[\![Z]\!]/Z^N$ equipped with the limit topology. Observe that any continuous $k[\![Z]\!]$ -linear endomorphism $\Phi : V[\![Z]\!] \to V[\![Z]\!]$ is of the form

$$\Phi = \sum_{n \ge 0} \varphi_n Z^n,$$

TOME 72 (2022), FASCICULE 3

where the φ_n are continuous endomorphisms of V. Similarly, any continuous $k[\![Z]\!]/Z^n$ -linear endomorphism of $V[\![Z]\!]/Z^N$ is of the form

$$\sum_{n=0}^{N-1} \varphi_n Z^n.$$

We say that the continuous $k[\![Z]\!]$ -linear endomorphism Φ of $V[\![Z]\!]$ (resp. of $V[\![Z]\!]/Z^N$) is nuclear if for all n (resp. for all n < N), the endomorphism φ_n of V is locally contracting.

From now on, we assume that for any open subspace U of V, the k-vector space V/U is of finite dimension.

Let Φ be a nuclear endomorphism of $V[\![Z]\!]/Z^N$. Let U_1 and U_2 be common nuclei for the φ_n , n < N. Since Proposition 8 in [11] is valid in our context,

$$\det_{k[\![Z]\!]/Z^N} \left(1 + \Phi \mid V/U_i \otimes_k k[\![Z]\!]/Z^N\right) \in k[\![Z]\!]/Z^N$$

is independent of $i \in \{1, 2\}$. We denote this determinant by

$$\det_{k[\![Z]\!]/Z^N}(1+\Phi \mid V).$$

If Φ is a nuclear endomorphism of $V[\![Z]\!]$, then we denote by $\det_{k[\![Z]\!]}(1 + \Phi \mid V)$ V) the unique power series that reduces to $\det_{k[\![Z]\!]/Z^N}(1 + \Phi \mid V)$ modulo Z^N for every N.

Note that Proposition 9, Proposition 10, Theorem 2 and Corollary 1 of [11] are also valid in our context. We recall the statements for the convenience of the reader.

PROPOSITION 3.1.

(1) Let Φ be a nuclear endomorphism of $V[\![Z]\!]$. Let $W \subseteq V$ be a closed subspace such that $\Phi(W[\![Z]\!]) \subseteq W[\![Z]\!]$. Then Φ is nuclear on $W[\![Z]\!]$ and $(V/W)[\![Z]\!]$, and

 $\det_{k \llbracket Z \rrbracket} (1 + \Phi \mid V) = \det_{k \llbracket Z \rrbracket} (1 + \Phi \mid W) \det_{k \llbracket Z \rrbracket} (1 + \Phi \mid V/W).$

(2) Let Φ and Ψ be nuclear endomorphisms of V[[Z]]. Then $(1 + \Phi)(1 + \Psi) - 1$ is nuclear, and

 $\det_{k \llbracket Z \rrbracket} ((1+\Phi)(1+\Psi) \mid V) = \det_{k \llbracket Z \rrbracket} (1+\Phi \mid V) \det_{k \llbracket Z \rrbracket} (1+\Psi \mid V).$

THEOREM 3.2.

(1) Let φ and ψ be continuous k-linear endomorphisms of V such that φ , $\varphi\psi$ and $\psi\varphi$ are locally contracting. Then

$$\det_{k\llbracket Z \rrbracket} (1 + \varphi \psi Z \mid V) = \det_{k\llbracket Z \rrbracket} (1 + \psi \varphi Z \mid V).$$

(2) Let $N \ge 1$ be an integer. Let φ and ψ be continuous k-linear endomorphisms of V such that all compositions φ , $\varphi\psi$, $\psi\varphi$, φ^2 , etc. in φ and ψ , containing at least one endomorphism φ and at most N-1 endomorphisms ψ , are locally contracting. Let $\Delta = \sum_{n=1}^{N-1} \gamma_n Z^n$ such that

$$1 + \Delta = \frac{1 - (1 + \varphi)\psi Z}{1 - \psi(1 + \varphi)Z} \mod Z^N.$$

Then Δ is a nuclear endomorphism of $V[\![Z]\!]$ and $\det_{k[\![Z]\!]}(1 + \Delta \mid V) = 1 \mod Z^N.$

3.2. Taelman's trace formula

Let L be a finite extension of K and E be the Anderson module given by

$$\phi \colon R_s \longrightarrow M_n(R_{L,s})\{\tau\}$$

$$\theta\longmapsto \sum_{j=0}^r A_j \tau^j$$

for some $A_0, \ldots, A_r \in M_n(R_{L,s})$ such that $(A_0 - \theta I_n)^n = 0$. Let $M_n(R_{L,s})\{\tau\}[\![Z]\!]$ be the ring of formal power series in Z with coefficients in $M_n(R_{L,s})\{\tau\}$, the variable Z being central.

We set

$$\Theta := \sum_{n \ge 1} (\partial_{\theta} - \phi_{\theta}) \partial_{\theta}^{n-1} Z^n \in M_n(R_{L,s}) \{\tau\} \llbracket Z \rrbracket.$$

LEMMA 3.3. — Let \mathfrak{m} be a maximal ideal of \mathcal{O}_L . In $K_{s,\infty}$, the following equality holds:

$$\frac{[\operatorname{Lie}(E)(R_{L,s}/\mathfrak{m}R_{L,s})]_{R_s}}{[E(R_{L,s}/\mathfrak{m}R_{L,s})]_{R_s}} = \operatorname{det}_{k_s \llbracket Z \rrbracket} (1 + \Theta \mid (R_{L,s}/\mathfrak{m}R_{L,s})^n)^{-1} \mid_{Z = \theta^{-1}}.$$

Proof. — We have:

$$\Theta = (1 - \phi_{\theta} Z) \frac{1}{1 - \partial_{\theta} Z} - 1.$$

Furthermore:

$$[\operatorname{Lie}(E)(R_{L,s}/\mathfrak{m}R_{L,s})]_{R_s}$$

= det_{ks[Z^{-1}]} $(Z^{-1} - \partial_{\theta} | (R_{L,s}/\mathfrak{m}R_{L,s})^n \otimes_{k_s} k_s[Z^{-1}])|_{Z^{-1} = \theta}$

$$[E(R_{L,s}/\mathfrak{m}R_{L,s})]_{R_s} = \det_{k_s[Z^{-1}]} \left(Z^{-1} - \phi_\theta \mid (R_{L,s}/\mathfrak{m}R_{L,s})^n \otimes_{k_s} k_s[Z^{-1}] \right) |_{Z^{-1} = \theta}.$$

Now:

$$\frac{\det_{k_s[Z^{-1}]} \left(Z^{-1} - \partial_\theta \mid (R_{L,s}/\mathfrak{m}R_{L,s})^n \otimes_{k_s} k_s[Z^{-1}] \right)}{\det_{k_s[Z^{-1}]} \left(Z^{-1} - \phi_\theta \mid (R_{L,s}/\mathfrak{m}R_{L,s})^n \otimes_{k_s} k_s[Z^{-1}] \right)} = \frac{\det_{k_s[Z]} \left(1 - \partial_\theta Z \mid (R_{L,s}/\mathfrak{m}R_{L,s})^n \otimes_{k_s} k_s[Z] \right)}{\det_{k_s[Z]} \left(1 - \phi_\theta Z \mid (R_{L,s}/\mathfrak{m}R_{L,s})^n \otimes_{k_s} k_s[Z] \right)},$$

and:

$$\frac{\det_{k_s[Z]} \left(1 - \partial_{\theta} Z \mid \left((R_{L,s}/\mathfrak{m}R_{L,s})^n \otimes_{k_s} k_s[Z] \right) \right)}{\det_{k_s[Z]} \left(1 - \phi_{\theta} Z \mid (R_{L,s}/\mathfrak{m}R_{L,s})^n \otimes_{k_s} k_s[Z] \right)} = \det_{k_s[\![Z]\!]} \left(1 + \Theta \mid (R_{L,s}/\mathfrak{m}R_{L,s})^n)^{-1} \right)$$

Thus:

$$\frac{\det_{k_s[Z^{-1}]} \left(Z^{-1} - \partial_{\theta} \mid (R_{L,s}/\mathfrak{m}R_{L,s})^n \otimes_{k_s} k_s[Z^{-1}] \right) |_{Z^{-1}=\theta}}{\det_{k_s[Z^{-1}]} \left(Z^{-1} - \phi_{\theta} \mid (R_{L,s}/\mathfrak{m}R_{L,s})^n \otimes_{k_s} k_s[Z^{-1}] \right) |_{Z^{-1}=\theta}} = \det_{k_s[Z]} \left(1 + \Theta \mid (R_{L,s}/\mathfrak{m}R_{L,s})^n \right)^{-1} |_{Z=\theta^{-1}}. \quad \Box$$

Let S be a finite set of places of L containing $S_{\infty}(L)$. Denote by \mathcal{O}_S the ring of functions regular outside S. In particular $\mathcal{O}_L \subseteq \mathcal{O}_S$. Let $R_{S,s}$ be the subring of L_s generated by \mathcal{O}_S and k_s . For example, if $S = S_{\infty}(L)$, we have $R_{S,s} = R_{L,s}$.

Let \mathfrak{p} be a maximal ideal of \mathcal{O}_L which is not in S. The natural inclusion $\mathcal{O}_L \hookrightarrow \mathcal{O}_S$ induces an isomorphism $R_{L,s}/\mathfrak{p}R_{L,s} \xrightarrow{\sim} R_{S,s}/\mathfrak{p}R_{S,s}$. By the previous lemma, we obtain

(3.1)
$$\frac{\left[\operatorname{Lie}(E)(R_{L,s}/\mathfrak{p}R_{L,s})\right]_{R_s}}{\left[E(R_{L,s}/\mathfrak{p}R_{L,s})\right]_{R_s}} = \operatorname{det}_{k_s \llbracket Z \rrbracket} \left(1 + \Theta \left| \left(R_{S,s}/\mathfrak{p}R_{S,s}\right)^n\right)^{-1} \right|_{Z=\theta^{-1}}.$$

Let $v_{\mathfrak{p}}$ de notes the \mathfrak{p} -adic Gauss valuation on $L[t_1, \ldots, t_s], i.e.$:

$$v_{\mathfrak{p}}\left(\sum_{i_1,\ldots,i_s\in\mathbb{N}}\alpha_{i_1,\ldots,i_s}t_1^{i_1}\cdots t_s^{i_s}\right):=\inf_{i_1,\ldots,i_s\in\mathbb{N}}\left\{v_{\mathfrak{p}}(\alpha_{i_1,\ldots,i_s})\right\},$$

where $v_{\mathfrak{p}}$ is the normalized \mathfrak{p} -adic valuation on L. Then $v_{\mathfrak{p}}$ extends to a valuation on L_s and we denote by $L_{s,\mathfrak{p}}$ the completion of L_s for the \mathfrak{p} -adic valuation $v_{\mathfrak{p}}$. Denote by $\mathcal{O}_{s,\mathfrak{p}}$ the valuation ring of $L_{s,\mathfrak{p}}$. By the strong approximation theorem, for any n > 0, there exists $\pi_n \in L$ such that $v_{\mathfrak{p}}(\pi_n) = -n$ and $v(\pi_n) \ge 0$ for all $v \notin S \cup \mathfrak{p}$. Thus, we have

(3.2)
$$L_{s,\mathfrak{p}} = \mathcal{O}_{s,\mathfrak{p}} + R_{S \cup \{\mathfrak{p}\},s}$$
 and $R_{S,s} = \mathcal{O}_{s,\mathfrak{p}} \cap R_{S \cup \{\mathfrak{p}\},s}$.

Finally, denote by $L_{s,S}$ the product of the completions of L_s with respect to places of S. For example, if $S = S_{\infty}(L)$, we have $L_{s,S} = L_{s,\infty}$.

ANNALES DE L'INSTITUT FOURIER

Recall that $R_{S,s}$ is a Dedekind domain, discrete in $L_{s,S}$ and such that every open subspace of $L_{s,S}/R_{S,s}$ is of finite co-dimension. Observe also that any element of $M_n(R_{S,s})\{\tau\}$ induces a continuous k_s -linear endomorphism of $(L_{s,S}/R_{S,s})^n$ which is locally contracting. In particular, the endomorphism Θ is a nuclear operator of $(L_{s,S}/R_{S,s})^n[[Z]]$.

LEMMA 3.4. — Let \mathfrak{p} be a maximal ideal of \mathcal{O}_L which is not in S. Then

$$\det_{k_{s}\llbracket Z \rrbracket} \left(1 + \Theta \mid (R_{S,s}/\mathfrak{p}R_{S,s})^{n} \right) = \frac{\det_{k_{s}\llbracket Z \rrbracket} \left(1 + \Theta \mid \left(\frac{L_{s,S} \times L_{s,\mathfrak{p}}}{R_{S \cup \{\mathfrak{p}\},s}} \right)^{n} \right)}{\det_{k_{s}\llbracket Z \rrbracket} \left(1 + \Theta \mid \left(\frac{L_{s,S}}{R_{S,s}} \right)^{n} \right)}.$$

Proof. — The proof is the same as that of Lemma 1 of [11], using equalities (3.2).

PROPOSITION 3.5. — The following equality holds in $K_{s,\infty}$:

$$L(E/R_{L,s}) = \det_{k_s \llbracket Z \rrbracket} \left(1 + \Theta \mid (L_{s,\infty}/R_{L,s})^n \right) |_{Z=\theta^{-1}}$$

In particular, $L(E/R_{L,s})$ converges in $K_{s,\infty}$.

Proof. — By Lemma 3.3, we have

$$L(E/R_{L,s}) = \prod_{\mathfrak{m}} \det_{k_s \llbracket Z \rrbracket} \left(1 + \Theta \mid (R_{L,s}/\mathfrak{m}R_{L,s})^n \right)^{-1} |_{Z=\theta^{-1}},$$

where the product runs through maximal ideals of \mathcal{O}_L . Fix $S \supseteq S_{\infty}(L)$ as above (the case $S = S_{\infty}(L)$ suffices). By equality (3.1), we have

$$\begin{split} \prod_{\mathfrak{m}} \det_{k_{s}\llbracket Z \rrbracket} \left(1 + \Theta \mid (R_{L,s}/\mathfrak{m}R_{L,s})^{n} \right)^{-1} \\ = \prod_{\mathfrak{m}} \det_{k_{s}\llbracket Z \rrbracket} \left(1 + \Theta \mid (R_{S,s}/\mathfrak{m}R_{S,s})^{n} \right)^{-1}, \end{split}$$

where the products run through maximal ideals of \mathcal{O}_L which are not in S.

Define $S_{D,N}$ as in [11]. It suffices to prove that for any $1 + F \in S_{D,N}$, the infinite product

$$\prod_{\mathfrak{m}\notin S\backslash S_{\infty}(L)} \det_{k_{s}\llbracket Z \rrbracket/Z^{N}} \left(1 + F \left| \left(\frac{R_{S,s}}{\mathfrak{m}R_{S,s}}\right)^{n}\right)\right.$$

converges to

$$\det_{k_s[\![Z]\!]/Z^N} \left(1 + F \left| \left(\frac{L_{s,S}}{R_{S,s}}\right)^n \right)^{-1} \right|$$

Let $\mathfrak{m}_1, \ldots, \mathfrak{m}_r$ be the maximal ideals of \mathcal{O}_L which are not in S and such that $\mathfrak{m}_i R_{S,s}$ is a maximal ideal of $R_{S,s}$ verifying $\dim_{k_s} R_{S,s}/\mathfrak{m}_i R_{S,s} < D$.

Applying successively Lemma 3.4 to $R_{S,s}$, $R_{S \cup \{\mathfrak{m}_1\},s}$, $R_{S \cup \{\mathfrak{m}_1,\mathfrak{m}_2\},s}$, etc., we obtain the following equality:

$$\begin{split} \det_{k_s \llbracket Z \rrbracket} \left(1 + F \left| \left(\frac{L_{s,S}}{R_{S,s}} \right)^n \right) \prod_{\mathfrak{m}} \det_{k_s \llbracket Z \rrbracket} \left(1 + F \left| \left(\frac{R_{S,s}}{\mathfrak{m}R_{S,s}} \right)^n \right) \right. \\ &= \det_{k_s \llbracket Z \rrbracket} \left(1 + F \left| \left(\frac{L_{s,S} \times L_{s,\mathfrak{m}_1} \times \dots \times L_{s,\mathfrak{m}_r}}{R_{S \cup \{\mathfrak{m}_1,\dots,\mathfrak{m}_r\},s}} \right)^n \right) \right. \\ & \times \prod_{\mathfrak{m} \neq \mathfrak{m}_1,\dots,\mathfrak{m}_r} \det_{k_s \llbracket Z \rrbracket} \left(1 + F \left| \left(\frac{R_{S,s}}{\mathfrak{m}R_{S,s}} \right)^n \right) \right. \end{split}$$

This allows us, replacing $R_{S,s}$ by $R_{S \cup \{\mathfrak{m}_1, \dots, \mathfrak{m}_r\}, s}$, to suppose that $R_{S,s}$ has not maximal ideal of the form $\mathfrak{m}R_{S,s}$ with \mathfrak{m} maximal ideal of \mathcal{O}_L which is not in S such that $\dim_{k_s} R_{S,s}/\mathfrak{m}R_{S,s} < D$. Then, we can finish the proof as in [11].

3.3. Ratio of co-volumes

Let V be a finite dimensional $K_{s,\infty}$ -vector space and $\|\cdot\|$ be a norm on V compatible with $\|\cdot\|_{\infty}$ on $K_{s,\infty}$. Let M_1 and M_2 be two R_s -lattices in V and $N \in \mathbb{N}$. A continuous k_s -linear map $\gamma \colon V/M_1 \to V/M_2$ is N-tangent to the identity on V if there exists an open k_s -subspace U of V such that

- (1) $U \cap M_1 = U \cap M_2 = \{0\};$
- (2) γ restricts to an isometry between the images of U;
- (3) for any $u \in U$, we have $\|\gamma(u) u\| \leq q^{-N} \|u\|$.

The map γ is infinitely tangent to the identity on V if it is N-tangent for every positive integer N.

PROPOSITION 3.6. — Let $\gamma \in M_n(L_s)\{\{\tau\}\}$ be a power series convergent on $L_{s,\infty}^n$ with constant term equal to 1 and such that $\gamma(M_1) \subseteq M_2$. Then γ is infinitely tangent to the identity on $L_{s,\infty}^n$.

Proof. — See [11, Proposition 12].

For example, by Proposition 2.5, the map

$$\exp_E \colon \frac{\operatorname{Lie}(E)(L_{s,\infty})}{\exp_E^{-1}(E(R_{L,s}))} \longrightarrow \frac{E(L_{s,\infty})}{E(R_{L,s})}$$

is infinitely tangent to the identity on $L_{s,\infty}^n$.

Now, let H_1 and H_2 two finite dimensional k_s -vector spaces which are also R_s -modules and set $N_i := \frac{V}{M_i} \times H_i$ for i = 1, 2. A k_s -linear map

 $\gamma: N_1 \to N_2$ is N-tangent (resp. infinitely tangent) to the identity on V if the composition

$$\frac{V}{M_1} \longleftrightarrow N_1 \xrightarrow{\gamma} N_2 \longrightarrow \frac{V}{M_2}$$

is so. For a k_s -linear isomorphism $\gamma \colon N_1 \to N_2$, we define an endomorphism

$$\Delta_{\gamma} := \frac{1 - \gamma^{-1} \partial_{\theta} \gamma Z}{1 - \partial_{\theta} Z} - 1 = \sum_{i \ge 1} (\partial_{\theta} - \gamma^{-1} \partial_{\theta} \gamma) \partial^{n-1} Z^{n}$$

of $N_1[\![Z]\!]$.

PROPOSITION 3.7. — If γ is infinitely tangent to the identity on V, then Δ_{γ} is nuclear and

$$\det_{k_s[\![Z]\!]}(1 + \Delta_{\gamma} \mid N_1)|_{Z=\theta^{-1}} = [M_1 : M_2]_{R_s} \frac{[H_2]_{R_s}}{[H_1]_{R_s}}.$$

Proof. — See [11, Theorem 4].

3.4. Proof of Theorem 2.9

By Theorem 3.5, $L(E/R_{L,s})$ converges in $K_{s,\infty}$ and

$$L(E/R_{L,s}) = \det_{k_s \llbracket Z \rrbracket} \left(1 + \Theta \mid (L_{s,\infty}/R_{L,s})^n \right) |_{Z=\theta^{-1}}.$$

The exponential map \exp_E induces a short exact sequence of R_s -modules

$$0 \longrightarrow \frac{\operatorname{Lie}(E)(L_{s,\infty})}{\exp_E^{-1}(E(R_{L,s}))} \longrightarrow \frac{E(L_{s,\infty})}{E(R_{L,s})} \longrightarrow H(E/R_{L,s}) \longrightarrow 0.$$

By Proposition 2.8, the k_s -vector space $H(E/R_{L,s})$ is of finite dimension. Moreover, since the R_s -module on the left is divisible and R_s is principal, the sequence splits. The choice of a section gives rise to an isomorphism of R_s -modules

$$\frac{\operatorname{Lie}(E)(L_{s,\infty})}{\exp_E^{-1}(E(R_{L,s}))} \times H(E/R_{L,s}) \simeq \frac{E(L_{s,\infty})}{E(R_{L,s})}$$

This isomorphism can be restricted to an isomorphism of k_s -vector spaces

$$\gamma \colon \frac{\operatorname{Lie}(E)(L_{s,\infty})}{\exp_E^{-1}(E(R_{L,s}))} \times H(E/R_{L,s}) \xrightarrow{\sim} \left(\frac{L_{s,\infty}}{R_{L,s}}\right)^n.$$

Observe that γ corresponds with the map induced by \exp_E . By Proposition 3.6, the map γ is infinitely tangent to the identity on $L^n_{s,\infty}$. By the

second point of Proposition 2.5, we have $\exp_E \partial_\theta \exp_E^{-1} = \phi_\theta$, hence the equality of $k_s[\![Z]\!]$ -linear endomorphisms of $\left(\frac{L_{s,\infty}}{R_{L,s}}\right)^n[\![Z]\!]$:

$$1 + \Theta = \frac{1 - \gamma \partial_{\theta} \gamma^{-1} Z}{1 - \partial_{\theta} Z}.$$

Thus, by Proposition 3.7, we obtain

$$\det_{k_s[\![Z]\!]}(1+\Theta \mid (L_{s,\infty}/R_{L,s})^n)|_{Z=\theta^{-1}} = [\operatorname{Lie}(E)(R_{L,s}) : \exp_E^{-1}(E(R_{L,s}))]_{R_s}[H(E/R_{L,s})]_{R_s}.$$

This concludes the proof.

4. Applications

4.1. The n^{th} tensor power of the Carlitz module

Let α be a non-zero element of R_s . Let E_{α} be the Anderson module defined by the morphism of k_s -algebras $\phi: R_s \to M_n(R_s)\{\tau\}$ given by

$$\phi_{\theta} = \partial_{\theta} + N_{\alpha}\tau,$$

where

$$\partial_{\theta} = \begin{pmatrix} \theta & 1 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \theta \end{pmatrix} \quad \text{and} \quad N_{\alpha} = \begin{pmatrix} 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & & & \vdots \\ \alpha & 0 & \cdots & 0 \end{pmatrix}.$$

In other words, if ${}^{t}(x_1,\ldots,x_n) \in \mathbb{C}^{n}_{s,\infty}$, we have

$$\phi_{\theta} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \theta x_1 + x_2 \\ \vdots \\ \theta x_{n-1} + x_n \\ \theta x_n + \alpha \tau(x_1) \end{pmatrix}$$

The case $\alpha = 1$ is denoted by $C^{\otimes n}$, the n^{th} tensor power of Carlitz module, introduced in [2]. In this section, we show that the exponential map associated to $C^{\otimes n}$ is surjective on $\mathbb{C}^n_{s,\infty}$ and we recall its kernel.

ANNALES DE L'INSTITUT FOURIER

4.1.1. Surjectivity and kernel of $\exp_{\mathbb{C}^{\otimes n}}$

By Proposition 2.5, there exists a unique exponential map $\exp_{C^{\otimes n}}$ associated with $C^{\otimes n}$ and by [2, Section 2], there exists a unique formal power series

$$\log_{\mathbf{C}^{\otimes n}} = \sum_{i \ge 0} P_i \tau^i \in M_n(\mathbb{C}_{s,\infty})\{\{\tau\}\}$$

such that $P_0 = I_n$ and $\log_{\mathbb{C}^{\otimes n}} \mathbb{C}_{\theta}^{\otimes n} = \partial_{\theta} \log_{\mathbb{C}^{\otimes n}}$. These two maps are inverses of each other, i.e. we have the equality of formal power series

 $\log_{\mathcal{C}^{\otimes n}} \exp_{\mathcal{C}^{\otimes n}} = \exp_{\mathcal{C}^{\otimes n}} \log_{\mathcal{C}^{\otimes n}} = I_n.$

Furthermore, by [2, Proposition 2.4.2 and 2.4.3], the series $\exp_{\mathbb{C}^{\otimes n}}(f)$ converges for all $f \in \mathbb{C}^n_{s,\infty}$ and $\log_{\mathbb{C}^{\otimes n}}(f)$ for all $f = (f_1, \ldots, f_n) \in \mathbb{C}^n_{s,\infty}$ such that $v_{\infty}(f_i) > n - i - \frac{nq}{q-1}$ for $1 \leq i \leq n$.

For an *n*-tuple (r_1, \ldots, r_n) of real numbers, we denote by $D_n(r_i, i = 1, \ldots, n)$ the polydisc

$$\left\{f \in \mathbb{C}^n_{s,\infty} \mid v_{\infty}(f_i) > r_i, \ i = 1, \dots, n\right\}.$$

PROPOSITION 4.1. — The exponential map $\exp_{\mathbb{C}^{\otimes n}}$ is surjective on $\mathbb{C}^n_{s,\infty}$.

To prove this, we reduce to the one dimensional case.

LEMMA 4.2. — The following assertions are equivalent:

- (1) $\exp_{\mathbf{C}^{\otimes n}}$ is surjective on $\mathbb{C}^n_{s,\infty}$;
- (2) $C^{\otimes n}_{\theta}$ is surjective on $\mathbb{C}^n_{s.\infty}$;
- (3) $\tau 1$ is surjective on $\mathbb{C}_{s,\infty}$.

Proof. — It is easy to show that (1) implies (2). Indeed, let $y \in \mathbb{C}^n_{s,\infty}$. By hypothesis, there exists $x \in \mathbb{C}^n_{s,\infty}$ such that $\exp_{\mathbb{C}^{\otimes n}}(x) = y$. Hence we have

$$C_{\theta}^{\otimes n} \exp_{C^{\otimes n}}(\partial_{\theta}^{-1}x) = \exp_{C^{\otimes n}}(x) = y.$$

Next we prove that (2) implies (3). Since $C^{\otimes n}_{\theta}$ is supposed to be surjective on $\mathbb{C}^n_{s,\infty}$, for any $y = (y_1, \ldots, y_n) \in \mathbb{C}^n_{s,\infty}$, there exists $x = (x_1, \ldots, x_n) \in \mathbb{C}^n_{s,\infty}$ such that

$$\begin{cases} \theta x_1 + x_2 = y_1 \\ \vdots \\ \theta x_{n-1} + x_n = y_{n-1} \\ \theta x_n + \tau(x_1) = y_n. \end{cases}$$

In particular, we get

(4.1)
$$\tau(x_1) - (-\theta)^n x_1 = \sum_{i=1}^n (-\theta)^{n-i} y_i.$$

Thus $\tau - (-\theta)^n$ is surjective on $\mathbb{C}_{s,\infty}$. But we have

$$\tau\left((-\theta)^{\frac{n}{q-1}}\right) = (-\theta)^n (-\theta)^{\frac{n}{q-1}},$$

hence $\tau - 1$ is also surjective on $\mathbb{C}_{s,\infty}$.

In fact, it is also easy to check that (3) implies (2). As in the previous case, the surjectivity of $\tau - (-\theta)^n$ is deduced from the surjectivity of $\tau - 1$. Hence, for a fixed $y = (y_1, \ldots, y_n) \in \mathbb{C}^n_{s,\infty}$, there exists $x_1 \in \mathbb{C}_{s,\infty}$ verifying equation (4.1). Then, by back-substitution, we find successively $x_2, \ldots, x_n \in \mathbb{C}_{s,\infty}$ such that $x = (x_1, \ldots, x_n)$ satisfies $C^{\otimes n}_{\theta}(x) = y$.

We finally prove that (2) implies (1). Since $\log_{\mathbb{C}^{\otimes n}}$ converges on the polydisc $D_n(n-i-\frac{nq}{q-1},i=1,\ldots,n)$ and $\exp_{\mathbb{C}^{\otimes n}}\log_{\mathbb{C}^{\otimes n}}$ is the identity map on it, this polydisc is included in the image of the exponential. We will "grow" this polydisc to show that $\exp_{\mathbb{C}^{\otimes n}}$ is surjective. For $i = 1,\ldots,n$, we define

$$r_{0,i} := n - i - \frac{nq}{q-1} = -i - \frac{n}{q-1},$$

and for $k \ge 1$,

$$r_{k+1,i} = \begin{cases} r_{k,i+1} & \text{if } 1 \leq i \leq n-1 \\ qr_{k,1} & \text{if } i = n. \end{cases}$$

By induction, we prove that for any integer $k \ge 0$ and any $1 \le i \le n-1$,

$$(4.2) r_{k,i+1} \leqslant r_{k,i} - 1$$

We also prove that for any integer $k \ge 0$ and $i \in \{1, \ldots, n\}$, we have $r_{k,i} \le r_{0,i} - k$. In particular, for any $1 \le i \le n$, the sequence $(r_{k,i})$ tends to $-\infty$, i.e. the polydiscs $D_n(r_{k,i}, i = 1, \ldots, n)$ cover $\mathbb{C}^n_{s,\infty}$. Thus, it suffices to show that $D_n(r_{k,i}, i = 1, \ldots, n) \subseteq \operatorname{Im} \exp_{\mathbb{C}^{\otimes n}}$ for any integer $k \ge 0$.

The case k = 0, corresponding to the convergence domain of $\log_{\mathbb{C}^{\otimes n}}$, is already known. Let us suppose that $D_n(r_{k,i}, i = 1, ..., n)$ is included in the image of $\exp_{\mathbb{C}^{\otimes n}}$ for an integer $k \ge 0$. Let y be an element of $D_n(r_{k+1,i}, i = 1, ..., n) \setminus D_n(r_{k,i}, i = 1, ..., n)$.

We claim that there exists $x \in D_n(r_{k,i}, i = 1, ..., n)$ such that $C_{\theta}^{\otimes n}(x) = y$. Assume temporally this. Since $D_n(r_{k,i}, i = 1, ..., n) \subseteq \text{Im} \exp_{C^{\otimes n}}$, there exists $z \in \mathbb{C}_{s,\infty}^n$ such that $\exp_{C^{\otimes n}}(z) = x$. Thus

$$\exp_{\mathbf{C}^{\otimes n}}(\partial_{\theta} z) = \mathbf{C}_{\theta}^{\otimes n} \exp_{\mathbf{C}^{\otimes n}}(z) = \mathbf{C}_{\theta}^{\otimes n}(x) = y.$$

In particular y is in the image of the exponential as expected.

It only remains to prove the claim. By hypothesis, there exists $x = (x_1, \ldots, x_n) \in \mathbb{C}^n_{s,\infty}$ such that

$$\begin{cases} x_2 = y_1 - \theta x_1 \\ \vdots \\ x_n = y_{n-1} - \theta x_n \\ \tau(x_1) - (-\theta)^n x_1 = \sum_{i=1}^n (-\theta)^{n-i} y_i. \end{cases}$$

We need to show that x is in $D_n(r_{k,i}, i = 1, ..., n)$. Let begin by showing $v_{\infty}(x_1) > r_{k,1}$. If $v_{\infty}(x_1) = \frac{-n}{q-1}$, then $v_{\infty}(x_1) > r_{0,1} > r_{k,1}$. So we may suppose that $v_{\infty}(x_1) \neq \frac{-n}{q-1}$. Then

$$v_{\infty}(\tau(x_1) - (-\theta)^n x_1) = \min(qv_{\infty}(x_1) ; v_{\infty}(x_1) - n).$$

In particular,

$$qv_{\infty}(x_{1}) \ge v_{\infty} \left(\sum_{i=1}^{n} (-\theta)^{n-i} y_{i} \right)$$
$$\ge \min_{1 \le i \le n} (v_{\infty}(y_{i}) - n + i) > \min_{1 \le i \le n} (r_{k+1,i} - n + i),$$

where the last inequality comes from the fact that y is in $D_n(r_{k+1,i}, i = 1, ..., n)$. But, by the inequality (4.2), we have

$$r_{k+1,n} \leqslant r_{k+1,n-1} - 1 \leqslant \cdots \leqslant r_{k+1,1} - n + 1.$$

Hence we get

$$qv_{\infty}(x_1) > r_{k+1,n} = qr_{k,1},$$

as desired.

Finally, we show that $v_{\infty}(x_i) > r_{k,i}$ for all $2 \leq i \leq n$. Since $y \in D_n(r_{k+1,i}, i = 1, ..., n)$, we have

$$v_{\infty}(x_2) \ge \min(v_{\infty}(y_1) ; v_{\infty}(x_1) - 1) > \min(r_{k+1,1} ; r_{k,1} - 1) = r_{k,2},$$

where the last equality comes from the definition of r_{k+1} and from inequality (4.2). On the same way, we obtain the others needed inequalities.

LEMMA 4.3. — The application $\tau - 1: \mathbb{C}_{s,\infty} \to \mathbb{C}_{s,\infty}$ is surjective.

Proof. — Since $\sum_{i \ge 0} \tau^i(x)$ converges for $x \in \mathbb{C}_{s,\infty}$ such that $v_{\infty}(x) > 0$, we have

$$\{x \in \mathbb{C}_{s,\infty} \mid v_{\infty}(x) > 0\} \subseteq \operatorname{Im}(\tau - 1).$$

Thus, since $\mathbb{C}_{\infty}(t_1,\ldots,t_s)$ is dense in $\mathbb{C}_{s,\infty}$, it suffices to show that $\mathbb{C}_{\infty}(t_1,\ldots,t_s) \subseteq (\tau-1)(\mathbb{C}_{s,\infty})$. Observe that $(\tau-1)(\mathbb{C}_{\infty}[t_1,\ldots,t_s]) = \mathbb{C}_{\infty}[t_1,\ldots,t_s]$. Now let $f \in \mathbb{C}_{\infty}(t_1,\ldots,t_s)$. We can write

$$f = \frac{g}{h}$$
 with $g, h \in \mathbb{C}_{\infty}[t_1, \dots, t_s]$ and $v_{\infty}(h) = 0$.

Now write $h = \delta - z$ with $\delta \in \overline{\mathbb{F}}_{\mathbb{H}}[t_1, \ldots, t_s] \setminus \{0\}$ and $z \in \mathbb{C}_{\infty}[t_1, \ldots, t_s]$ such that $v_{\infty}(z) > 0$. Then, in $\mathbb{C}_{s,\infty}$, we have

$$f = \frac{g}{h} = \sum_{k \ge 0} \frac{gz^k}{\delta^{k+1}}.$$

On the one hand, since the series converges, there exists $k_0 \in \mathbb{N}$ such that

$$v_{\infty}\left(\sum_{k\geqslant k_0}\frac{gz^k}{\delta^{k+1}}\right) > 0.$$

In particular, this sum is in the image of $\tau - 1$. On the other hand, we have

$$\sum_{k=0}^{k_0-1} \frac{gz^k}{\delta^{k+1}} \in \frac{1}{\delta^{k_0}} \mathbb{C}_{\infty}[t_1, \dots, t_s].$$

But we can write $\frac{1}{\delta^{k_0}} = \frac{\beta}{\gamma}$ with $\beta \in \overline{\mathbb{F}_{\shortparallel}}[t_1, \ldots, t_s]$ and $\gamma \in \mathbb{F}_q[t_1, \ldots, t_s] \setminus \{0\}$. Hence

$$\sum_{k=0}^{k_0-1} \frac{gz^k}{\delta^{k+1}} \in \frac{1}{\gamma} \mathbb{C}_{\infty}[t_1, \dots, t_s] \subseteq (\tau-1) \left(\frac{1}{\gamma} \mathbb{C}_{\infty}[t_1, \dots, t_s]\right).$$

Thus, by linearity of $\tau - 1$, we get $f \in (\tau - 1)(\mathbb{C}_{s,\infty})$.

Denote by Λ_n the kernel of the morphism of R_s -modules

$$\exp_{\mathbf{C}^{\otimes n}} \colon \operatorname{Lie}(\mathbf{C}^{\otimes n})(\mathbb{C}_{s,\infty}) \longrightarrow \mathbf{C}^{\otimes n}(\mathbb{C}_{s,\infty}).$$

Recall that the Carliz period $\tilde{\pi}$ is defined as

$$\widetilde{\pi} := \theta(-\theta)^{\frac{1}{q-1}} \prod_{i=1}^{\infty} \left(1 - \theta^{1-q^i}\right)^{-1} \in (-\theta)^{\frac{1}{q-1}} K_{\infty},$$

where $(-\theta)^{\frac{1}{q-1}}$ is a choosen (q-1)-th root of $-\theta$.

PROPOSITION 4.4. — The R_s -module Λ_n is free of rank 1 and is generated by a vector with $\tilde{\pi}^n$ as last coordinate.

Proof. — See [2, Section 2.5].

4.1.2. Characterization of Anderson modules isomorphic to $C^{\otimes n}$

We characterize Anderson modules which are isomorphic, in a sense described below, to the n^{th} tensor power of the Carlitz module. We obtain an *n*-dimensional analogue of Proposition 6.2 of [4].

DEFINITION 4.5. — Two Anderson modules E and E' are isomorphic if there exists a matrix $P \in \operatorname{GL}_n(\mathbb{C}_{s,\infty})$ such that $E_\theta P = PE'_\theta$ in $M_n(\mathbb{C}_{s,\infty})\{\tau\}$.

Let $\alpha \in R_s$. Denote by E_{α} the Anderson module defined at the beginning of Section 4.1. Note that E_{α} and $\mathbb{C}^{\otimes n}$ are isomorphic if and only if there exists a matrix $P \in \mathrm{GL}_n(\mathbb{C}_{s,\infty})$ such that

(4.3)
$$\partial_{\theta} P = P \partial_{\theta} \quad \text{and} \quad N_1 \tau(P) = P N_{\alpha}.$$

Let us set

$$\mathcal{U}_s := \bigg\{ \alpha \in \mathbb{C}^*_{s,\infty} \, \bigg| \, \exists \, \beta \in \mathbb{C}^*_{\infty}, \gamma \in \overline{\mathbb{F}_{\shortparallel}}(t_1,\ldots,t_s), v_{\infty}\bigg(\alpha - \beta \frac{\tau(\gamma)}{\gamma}\bigg) > v_{\infty}(\alpha) \bigg\}.$$

LEMMA 4.6. — The map which associates to any element x of $\mathbb{C}^*_{s,\infty}$ the element $\frac{\tau(x)}{x}$ of $\mathbb{C}^*_{s,\infty}$ induces a short exact sequence of multiplicative groups

$$1 \longrightarrow k_s^* \longrightarrow \mathbb{C}_{s,\infty}^* \longrightarrow \mathcal{U}_s \longrightarrow 1.$$

Proof. — The kernel comes from Lemma 2.3.

Let $\alpha \in \mathbb{C}^*_{s,\infty}$ such that there exists $x \in \mathbb{C}^*_{s,\infty}$ verifying $\tau(x) = \alpha x$. Since \mathbb{C}_{∞} is an algebraically closed field, one can suppose that $v_{\infty}(\alpha) = 0$. We write $x = \gamma + m$ with $\gamma \in \overline{\mathbb{F}_{u}}(t_1, \ldots, t_s)$ and $m \in \mathbb{C}^*_{s,\infty}$ such that $v_{\infty}(m) > 0$. Then, we have $v_{\infty}(\tau(\gamma) - \alpha\gamma) > 0$, i.e. $\alpha \in \mathcal{U}_s$.

Reciprocally, let $\alpha \in \mathcal{U}_s$ and $\beta \in \mathbb{C}^*_{\infty}$, $\gamma \in \overline{\mathbb{F}_{\mathbb{H}}}(t_1, \ldots, t_s)$ such that

$$v_{\infty}\left(\alpha - \beta \frac{\tau(\gamma)}{\gamma}\right) > v_{\infty}(\alpha).$$

We set $\delta := \beta \frac{\tau(\gamma)}{\gamma}$. Observe that $\prod_{i \ge 0} \frac{\tau^i(\delta)}{\tau^i(\alpha)}$ converges in $\mathbb{C}^*_{s,\infty}$. Now, since τ is k_s -linear, there exists $\varepsilon \in \mathbb{C}^*_{\infty} \overline{\mathbb{F}}_{\mathbb{H}}(t_1,\ldots,t_s)$ such that $\tau(\varepsilon) = \delta$. Then, we set

(4.4)
$$\omega_{\alpha} := \varepsilon \prod_{i \ge 0} \frac{\tau^{i}(\delta)}{\tau^{i}(\alpha)} \in \mathbb{C}^{*}_{s,\infty}.$$

Thus, we have $\tau(\omega_{\alpha}) = \alpha \omega_{\alpha}$. Observe that ω_{α} is defined up to a scalar factor in \mathbb{F}_q^* whereas it depends a *priori* on the choices of β , γ and ε . \Box

We are now able to characterize Anderson modules which are isomorphic to $C^{\otimes n}$.

PROPOSITION 4.7. — Let $\alpha \in R_s$. The following assertions are equivalent:

- (1) E_{α} is isomorphic to $C^{\otimes n}$,
- (2) $\alpha \in \mathcal{U}_s$,
- (3) \exp_{α} is surjective,
- (4) ker \exp_{α} is a free R_s -module of rank 1,

where \exp_{α} is the exponential map associated with E_{α} by Proposition 2.5.

Proof. — Setting $P = \omega_{\alpha} I_n$ where ω_{α} is defined by (4.4), we see that (2) implies (1).

We prove that (1) implies (3). Let $P \in \operatorname{GL}_n(\mathbb{C}_{s,\infty})$ such that $\operatorname{C}_{\theta}^{\otimes n} P = PE_{\theta}$. Using equalities (4.3), we check that

$$P^{-1} \exp_{\mathbf{C}^{\otimes n}} P \partial_{\theta} = E_{\theta} P^{-1} \exp_{\mathbf{C}^{\otimes n}} P.$$

Thus, by unicity in Proposition 2.5, we get $P^{-1} \exp_{\mathbb{C}^{\otimes n}} P = \exp_{\alpha}$. In particular, by Proposition 4.1, we deduce that \exp_{α} is surjective.

Next, we prove that (3) implies (2). We can assume that $v_{\infty}(\alpha) = 0$. By Lemma 4.6, it suffices to show that ker $(\alpha \tau - 1)$ is not trivial. Let us suppose the converse. As at the beginning of the proof of Lemma 4.2, we easily show that the surjectivity of \exp_{α} on $\mathbb{C}_{s,\infty}^n$ implies that of $\alpha \tau - 1$ on $\mathbb{C}_{s,\infty}$. Thus, $\alpha \tau - 1$ is an automorphism of the k_s -vector space $\mathbb{C}_{s,\infty}$. We verify that $v_{\infty}(f) = 0$ if and only if $v_{\infty}(\alpha \tau(f) - f) = 0$. Let $\overline{\alpha} \in \overline{\mathbb{F}}_{\mathbb{H}}(t_1, \ldots, t_s)$ such that $v_{\infty}(\alpha - \overline{\alpha}) > 0$. Then, $\overline{\alpha} \tau - 1$ is an automorphism of the k_s -vector space $\overline{\mathbb{F}}_{\mathbb{H}}(t_1, \ldots, t_s)$, which is obviously false.

It is easy to show that (1) implies (4). Indeed, since E_{α} is isomorphic to $C^{\otimes n}$, we have

$$\ker \exp_{\alpha} = \frac{1}{\omega_{\alpha}} \ker \exp_{\mathbf{C}^{\otimes n}} \,.$$

Thus, by Proposition 4.4, ker \exp_{α} is a free R_s -module of rank 1 generated by a vector with $\frac{\tilde{\pi}^n}{\omega_{\alpha}}$ as last coordinate.

Finally, we prove that (4) implies (2). Let f be a non zero element of ker \exp_{α} such that $\partial_{\theta}^{-1} f \notin \ker \exp_{\alpha}$. Thus, the vector $g := \exp_{\alpha}(\partial_{\theta}^{-1} f) \in \mathbb{C}^{n}_{s,\infty}$ is non zero and $E_{\theta}(g) = 0$. Denote by g_{1}, \ldots, g_{n} its coordinates. We have

 \Box

Since $g \neq 0$, we deduce that $g_i \neq 0$ for all $1 \leq i \leq n$. Summing, we obtain $\alpha \tau(g_1) - (-\theta)^n g_1 = 0$. Thus

$$\alpha \tau \left((-\theta)^{\frac{-n}{q-1}} g_1 \right) = (-\theta)^{\frac{-n}{q-1}} g_1.$$

We conclude, by Lemma 4.6, that $\alpha \in \mathcal{U}_s$.

Example. — Looking at the degree in t_1 , we easily show that $t_1 \notin \mathcal{U}_s$. So E_{t_1} is not isomorphic to $\mathbb{C}^{\otimes n}$ and \exp_{t_1} is not surjective.

4.2. Pellarin's *L*-functions

Let $\alpha \in R_s \setminus \{0\}$ and E_α be the Anderson module defined at the beginning of Section 4.1. By Theorem 2.9, we have a class formula for

$$L(E_{\alpha}/R_s) := \prod_{\substack{P \in A \\ \text{prime}}} \frac{[\operatorname{Lie}(E_{\alpha})(R_s/PR_s)]_{R_s}}{[E_{\alpha}(R_s/PR_s)]_{R_s}}.$$

We compute the R_s -module structure of $\text{Lie}(E_\alpha)(R_s/PR_s)$ and $E_\alpha(R_s/PR_s)$. Then, we show that we recover special values of Pellarin's *L*-functions if we take $\alpha = (t_1 - \theta) \cdots (t_s - \theta)$.

4.2.1. Fitting ideal of $\text{Lie}(E_{\alpha})(R_s/PR_s)$

Let us recall some facts about hyperdifferential operators. For more details, we refer the reader to [6].

Let $j \ge 0$ be an integer. The j^{th} hyperdifferential operator D_j is the k_s -linear endomorphism of R_s given by $D_j(\theta^k) = {k \choose j} \theta^{k-j}$ for $k \ge 0$. For any $f, g \in R_s$, we have the Leibnitz rule

$$D_j(fg) = \sum_{k=0}^{j} D_k(f) D_{j-k}(g).$$

LEMMA 4.8. — For any $a \in R_s$, we have

$$\partial(a) \begin{pmatrix} 0\\ \vdots\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} D_{n-1}(a)\\ \vdots\\ D_1(a)\\ a \end{pmatrix}.$$

TOME 72 (2022), FASCICULE 3

Proof. — By linearity, it suffices to prove the equality for $a = \theta^k$, $k \in \mathbb{N}$. The action of $\partial(\theta^k)$ is the left multiplication by

$$\begin{pmatrix} \theta & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \theta \end{pmatrix}^{k} = \begin{pmatrix} \theta I_{n} + \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix} \end{pmatrix}^{k}$$
$$= \sum_{i=0}^{k} \binom{k}{i} \theta^{k-i} \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix}^{i}$$

hence the result comes from the definition of hyperdifferential operators. $\hfill \Box$

LEMMA 4.9. — Let P be a prime of A and m a positive integer. Then $\partial(P^m)$ is zero modulo P if and only if m is greater than or equal to n.

Proof. — By the previous lemma, it suffices to show that for any $k \ge 0$, the congruence $D_k(P^m) = 0 \mod P$ holds if and only if $m \ge k + 1$. The case k = 0 being obvious, let us suppose the result for an integer k. By the Leibnitz rule, we have

$$D_{k+1}(P^m) = \sum_{i+j=k+1} D_i(P^{m-1})D_j(P)$$

= $PD_{k+1}(P^{m-1}) + D_1(P)D_k(P^{m-1}) + \dots + D_{k+1}(P)P^{m-1},$

which is zero modulo P if $m \ge k+2$. Reciprocally, observe that

$$D_{k+1}(P^{k+1}) = PD_{k+1}(P^k) + D_1(P)D_k(P^k) + D_2(P)D_{k-1}(P^k) + \dots + D_{k+1}(P)P^k = D_1(P)D_k(P^k) \mod P$$

which is non zero modulo P by hypothesis.

Thanks to this lemma, we can compute the first Fitting ideal.

PROPOSITION 4.10. — Let P be a prime of A. The R_s -module $\text{Lie}(E_{\alpha})(R_s/PR_s)$ is isomorphic to R_s/P^nR_s and is generated by the residue class of ${}^t(0,\ldots,0,1)$.

Proof. — By definition, $\operatorname{Lie}(E_{\alpha})(R_s/PR_s)$ is the k_s -vector space $(R_s/PR_s)^n$ equipped with the R_s -module structure given by ∂ . This R_s -module is finitely generated and, since $\partial(P^{q^n}) = P^{q^n}I_n$ by Lemma 2.6,

1174

,

the polynomial P^{q^n} annihilates it. Since R_s is principal, by the structure theorem, there exists integers $e_1 \leq \cdots \leq e_m$ such that

$$\operatorname{Lie}(E_{\alpha})(R_s/PR_s) \simeq \frac{R_s}{P^{e_1}R_s} \times \cdots \times \frac{R_s}{P^{e_m}R_s}.$$

Since $\operatorname{Lie}(E_{\alpha})(R_s/PR_s)$ is a k_s -vector space of dimension $n \deg P$, we have $e_1 + \cdots + e_m = n$. But, by the previous lemma, the residue class of ${}^t(0,\ldots,0,1)$ is not annihilated by P^{n-1} , hence $e_m \ge n$. Thus, $\operatorname{Lie}(E_{\alpha})(R_s/PR_s)$ is cyclic and generated by the residue class of this vector.

4.2.2. Fitting ideal of $E_{\alpha}(R_s/PR_s)$

Let P be a prime of A and denote its degree by d. We consider $R := R_s/PR_s$ and $E_{\alpha}(R)$ the R_s -module R^n where the action of R_s is given by ϕ , as defined at the beginning of Section 4.1.

For i = 1, ..., n, we denote by $e_i : \mathbb{C}^n_{s,\infty} \to \mathbb{C}_{s,\infty}$ the projection on the i^{th} coordinate. By analogy with [2], we define the R_s -module

$$W_n(R) := \left\{ w \in R((t^{-1}))/R[t] \, \big| \, \alpha \tau(w) = (t - \theta)^n w \mod R[t] \right\},$$

where $\tau(w) = \sum \tau(r_i)t^i$ if $w = \sum r_i t^i \in R((t^{-1})).$

PROPOSITION 4.11. — The map

$$\psi \colon E_{\alpha}(R) \longrightarrow R((t^{-1}))/R[t]$$
$$c \longmapsto -\sum_{i=1}^{\infty} e_{1}\phi_{\theta^{i-1}}(c)t^{-i}$$

induces an isomorphism of R_s -modules between $E_{\alpha}(R)$ and $W_n(R)$.

Proof. — See [2, Proposition 1.5.1].

Observe that for any $c \in E_{\alpha}(R)$, we have $\psi(\phi_{\theta}(c)) = t\phi_{\theta}(c) \mod R[t]$. Moreover, since it is a k_s -vector space of dimension nd, $W_n(R)$ is a finitely generated and torsion $k_s[t]$ -module.

For $w \in W_n(R)$, applying d-1 times $\alpha \tau$ to the relation $\alpha \tau(w) = (t-\theta)^n w$, we get

$$\alpha \tau(\alpha) \cdots \tau^{d-1}(\alpha) \tau^d(w) = \prod_{i=0}^{d-1} \left(t - \theta^{q^i} \right)^n w.$$

But $\tau^d(w) = w$ in $W_n(R)$ and $\prod_{i=0}^{d-1} (t - \theta^{q^i}) = P(t) \mod R[t]$ where P(t) denotes the polynomial in t obtained substituting t form θ in P. Thus we

obtain

(4.5)
$$P^{n}(t) - \alpha \tau(\alpha) \cdots \tau^{d-1}(\alpha) = 0 \text{ in } W_{n}(R)$$

Since we have the isomorphism

$$\frac{R_s}{PR_s} \simeq \frac{A}{PA} \otimes_{\mathbb{F}_q} k_s,$$

for any $x \in R_s$, there exists a unique $y \in k_s$ such that $x\tau(x)\cdots\tau^{d-1}(x) = y \mod PR_s$. We denote by $\rho_{\alpha}(P)$ the element of k_s such that $\rho_{\alpha}(P) = \alpha\tau(\alpha)\cdots\tau^{d-1}(\alpha) \mod PR_s$. Note that, since P is prime, $\rho_{\alpha}(P) = 0 \mod P$ if and only if P divides α in R_s . Then, by (4.5), we deduce that $W_n(R)$ is annihilated by $P^n(t) - \rho_{\alpha}(P)$, or equivalently

(4.6)
$$E_{\alpha}(R) \subseteq \ker \phi_{P^n - \rho_{\alpha}(P)} = \left\{ x \in R^n \mid \phi_{P^n - \rho_{\alpha}(P)}(x) = 0 \right\}.$$

LEMMA 4.12. — For any $a \in k_s[t]$ prime to $P(t) := P_{|_{\theta=t}}$, the k_s -vector space $W_n(R)[a]$ of a-torsion points of $W_n(R)$ is of dimension at most $\deg_t a$.

Proof. — By definition, we have

$$W_n(R)[a] = \left\{ w \in \frac{1}{a} R[t] / R[t] \, \middle| \, \alpha \tau(w) = (t - \theta)^n w \mod R[t] \right\}$$
$$\subseteq R((t^{-1})) / R[t].$$

Let $w \in W_n(R)[a]$. Since the t^i/a for $i \in \{0, \dots, \deg a - 1\}$ form an *R*-basis of $\frac{1}{a}R[t]/R[t]$, we can write

$$w = \sum_{i=0}^{\deg a - 1} \lambda_i \frac{t^i}{a},$$

where the λ_i are in R. Using the binomial formula and writing t^j/a for $j \ge \deg a$ in the above basis, the functional equation satisfied by w becomes

$$\sum_{i=0}^{\deg a-1} \alpha \tau(\lambda_i) \frac{t^i}{a} = \sum_{i=0}^{\deg a-1} \sum_j b_{i,j} \lambda_j \frac{t^i}{a},$$

where the $b_{i,j}$ are in R. Identifying the two sides, we obtain $\tau(\Lambda) = B\Lambda$ where Λ is the vector ${}^t(\lambda_0, \ldots, \lambda_{\deg a-1})$ and B is the matrix of $M_{\deg a}(R)$ with coefficients $b_{i,j}/\alpha$.

But the k_s -vector space $V := \{X \in R^{\deg a} \mid \tau(X) = BX\}$ is of dimension at most deg a. Indeed, observe that, if v_1, \ldots, v_m are vectors of $R^{\deg a}$ such that $\tau(v_i) = Bv_i$ for all $i \in \{1, \ldots, m\}$, linearly independent over R, there are also linearly independent over $R^{\tau} = k_s$ (by induction on m, see [10, Lemma 1.7]).

ANNALES DE L'INSTITUT FOURIER

PROPOSITION 4.13. — Let P be a prime of A. We have the isomorphism of R_s -modules

$$E_{\alpha}(R_s/PR_s) \simeq \frac{R_s}{(P^n - \rho_{\alpha}(P))R_s}.$$

Proof. — Recall that we denote R_s/PR_s by R. Observe that if P divides α , we have $\rho_{\alpha}(P) = 0$ and the isomorphism of R_s -modules $\text{Lie}(E_{\alpha})(R) \simeq E_{\alpha}(R)$. Then, the result is the same as in Proposition 4.10.

Hence, let us suppose that α and P are coprime. The k_s -vector space $E_{\alpha}(R)$ is of dimension nd. We deduce from Lemma 4.12 that $E_{\alpha}(R)$ is a cyclic R_s -module, i.e.

$$E_{\alpha}(R_s) \simeq \frac{R_s}{fR_s},$$

for some monic element f of R_s of degree nd. On the other hand, by the inclusion (4.6), $E_{\alpha}(R)$ is annihilated by $P^n - \rho_{\alpha}(P)$ thus f divides $P^n - \rho_{\alpha}(P)$. Since these two polynomials are monic and have the same degree, they are equal.

4.2.3. L-values

Let a be a monic polynomial of A and $a = P_1^{e_1} \cdots P_r^{e_r}$ be its decomposition into a product of primes. Then, we define

$$\rho_{\alpha}(a) := \prod_{i=1}^{r} \rho_{\alpha}(P_i)^{e_i}.$$

By Propositions 4.10 and 4.13, we get

$$L(E_{\alpha}/R_{s}) = \prod_{\substack{P \in A \\ \text{prime}}} \frac{[\text{Lie}(E_{\alpha})(R_{s}/PR_{s})]_{R_{s}}}{[E_{\alpha}(R_{s}/PR_{s})]_{R_{s}}} = \prod_{\substack{P \in A \\ \text{prime}}} \frac{P^{n}}{P^{n} - \rho_{\alpha}(P)}$$
$$= \sum_{a \in A_{+}} \frac{\rho_{\alpha}(a)}{a^{n}} \in K_{s,\infty}.$$

As in [4, Section 4.1], observe that for any prime P of A, $\rho_{\alpha}(P)$ is the resultant of P and α seen as polynomials in θ . In particular, if $\alpha = (t_1 - \theta) \cdots (t_s - \theta)$, we obtain $\rho_{\alpha}(P) = P(t_1) \cdots P(t_s)$. Thus, by Theorem 2.9, we get a class formula for L-values introduced in [9]:

$$L(\chi_{t_1}\cdots\chi_{t_s},n) = \sum_{a\in A_+} \frac{\chi_{t_1}(a)\cdots\chi_{t_s}(a)}{a^n}$$
$$= [\operatorname{Lie}(E_\alpha)(R_s): \exp_E^{-1}(E_\alpha(R_s))]_{R_s}[H(E_\alpha/R_s)]_{R_s},$$

where $\chi_{t_i}: A \to \mathbb{F}_q[t_1, \ldots, t_s]$ are the ring homomorphisms defined respectively by $\chi_{t_i}(\theta) = t_i$.

TOME 72 (2022), FASCICULE 3

4.3. Goss abelian *L*-series

This section is inspired by [5].

Let $a \in A_+$ be squarefree and L be the cyclotomic field associated with a, i.e. the finite extension of K generated by the *a*-torsion of the Carlitz module. We denote by Δ_a the Galois group of this extension, it is isomorphic to $(A/aA)^{\times}$.

Note that $A[\Delta_a] = \prod_i F_i[\theta]$ for some finite extensions F_i of \mathbb{F}_q . In particular, $A[\Delta_a]$ is a principal ideal domain and Fitting ideals are defined as usual. If M is a finite $A[\Delta_a]$ -module, we denote by $[M]_{A[\Delta_a]}$ the unique generator f of Fitt_{A[\Delta_a]} M such that each component $f_i \in F_i[\theta]$ of f is monic.

We denote by $\widehat{\Delta}_a$ the group of characters of Δ_a , i.e. $\widehat{\Delta}_a = \hom(\Delta_a, \overline{\mathbb{F}_{\shortparallel}}^{\times})$. For $\chi \in \widehat{\Delta}_a$, we denote by $\mathbb{F}_q(\chi)$ the finite extension of \mathbb{F}_q generated by the values of χ and we set

$$e_{\chi} := \frac{1}{\#\Delta_a} \sum_{\sigma \in \Delta_a} \chi^{-1}(\sigma) \sigma \in \mathbb{F}_q(\chi)[\Delta_a].$$

Then e_{χ} is idempotent and $\sigma e_{\chi} = \chi(\sigma)e_{\chi}$ for every $\sigma \in \Delta_a$.

Let F be the finite extension of \mathbb{F}_q generated by the values of all characters, i.e. F is the compositum of all $\mathbb{F}_q(\chi)$ for $\chi \in \widehat{\Delta}_a$. If M is an $A[\Delta_a]$ module, we have the decomposition into χ -components

$$F \otimes_{\mathbb{F}_q} M = \bigoplus_{\chi \in \widehat{\Delta}_a} e_{\chi} \left(F \otimes_{\mathbb{F}_q} M \right).$$

Let V be a free $K_{\infty}[\Delta_a]$ -module of rank n. A sub- $A[\Delta_a]$ -module M of V is a lattice of V if M is free of rank one and $K_{\infty}[\Delta_a] \cdot M = V$. Let M be a lattice of V and $\chi \in \widehat{\Delta}_a$. Then $M(\chi) := e_{\chi} \left(\mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} M \right)$ is a free $A(\chi)$ -module of rank n, discrete in $V(\chi) := e_{\chi} \left(\mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} V \right)$, where $A(\chi) := \mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} A$. Now let M_1 and M_2 be two lattices of V. For each $\chi \in \widehat{\Delta}_a$, there exists $\sigma_{\chi} \in \mathrm{GL}(V(\chi))$ such that $\sigma_{\chi}(M_1(\chi)) = M_2(\chi)$. Then, we define $[M_1(\chi) : M_2(\chi)]_{A(\chi)}$ to be the unique monic representative of det σ_{χ} in $K_{\infty}(\chi) := \mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} K_{\infty}$. Finally, we set

$$[M_1:M_2]_{A[\Delta_a]} := \sum_{\chi \in \widehat{\Delta}_a} [M_1(\chi):M_2(\chi)]_{A(\chi)} e_{\chi} \in K_\infty[\Delta_a]^{\times}.$$

4.3.1. Gauss–Thakur sums

We review some basic facts on Gauss–Thakur sums, introduced in [12] and generalized in [3].

ANNALES DE L'INSTITUT FOURIER

We begin with the case of only one prime. Let P be a prime of A of degree d and $\zeta_P \in \overline{\mathbb{F}_{\shortparallel}}$ such that $P(\zeta_P) = 0$. We denote by Λ_P the Ptorsion of the Carlitz module and let λ_P be a non zero element of Λ_P . We consider the cyclotomic extension $K_P := K(\Lambda_P) = K(\lambda_P)$ and we denote its Galois group by Δ_P . We have $\Delta_P \simeq (A/PA)^{\times}$. More precisely, if $b \in (A/PA)^{\times}$, the corresponding element $\sigma_b \in \Delta_P$ is uniquely determined by $\sigma_b(\lambda_P) = C_b(\lambda_P)$. We denote by \mathcal{O}_{K_P} the integral closure of A in K_P . We have $\mathcal{O}_{K_P} = A[\lambda_P]$.

We define the Teichmüller character

$$\omega_P \colon \Delta_P \longrightarrow \mathbb{F}_{q^d}^*$$
$$\sigma_b \longmapsto b(\zeta_P),$$

where σ_b is the unique element of Δ_P such that $\sigma_b(\lambda_P) = C_b(\lambda_P)$. Let $\chi \in \widehat{\Delta}_P$. Since the Teichmüller character generates $\widehat{\Delta}_P$, there exists $j \in \{0, \ldots, q^d - 2\}$ such that $\chi = \omega_P^j$. We expand $j = j_0 + j_1 q + \cdots + j_{d-1} q^{d-1}$ in base q $(j_0, \ldots, j_{d-1} \in \{0, \ldots, q - 1\})$. Then, the Gauss-Thakur sum (see [12]) associated with χ is defined as

$$g(\chi) := \prod_{i=0}^{d-1} \left(-\sum_{\delta \in \Delta_P} \omega_P^{-q^i}(\delta) \delta(\lambda_P) \right)^{j_i} \in \mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} \mathcal{O}_{K_P}.$$

We compute the action of $\tau = 1 \otimes \tau$ on these Gauss–Thakur sums (see [12, proof of Theorem II]). Let $1 \leq j \leq d-1$. Since by the Carlitz action $\sigma_{\theta}\sigma_{b}(\lambda_{P}) = \theta\sigma_{b}(\lambda_{P}) + \tau (\sigma_{b}(\lambda_{P}))$, we have

$$\tau\left(g(\omega_P^{q^j})\right) = -\sum_{\sigma_b \in \Delta_P} \omega_P^{q^j}(\sigma_b) \left(\sigma_b \sigma_\theta(\lambda_P) - \theta \sigma_b(\lambda_P)\right)$$

Then, by substitution, we get

(4.7)
$$\tau\left(g(\omega_P^{q^j})\right) = \left(\zeta_P^{q^j} - \theta\right)g(\omega_P^{q^j})$$

Now, we return to the general case. Since a is squarefree, we can write $a = P_1 \cdots P_r$ with P_1, \ldots, P_r distinct primes of respective degrees d_1, \ldots, d_r . Since $\widehat{\Delta}_a \simeq \widehat{\Delta}_{P_1} \times \cdots \times \widehat{\Delta}_{P_r}$, for every character $\chi \in \widehat{\Delta}_a$, we have

(4.8)
$$\chi = \omega_{P_1}^{N_1} \cdots \omega_{P_r}^{N_r},$$

for some integers $0 \leq N_i \leq q^{d_i} - 2$ and where ω_{P_i} is the Teichmüller character associated with P_i . The product $f_{\chi} := \prod_{N_i \neq 0} P_i$ is the conductor of χ . Then, the Gauss–Thakur sum (see [3, Section 2.3]) associated with χ is defined as

$$g(\chi) := \prod_{i=1}^r g(\omega_{P_i}^{N_i}) \in F \otimes_{\mathbb{F}_q} \mathcal{O}_L,$$

TOME 72 (2022), FASCICULE 3

or equivalently

$$g(\chi) = \prod_{i=1}^{r} \prod_{j=0}^{d_i-1} g(\omega_{P_i}^{q^j})^{N_{i,j}},$$

where the $N_{i,j}$ are the q-adic digits of N_i . By equality (4.7), we obtain

(4.9)
$$\tau\left(g(\chi)\right) = \prod_{i=1}^{r} \prod_{j=0}^{d_i-1} \left(\zeta_{P_i}^{q^j} - \theta\right)^{N_{i,j}} g(\chi).$$

LEMMA 4.14. — The ring \mathcal{O}_L is a free $A[\Delta_a]$ -module of rank one generated by $\eta_a := \sum_{\chi \in \widehat{\Delta}_a} g(\chi)$.

Proof. — See [3, Lemma 16].

4.3.2. The Frobenius action on the χ -components

Recall that L is the extension of K generated by the *a*-torsion of the Carlitz module. Let $L_{\infty} := L \otimes_K K_{\infty}$ on which τ acts diagonally and Δ_a acts on L. As in Section 2.2, we have a morphism of $A[\Delta_a]$ -modules

$$\exp_{\mathbf{C}^{\otimes n}} \colon \operatorname{Lie}(\mathbf{C}^{\otimes n})(L_{\infty}) \longrightarrow \mathbf{C}^{\otimes n}(L_{\infty})$$

Let $\chi \in \widehat{\Delta}_a$. We get an induced map

$$\exp_{\mathcal{C}^{\otimes n}} : e_{\chi} \left(\operatorname{Lie}(\mathcal{C}^{\otimes n})(\mathbb{F}_{q}(\chi) \otimes_{\mathbb{F}_{q}} L_{\infty}) \right) \longrightarrow \mathcal{C}^{\otimes n} \left(e_{\chi}(\mathbb{F}_{q}(\chi) \otimes_{\mathbb{F}_{q}} L_{\infty}) \right),$$

where the action of τ on $\mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} L_{\infty}$ is on the second component. But, by Lemma 4.14, we have

$$e_{\chi}(\mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} L_{\infty}) = g(\chi)K_{\infty}(\chi),$$

where $K_{\infty}(\chi) := \mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} K_{\infty}$.

We have the obvious isomorphism of modules over $A(\chi) := \mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} A$

$$g(\chi)K_{\infty}(\chi) \xrightarrow{\sim} K_{\infty}(\chi),$$

where the action on the right hand side is denoted by $\tilde{\tau}$ and given by $\tilde{\tau}(f) = \alpha(\chi)(1 \otimes \tau)(f)$ for any $f \in K_{\infty}(\chi)$, where $\alpha(\chi)$ is defined by equality (4.9). In particular, this isomorphism maps $C_{\theta}^{\otimes n}$ into $\partial_{\theta} + N_1 \tilde{\tau} = \partial_{\theta} + N_{\alpha(\chi)} \tau$ with notation of Section 4.1 and $\exp_{C^{\otimes n}}$ into $\exp_{\alpha(\chi)}$. Thus, by Lemma 4.14, we have the isomorphism of $A(\chi)$ -modules

$$e_{\chi} \left(\mathbb{F}_{q}(\chi) \otimes_{\mathbb{F}_{q}} H(\mathbf{C}^{\otimes n} / \mathcal{O}_{L}) \right) \\ \simeq \frac{E_{\alpha(\chi)}(K_{\infty}(\chi))}{\exp_{\alpha(\chi)} \left(\operatorname{Lie}(E_{\alpha(\chi)})(K_{\infty}(\chi)) \right) + E_{\alpha(\chi)}(A(\chi))}$$

1180

We denote the right hand side by $H\left(E_{\alpha(\chi)}/A(\chi)\right)$. Note that we have also

$$e_{\chi}\left(\mathbb{F}_{q}(\chi)\otimes_{\mathbb{F}_{q}}\exp_{\mathbf{C}^{\otimes n}}^{-1}(\mathbf{C}^{\otimes n}(\mathcal{O}_{L}))\right)=\exp_{\alpha(\chi)}^{-1}\left(E_{\alpha(\chi)}(A(\chi))\right).$$

4.3.3. L-values

Let $\chi \in \widehat{\Delta}_a$ and denote its conductor by f_{χ} . Recall that the special value at $n \ge 1$ of Goss *L*-series (see [8, Chapter 8]) associated with χ is defined by

$$L(n,\chi) := \sum_{b \in A_+} \frac{\chi(\sigma_b)}{b^n} \in K_{\infty}(\chi),$$

where the sum runs over the elements $b \in A_+$ relatively prime to f_{χ} . If $b \in A_+$ and f_{χ} are not coprime, we set $\chi(\sigma_b) = 0$. Then, define the Goss abelian *L*-series

$$L(n, \Delta_a) := \sum_{\chi \in \widehat{\Delta}_a} L(n, \chi) e_{\chi} \in K_{\infty}[\Delta_a]^{\times}.$$

LEMMA 4.15. — The infinite product

$$\prod_{\substack{P \in A \\ \text{prime}}} \frac{\left[\operatorname{Lie}(\mathbf{C}^{\otimes n})(\mathcal{O}_L/P\mathcal{O}_L)\right]_{A[\Delta_a]}}{\left[\mathbf{C}^{\otimes n}(\mathcal{O}_L/P\mathcal{O}_L)\right]_{A[\Delta_a]}}$$

converges in $K_{\infty}[\Delta_a]$ to $L(n, \Delta_a)$.

Proof. — On the one hand, for all $\chi \in \widehat{\Delta}_a$, we have

$$L(n,\chi) = \prod_{\substack{P \in A \\ \text{prime}}} \left(1 - \frac{\chi(\sigma_P)}{P^n}\right)^{-1},$$

where $\chi(\sigma_P) = 0$ if P divides f_{χ} . On the other hand, let $\chi \in \widehat{\Delta}_a$. We write $\chi = \omega_{P_1}^{N_1} \cdots \omega_{P_r}^{N_r}$ as in equality (4.8) and denote by $N_{i,j}$ the q-adic digits of N_i . Then, as in Section 4.2.2, we can prove that

$$\begin{split} \left[E_{\alpha(\chi)}(A(\chi)/PA(\chi)) \right]_{A(\chi)} &= P^n - \prod_{i=1}^r \prod_{j=0}^{d_i-1} P\left(\zeta_{P_i}^{q^j}\right)^{N_{i,j}} \\ &= P^n - \prod_{i=1}^r P(\zeta_{P_i})^{N_i} \\ &= P^n - \chi(\sigma_P). \end{split}$$

TOME 72 (2022), FASCICULE 3

Thus, we obtain

$$L(n,\chi) = \prod_{\substack{P \in A \\ \text{prime}}} \frac{\left[\operatorname{Lie}(E_{\alpha(\chi)})(A(\chi)/PA(\chi))\right]_{A(\chi)}}{\left[E_{\alpha(\chi)}(A(\chi)/PA(\chi))\right]_{A(\chi)}}.$$

Hence, we get the result by the discussion of Section 4.3.2 and definition of $L(n, \Delta_a)$.

Finally, we obtain a generalization of Theorem A of [5]:

THEOREM 4.16. — Let $a \in A_+$ be squarefree and denote by L the extension of K generated by the *a*-torsion of the Carlitz module. In $K_{\infty}[\Delta_a]$, we have

$$L(n, \Delta_a) = \left[\operatorname{Lie}(\mathbf{C}^{\otimes n})(\mathcal{O}_L) : \exp_{\mathbf{C}^{\otimes n}}^{-1}(\mathbf{C}^{\otimes n}(\mathcal{O}_L))\right]_{A[\Delta_a]} \left[H(\mathbf{C}^{\otimes n} / \mathcal{O}_L)\right]_{A[\Delta_a]}.$$

Proof. — By the previous lemma, $L(n, \Delta_a)$ is expressed in terms of Anderson module and Fitting. Then, as in Proposition 3.5, we express $L(n, \Delta_a)$ as a determinant. The proof is similar but we deal with the χ components $e_{\chi}(\mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} \mathcal{O}_L)$ for all $\chi \in \widehat{\Delta}_a$. Then, since $A[\Delta_a]$ is principal, we conclude as in Section 3.4. We refer to [5, Section 6.4] for more details. \Box

BIBLIOGRAPHY

- [1] G. W. ANDERSON, "t-motives", Duke Math. J. 53 (1986), no. 2, p. 457-502.
- [2] G. W. ANDERSON & D. S. THAKUR, "Tensor powers of the Carlitz module and zeta values", Ann. Math. 132 (1990), no. 1, p. 159-191.
- [3] B. ANGLÈS & F. PELLARIN, "Functional identities for L-series values in positive characteristic", J. Number Theory 142 (2014), p. 223-251.
- [4] B. ANGLÈS, F. PELLARIN, F. T. RIBEIRO & F. DEMESLAY, "Arithmetic of positive characteristic *L*-series values in Tate algebras", *Compos. Math.* **152** (2016), no. 1, p. 1-61.
- [5] B. ANGLÈS, L. TAELMAN & V. BOSSER, "Arithmetic of characteristic p special L-values", Proc. Lond. Math. Soc. 110 (2015), no. 4, p. 1000-1032.
- [6] K. CONRAD, "The digit principle", J. Number Theory 84 (2000), no. 2, p. 230-257.
- J. FANG, "Special L-values of abelian t-modules", J. Number Theory 147 (2015), p. 300-325.
- [8] D. Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 35, Springer, 1996, xiv+422 pages.
- [9] F. PELLARIN, "Values of certain L-series in positive characteristic", Ann. Math. 176 (2012), no. 3, p. 2055-2093.
- [10] M. VAN DER PUT & M. F. SINGER, Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, vol. 328, Springer, 2003, xviii+438 pages.
- [11] L. TAELMAN, "Special L-values of Drinfeld modules", Ann. Math. 175 (2012), no. 1, p. 369-391.

A class formula for *L*-series in positive characteristic 1183

[12] D. S. THAKUR, "Gauss sums for $\mathbf{F}_q[T]$ ", Invent. Math. 94 (1988), no. 1, p. 105-112.

Manuscrit reçu le 14 janvier 2015, révisé le 26 janvier 2016, accepté le 31 mars 2020.

Florent DEMESLAY LMNO, CNRS UMR 6139 Université de Caen 14032 Caen cedex (France) florent.demeslay@gmail.com