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A CLASS FORMULA FOR L-SERIES IN POSITIVE
CHARACTERISTIC

by Florent DEMESLAY

Abstract. — We prove a formula for special L-values of Anderson modules,
analogue in positive characteristic of the class number formula. We apply this
result to two kinds of L-series.
Résumé. — Nous prouvons une formule pour les valeurs spéciales des séries L

associées aux modules d’Anderson, cette formule étant un analogue de la formule
analytique du nombre de classes. Nous appliquons nos résultats à deux types de
fonctions L.

1. Introduction

Let Fq be a finite field with q elements and θ an indeterminate over Fq.
We denote by A the polynomial ring Fq[θ] and by K the fraction field of A.
For a A-module M having a finite number of elements, we denote by [M ]A
the monic generator of the Fitting ideal of M . The Carlitz zeta value at a
positive integer n is defined as

ζA(n) :=
∑
a∈A+

1
an
∈ K∞ := Fq((θ−1)),

where A+ is the set of monic polynomials of A.
The Carlitz module C is the functor that associates to an A-algebra

B the A-module C(B) whose underlying Fq-vector space is B and whose
A-module structure is given by the homomorphism of Fq-algebras

ϕC : A −→ EndFq (B)
θ 7−→ θ + τ,

Keywords: Anderson modules, tensor powers of the Carlitz module, Goss L-series, class
number formula.
2020 Mathematics Subject Classification: 11G09, 11M38, 11R58, 11R60.



1150 Florent DEMESLAY

where τ is the Frobenius endomorphism b 7→ bq. Similarly, we denote by
Lie(C) the functor where the A-module structure is given by scalar mul-
tiplication. For P a prime of A (i.e. a monic irreducible polynomial), one
can show (see [8, Theorem 3.6.3]) that [C(A/PA)]A = P − 1. Thus

(1.1) ζA(1) =
∏

P prime

(
1− 1

P

)−1
=

∏
P prime

[Lie(C)(A/PA)]A
[C(A/PA)]A

.

Recently, Taelman [11] associates, to a Drinfeld module φ over the ring
of integers R of a finite extension of K, a finite A-module called the class
module H(φ/R) and an L-series value L(φ/R). In particular, if φ is the
Carlitz module and R is A, thanks to (1.1), we have

L(C/A) = ζA(1).

These objects are related by a class formula: L(φ/R) is equal to the product
of [H(φ/R)]A times a regulator (see [11, Theorem 1]).
This class formula was generalized by Fang [7], using the theory of

shtukas and ideas of Vincent Lafforgue, to Anderson modules over A, which
are n-dimensional analogues of Drinfeld modules. In particular, for C⊗n,
the nth tensor power of the Carlitz module, introduced by Anderson and
Thakur [2], we have

L(C⊗n/A) = ζA(n)

and this is related to a class module and a regulator as in the work of
Taelman.
On the other hand, Pellarin [9] introduced a new class of L-series. Let

t1, . . . , ts be indeterminates over C∞, the completion of a fixed algebraic
closure of K∞. For each 1 6 i 6 s, let χti : A → Fq[t1, . . . , ts] be the Fq-
linear ring homomorphism defined by χti(θ) = ti. Then, Pellarin’s L-value
at a positive integer n is defined as

L(χt1 · · ·χts , n) :=
∑
a∈A+

χt1(a) · · ·χts(a)
an

∈ Fq[t1, . . . , ts]⊗Fq K∞.

In this paper, we prove that these series are naturally attached to some
Anderson module (see Section 4.2) and that a class formula (Theorem 2.9)
links these series to a class module à la Taelman [11]. Let us describe briefly
our main result (Theorem 2.9).
Let L be a finite extension of K and Ls,∞ := L⊗K Fq(t1, . . . , ts)((θ−1)).

Let τ be the continuous Fq(t1, . . . , ts)-endomorphism such that τ(x) =
xq for all x ∈ L ⊗K Fq((θ−1)). For all n > 1, we naturally extend τ in
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a Fq(t1, . . . , ts)-algebra endomorphism of Mn(Ls,∞) : τ((ai,j)16i,j6n) :=
(τ(ai,j)16i,j6n), ai,j ∈ Ls,∞. We set

Rs := Fq(t1, . . . , ts)[θ] ' A⊗Fq Fq(t1, . . . , ts),

and let RL,s be the integral closure of Rs in L(t1, . . . ts) (RL,s ' OL ⊗Fq
Fq(t1, . . . , ts) where OL is the integral closure of A in L).
We recall that an Anderson t-module ψ is in particular a morphism

of Fq-algebras A → Mn(F ){τ} where F is a Fq-algebra equipped with a
structure of A-module and where ∀ x ∈ F, τ(x) = xq. In the case where
F = L is a finite extension of K and ψ : A→Mn(OL){τ}, Taelman ([11])
and Fang ([7]) proved an “analytic class number formula” for its associated
L-series. In this article, we will replace A by Rs, OL by RL,s, and we will be
interested by a variant of Anderson modules and their associated L-series
in this context. More precisely, let φ be an “Anderson module” defined
on RL,s, i.e. a morphism of Fq(t1, . . . , ts)-algebras φ : Rs → Mn(RL,s){τ}
for a certain integer n such that

φ(θ) ≡ θIn +Nφ mod τ, with Nφ ∈Mn(RL,s) verifying Nn
φ = 0.

If B is an RL,s-algebra, we denote by φ(B) the Fq(t1, . . . , ts)-vector space
Bn of column vectors with coefficients in B equipped with the Rs-module
structure induced by φ. We also define Lie(φ)(B) as the Fq(t1, . . . , ts)-vector
space Bn whose Rs-module structure is given by

θ · b = (θIn +Nφ)b for all b ∈ Lie(φ)(B).

According to the work of Taelman [11], we can associate to this object the
infinite product

L(φ/RL,s) :=
∏
m

[Lie(φ)(RL,s/mRL,s)]Rs
[φ(RL,s/mRL,s)]Rs

where m runs through maximal ideals of OL, the integral closure of A in L
and, ifM is a finitely generated and torsion Rs-module, [M ]Rs is the monic
generator of the Fitting ideal of the Rs module M . This product converges
to an element of 1 + θ−1Fq(t1, . . . , ts)((θ−1)) (see Proposition 3.5).
For example, if L = K and φθ = θ + (t1 − θ) · · · (ts − θ)τ , we have (see

Propositions 4.10 and 4.13)

L(φ/Rs) =
∑
a∈A+

χt1(a) · · ·χts(a)
an

.

Thus, we recover L-series introduced by Pellarin in [9] and we have an equal-
ity in the manner of (1.1). The interest of these series, as they are in the
Tate algebra in s indeterminates t1, . . . , ts with coefficients in Fq((θ−1)), is
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1152 Florent DEMESLAY

that we can evaluate them specializing t1, . . . , ts in elements of the algebraic
closure of Fq. Such specializations give us special values of Dirichlet–Goss
L-series (see for example [4]).
Let us return to the general case and let φ be an Anderson module

over RL,s. There exists a unique series expφ ∈Mn(L(t1, . . . , ts)){{τ}} such
that

expφ(θIn +Nφ) = φ(θ) expφ .
Moreover, expφ converges on Lie(φ)(Ls,∞) (Proposition 2.5). Then, we set

U(φ/RL,s) :=
{
x ∈ Lie(φ)(Ls,∞), expφ(x) ∈ Lie(φ)(RL,s)

}
and H(φ/RL,s) := Lie(φ)(Ls,∞)

Lie(φ)(RL,s) + expφ (Lie(φ)(Ls,∞)) .

We show that U(φ/RL,s) is an Rs-lattice in Ls,∞ and that H(φ/RL,s) is a
finitely generated Rs-module and a torsion Rs-module (Proposition 2.8). If
s = 0, these objects coincide with unit module and class module introduced
by Taelman in [11]. As U(φ/RL,s) and RL,s are two Rs-lattices in Ls,∞,
we can define a “regulator” (see Section 2.3)

[RL,s : U(φ/RL,s)]Rs ∈ Fq(t1, . . . , ts)((θ−1))×.

Inspired by ideas developed by Taelman in [11], we prove that we have the
class formula

L(φ/RL,s) = [RL,s : U(φ/RL,s)]Rs [H(φ/RL,s)]Rs .

In particular, for s = 0, we recover Theorem 1.10 of [7]. Note also that a
weak version of this class formula play a significant role in [4]. We mention
that one could work with a Fq-algebra k instead of Fq(t1, . . . , ts), in that
case one should replace Rs by A⊗Fq k, RL,s by OL ⊗Fq k, Ls,∞ by (L⊗Fq
Fq((θ−1))) ⊗Fq k and τ : L ⊗Fq Fq((θ−1)) → L ⊗Fq Fq((θ−1)), x 7→ xq by
τ ⊗ 1. However, for the arithmetic applications we had in mind, we have
focused on the case k = Fq(t1, . . . , ts).
Finally, let a ∈ A+ be squarefree and L be the cyclotomic field associated

with a, i.e. the finite extension of K generated by the a-torsion of the
Carlitz module. It is a Galois extension with group ∆a ' (A/aA)×. Let
χ : (A/aA)× → F ∗ be a homomorphism where F is a finite extension of Fq.
The special value at a positive integer n of Goss L-series associated to χ is
defined as

L(n, χ) :=
∑
b∈A+

χ(b)
bn
∈ F ⊗Fq K∞,

where b is the image of b in (A/aA)×. Combining the techniques used to
prove Theorem 2.9 and ideas developped in [5, Section 8], we give some new
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information on the arithmetic of the special values of these Dirichlet–Goss
L-series L(n, χ). We can group all the L(n, χ) together in one equivariant
L-value L(n,∆a). Then, we prove an equivariant class formula for these
L-values (see Theorem 4.16), generalizing that of Anglès and Taelman [5]
in the case n = 1.

Acknowledgements

The author sincerely thanks Bruno Anglès, Lenny Taelman and Floric
Tavares Ribeiro for fruitful discussions and useful remarks. He also thanks
the referees for several useful remarks and suggestions.

2. Anderson modules and class formula

Let Fq be the finite field with q elements and θ an indeterminate over Fq.
We denote by A the polynomial ring Fq[θ] and by K the fraction field
of A. Let ∞ be the unique place of K which is a pole of θ and v∞ the
discrete valuation of K corresponding to this place with the normalization
v∞(θ) = −1. The completion of K at ∞ is denoted by K∞. We have
K∞ = Fq((θ−1)). We denote by C∞ a fixed completion of an algebraic
closure ofK∞. The valuation on C∞ that extends v∞ is still denoted by v∞.
Let s > 0 be an integer and t1, . . . , ts indeterminates over C∞. We set

ks := Fq(t1, . . . , ts), Rs := ks[θ], Ks := ks(θ) and Ks,∞ := ks((θ−1)). For
f ∈ C∞[t1, . . . , ts] a polynomial expanded as a finite sum

f =
∑

i1,...,is∈N
αi1,...,ist

i1
1 · · · tiss ,

with αi1,...,is ∈ C∞, we set

v∞(f) := inf
{
v∞(αi1,...,is)

∣∣ i1, . . . , is ∈ N
}
.

For f ∈ C∞(t1, . . . , ts), there exists g and h in C∞[t1, . . . , ts] such that
f = g/h, then we define v∞(f) := v∞(g)−v∞(h). We easily check that v∞ is
a valuation, trivial on ks, called theGauss valuation. For f ∈ C∞[t1, . . . , ts],
we set ‖f‖∞ := q−v∞(f) if f 6= 0 and ‖0‖∞ = 0. The function ‖ · ‖∞ is called
the Gauss norm.
We denote by Cs,∞ the completion of C∞(t1, . . . , ts) with respect to v∞.
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1154 Florent DEMESLAY

2.1. Lattices

Let k be a field of characteristic q and θ be an indeterminate over k. We
set R := k[θ] and F := k((θ−1)). We equipped R with the discrete valuation
v trivial on k and normalized such that v(θ) = −1. This valuation extends
naturally to F and, for f ∈ F , we set |f | = q−v(f) if f 6= 0 and |0| = 0.
Let V be a finite dimensional k-vector space and ‖ · ‖ be a norm on V

compatible with | · | on F , i.e. : ∀ v ∈ V , ∀ f ∈ F , ‖fv‖ = |f |‖v‖. For r > 0,
we denote by B(0, r) := {v ∈ V | ‖v‖ < r} the open ball of radius r, which
is a k-subspace of V .

Definition 2.1. — A sub-R-module M of V is an R-lattice of V if it
is free of rank n and the F -vector space spanned by M is V .

We can characterize these lattices.

Lemma 2.2. — Let V be a F -vector space of dimension n > 1 and M
be a sub-R-module of V . The following assertions are equivalent:

(1) M is an R-lattice of V ;
(2) M is discrete in V and every open subspace of the k-vector space

V/M is of finite co-dimension.

Proof. — Let us suppose that M is an R-lattice of V , i.e. there exists a
family (e1, . . . , en) of elements of M such that

M =
n⊕
i=1

Rei and V =
n⊕
i=1

Fei.

Any element v of V can be uniquely written as v =
∑n
i=1 viei with vi ∈ F .

Then, we set ‖v‖ := max {|vi| | i = 1, . . . , n}. Since R is discrete in F , this
implies that M is discrete in V . Now, let m > 0 be an integer. We have

B
(
0, q−m

)
=

n⊕
i=1

θ−m−1k[[θ−1]]ei.

In particular, we have V = M ⊕B(0, 1) and

dimk
B(0, q−m)
B(0, q−m−1) = n.

This implies that every open k-subspace of V/M is of finite co-dimension.
Reciprocally, let us suppose that M is discrete in V and every open

subspace of the k-vector space V/M is of finite co-dimension. Let W be

ANNALES DE L’INSTITUT FOURIER
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the F -subspace of V generated by M and m be its dimension. There exist
e1, . . . , em in M such that

W =
m⊕
i=1

Fei.

Set

N =
m⊕
i=1

Rei.

This is a sub-R-module of M and an R-lattice of W . In particular, M/N

is discrete in W/N . Since any open k-subspace of W/N is of finite co-
dimension, we deduce thatM/N is a finite dimensional k-vector space. This
implies thatM is a finitely generated R-module, and therefore, since R is a
principal ideal domain, we conclude that M is a free R-module of rank m.
Finally, observe that, if m < n, V/M can not satisfy the co-dimensional
property and thus W = V . �

In Section 2.3, we will introduce some Rs-lattices needed for the state-
ment of the class formula.

2.2. Anderson modules and exponential map

Let L be a finite extension of K, L ⊆ C∞. We define RL,s to be the
subring of Ls := L(t1, . . . , ts) generated by ks and OL, where OL is the
integral closure of A in L. We set Ls,∞ := L ⊗K Ks,∞. This is a finite
dimensional Ks,∞-vector space. We denote by S∞(L) the set of places of
L above ∞. For a place ν ∈ S∞(L), we denote by Lν the completion of L
with respect to ν. Let πν be a uniformizer of Lν and Fν be the residue field
of Lν . Then, we define Ls,ν := Fν(t1, . . . , ts)((πν)) viewed as a subfield of
Cs,∞. Let’s observe that Ls,ν is the completion of Ls for the Gauss norm
attached to ν. We have an isomorphism of Ks,∞-algebras

Ls,∞ '
∏

ν∈S∞(L)

Ls,ν .

Observe that RL,s is an Rs-lattice in the Ks,∞-vector space Ls,∞.
Let τ : Cs,∞ → Cs,∞ be the morphism of ks-algebras given by the q-

power map on C∞.

Lemma 2.3. — The elements of Cs,∞ fixed by τ are those of ks.

TOME 72 (2022), FASCICULE 3
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Proof. — Obviously, ks ⊆ Cτ=1
s,∞ . Reciprocally, observe that Cτ=1

s,∞ ⊆ {f ∈
Cs,∞ | v∞(f) = 0}. But we have the direct sum of Fq[τ ]-modules

{f ∈ Cs,∞ | v∞(f) > 0} = Fq(t1, . . . , ts)⊕ {f ∈ Cs,∞ | v∞(f) > 0} .

Since Fq(t1, . . . , ts)τ=1 = ks, we get the result. �

The action of τ on Ls,∞ = L⊗K Ks,∞ is the diagonal one τ ⊗ τ .
As Rs = ks[θ], a morphism of ks-algebras is entirely defined by the image

of θ.

Definition 2.4. — Let r be a positive integer. An Anderson module E
over RL,s is a morphism of ks-algebras

φE : Rs −→Mn(RL,s){τ}

θ 7−→
r∑
j=0

Ajτ
j

for some A0, . . . , Ar ∈Mn(RL,s) such that (A0 − θIn)n = 0.

These objects are usually called abelian t-modules as in the terminology
of [1] but, to avoid confusion between t and the indeterminates t1, . . . , ts,
we prefer called them Anderson modules. Note also that Drinfeld modules
are Anderson modules with n = 1.
For a matrix A=(aij)∈Mn(Cs,∞), we set v∞(A) :=min16i,j6n{v∞(aij)}

and τ(A) := (τ(aij)) ∈Mn(Cs,∞).

Proposition 2.5. — There exists a unique skew power series expE :=∑
j>0 ejτ

j with coefficients in Mn(Ls) such that
(1) e0 = In;
(2) expE A0 = φE(θ) expE in Mn(Ls){{τ}};
(3) limj→∞

v∞(ej)
qj = +∞.

Proof. — See [1, Proposition 2.1.4]. �

Observe that expE is locally isometric. Indeed, by the third point,

c := sup
j>1

(
−v∞(ej)
qj − 1

)
is finite. Then, for any x ∈ Lns,∞ such that v∞(x) > c, we have

v∞

∑
j>0

ejτ
j(x)− x

 > min
j>1

(
v∞(ej) + qjv∞(x)

)
> v∞(x).

If B is an RL,s-algebra together with a Fq(t1, . . . , ts)-linear endomor-
phism τB : B → B such that τB(rb) = τ(r)τB(b) for all r ∈ RL,s and b ∈ B.
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We denote by E(B) the ks-vector space Bn equipped with the structure of
Rs-module induced by φE . For example, if n = 1 and φ(θ) = θ + τ , then
the action of θ on B is given by θ.b = θb+ τB(b).
We can also consider the tangent space Lie(E)(B) which is the ks-vector

space Bn whose Rs-module structure is given by the morphism of ks-
algebras

∂ : Rs −→Mn(RL,s)
θ 7−→ A0.

In particular, by the previous proposition, we get a continuous Rs-linear
map

expE : Lie(E)(Ls,∞) −→ E(Ls,∞).

2.3. The class formula

In this section, we define a class module and two lattices in order to state
the main result.

Lemma 2.6.

(1) Aq
n

0 = θq
n

In ;
(2) infj∈Z

(
v∞(Aj0) + j

)
is finite.

Proof. — See [7, Lemma 1.4]. �

By the second point, for any aj ∈ ks and m ∈ Z, the series
∑
j>m ajA

−j
0

converges in Mn(Ls,∞). Thus, ∂ can be uniquely extended to a morphism
of ks-algebras by

∂ : Ks,∞ −→Mn(Ls,∞)∑
j>m

aj
1
θj
7−→

∑
j>m

ajA
−j
0
,

where aj ∈ ks and m ∈ Z. Then, Lie(E)(Ls,∞) inherits a Ks,∞-vector
space structure. Observe, by the first point of the lemma, that, for any f ∈
ks((θ−q

n)), we have ∂(f) = fIn, i.e. the action is the scalar multiplication
for these elements. In particular, we get an isomorphism Lie(E)(Ls,∞) '
Lns,∞ as ks((θ−q

n))-modules. We deduce that Lie(E)(Ls,∞) is a ks((θ−q
n))-

vector space of dimension nqn, so of dimension n over Ks,∞.

Proposition 2.7. — The Rs-module Lie(E)(RL,s) is an Rs-lattice of
Lie(E)(Ls,∞).

TOME 72 (2022), FASCICULE 3
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Proof. — By the first point of the previous lemma, Lie(E)(RL,s) and
RnL,s are isomorphic as ks[θq

n ]-modules. Thus, Lie(E)(RL,s) is a finitely
generated ks[θq

n ]-module. On the other hand, the action of an element
a ∈ Rs is the left multiplication by aIn+N where N is a nilpotent matrix.
Since aIn + N is an invertible matrix, Lie(E)(RL,s) is a torsion-free Rs-
module. Moreover, the ks((θ−q

n))-vector space generated by Lie(E)(RL,s)
and Ks,∞ is Lns,∞ ' Lie(E)(Ls,∞). Therefore, Lie(E)(RL,s) is a free Rs-
module of finite rank. Looking at the dimension as Ks-vector space, the
rank is necessarily n. �

Proposition 2.8.

(1) Set

H(E/RL,s) := E(Ls,∞)
expE(Lie(E)(Ls,∞)) + E(RL,s)

.

This is a finite dimensional ks-vector space, thus a finitely generated
Rs-module and a torsion Rs-module, called the class module.

(2) The Rs-module exp−1
E (E(RL,s)) is an Rs-lattice in Lie(E)(RL,s).

Proof. — Let V be an open neighbourhood of 0 in Lns,∞ on which expE
acts as an isometry and such that expE(V ) = V . We have a natural sur-
jection of ks-vector spaces

Lns,∞
RnL,s + V

−� H(E/RL,s).

By Proposition 2.7, the left hand side is a finite dimensional ks-vector space,
hence a fortiori H(E/RL,s) is as well.
Now, let us prove that exp−1

E (E(RL,s)) is an Rs-lattice in Lie(E)(Ls,∞).
Since the kernel of expE and Lie(E)(RL,s) are discrete in Lie(E)(Ls,∞), so
is exp−1

E (E(RL,s)). Let V be an open neighbourhood of 0 on which expE
is isometric and such that expE(V ) = V . The exponential map induces a
short exact sequence of ks-vector spaces

0 −→ Lie(E)(Ls,∞)
exp−1

E (E(RL,s)) + V

expE−→ E(Ls,∞)
E(RL,s) + V

−→ H(E/RL,s) −→ 0.

Since the last two ks-vector spaces are of finite dimension, the first one is
of finite dimension too; thus exp−1

E (E(RL,s)) satisfies the co-dimensional
property. �

An element f ∈ Ks,∞ is monic if

f = 1
θm

+
∑
i>m

xi
1
θi
,

ANNALES DE L’INSTITUT FOURIER
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wherem ∈ Z and xi ∈ ks. For anRs-moduleM which is a finite dimensional
ks-vector space, we denote by [M ]Rs the monic generator of the Fitting
ideal of M .
Let V be a finite dimensional Ks,∞-vector space. Let M1 and M2 be two

Rs-lattices in V . There exists σ ∈ GL(V ) such that σ(M1) = M2. Then,
we define [M1 : M2]Rs to be the unique monic representative of k×s detσ.
The aim of the next section is to prove a class formula à la Taelman for

Anderson modules:

Theorem 2.9. — Let E be an Anderson module over RL,s. The infinite
product

L(E/RL,s) :=
∏

m maximal
ideal of OL

[Lie(E)(RL,s/mRL,s)]Rs
[E(RL,s/mRL,s)]Rs

converges in Ks,∞. Furthermore, we have

L(E/RL,s) = [Lie(E)(RL,s) : exp−1
E (E(RL,s))]Rs [H(E/RL,s)]Rs .

3. Proof of the class formula

The proof is very close to ideas developed by Taelman in [11] so we will
only recall some statements and point out differencies.

3.1. Nuclear operators and determinants

Let k be a field and V a k-vector space equipped with a non-archimedean
norm ‖ · ‖. Let ϕ be a continuous endomorphism of V . We say that ϕ is
locally contracting if there exist an non empty open subspace U ⊆ V

and a real number 0 < c < 1 such that ‖ϕ(u)‖ 6 c‖u‖ for all u ∈ U .
Any such open subspace U which moreover satisfies ϕ(U) ⊆ U is called
a nucleus for ϕ. Observe that any finite collection of locally contracting
endomorphisms of V has a common nucleus. Furthermore if ϕ and φ are
locally contracting, then so are the sum ϕ+ ψ and the composition ϕψ.

For every positive integer N , we denote by V [[Z]]/ZN the k[[Z]]/ZN -
module V⊗kk[[Z]]/ZN and by V [[Z]] the k[[Z]]-module V [[Z]] :=lim←−V [[Z]]/ZN
equipped with the limit topology. Observe that any continuous k[[Z]]-linear
endomorphism Φ: V [[Z]]→ V [[Z]] is of the form

Φ =
∑
n>0

ϕnZ
n,

TOME 72 (2022), FASCICULE 3



1160 Florent DEMESLAY

where the ϕn are continuous endomorphisms of V . Similarly, any continuous
k[[Z]]/Zn-linear endomorphism of V [[Z]]/ZN is of the form

N−1∑
n=0

ϕnZ
n.

We say that the continuous k[[Z]]-linear endomorphism Φ of V [[Z]] (resp. of
V [[Z]]/ZN ) is nuclear if for all n (resp. for all n < N), the endomorphism
ϕn of V is locally contracting.

From now on, we assume that for any open subspace U of V , the k-vector
space V/U is of finite dimension.
Let Φ be a nuclear endomorphism of V [[Z]]/ZN . Let U1 and U2 be com-

mon nuclei for the ϕn, n < N . Since Proposition 8 in [11] is valid in our
context,

detk[[Z]]/ZN
(
1 + Φ | V/Ui ⊗k k[[Z]]/ZN

)
∈ k[[Z]]/ZN

is independent of i ∈ {1, 2}. We denote this determinant by

detk[[Z]]/ZN (1 + Φ | V ).

If Φ is a nuclear endomorphism of V [[Z]], then we denote by detk[[Z]](1+Φ |
V ) the unique power series that reduces to detk[[Z]]/ZN (1 + Φ | V ) modulo
ZN for every N .
Note that Proposition 9, Proposition 10, Theorem 2 and Corollary 1

of [11] are also valid in our context. We recall the statements for the con-
venience of the reader.

Proposition 3.1.

(1) Let Φ be a nuclear endomorphism of V [[Z]]. Let W ⊆ V be a closed
subspace such that Φ(W [[Z]]) ⊆W [[Z]]. Then Φ is nuclear on W [[Z]]
and (V/W )[[Z]], and

detk[[Z]](1 + Φ | V ) = detk[[Z]](1 + Φ |W ) detk[[Z]](1 + Φ | V/W ).

(2) Let Φ and Ψ be nuclear endomorphisms of V [[Z]]. Then (1 + Φ)(1 +
Ψ)− 1 is nuclear, and

detk[[Z]]((1 + Φ)(1 + Ψ) | V ) = detk[[Z]](1 + Φ | V ) detk[[Z]](1 + Ψ | V ).

Theorem 3.2.

(1) Let ϕ and ψ be continuous k-linear endomorphisms of V such that
ϕ, ϕψ and ψϕ are locally contracting. Then

detk[[Z]](1 + ϕψZ | V ) = detk[[Z]](1 + ψϕZ | V ).
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(2) Let N > 1 be an integer. Let ϕ and ψ be continuous k-linear endo-
morphisms of V such that all compositions ϕ, ϕψ, ψϕ, ϕ2, etc. in ϕ
and ψ, containing at least one endomorphism ϕ and at most N − 1
endomorphisms ψ, are locally contracting. Let ∆ =

∑N−1
n=1 γnZ

n

such that

1 + ∆ = 1− (1 + ϕ)ψZ
1− ψ(1 + ϕ)Z mod ZN .

Then ∆ is a nuclear endomorphism of V [[Z]] and

detk[[Z]](1 + ∆ | V ) = 1 mod ZN .

3.2. Taelman’s trace formula

Let L be a finite extension of K and E be the Anderson module given by
φ : Rs −→Mn(RL,s){τ}

θ 7−→
r∑
j=0

Ajτ
j

for some A0, . . . , Ar ∈ Mn(RL,s) such that (A0 − θIn)n = 0. Let
Mn(RL,s){τ}[[Z]] be the ring of formal power series in Z with coefficients
in Mn(RL,s){τ}, the variable Z being central.

We set
Θ :=

∑
n>1

(∂θ − φθ)∂n−1
θ Zn ∈Mn(RL,s){τ}[[Z]].

Lemma 3.3. — Let m be a maximal ideal of OL. In Ks,∞, the following
equality holds:

[Lie(E)(RL,s/mRL,s)]Rs
[E(RL,s/mRL,s)]Rs

= detks[[Z]] (1 + Θ | (RL,s/mRL,s)n)−1 |Z=θ−1 .

Proof. — We have:

Θ = (1− φθZ) 1
1− ∂θZ

− 1.

Furthermore:

[Lie(E)(RL,s/mRL,s)]Rs
= detks[Z−1]

(
Z−1 − ∂θ | (RL,s/mRL,s)n ⊗ks ks[Z−1]

)
|Z−1=θ,

[E(RL,s/mRL,s)]Rs
= detks[Z−1]

(
Z−1 − φθ | (RL,s/mRL,s)n ⊗ks ks[Z−1]

)
|Z−1=θ.
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Now:

detks[Z−1]
(
Z−1 − ∂θ | (RL,s/mRL,s)n ⊗ks ks[Z−1]

)
detks[Z−1] (Z−1 − φθ | (RL,s/mRL,s)n ⊗ks ks[Z−1])

=
detks[Z] (1− ∂θZ | (RL,s/mRL,s)n ⊗ks ks[Z])
detks[Z] (1− φθZ | (RL,s/mRL,s)n ⊗ks ks[Z]) ,

and:

detks[Z] (1− ∂θZ | ((RL,s/mRL,s)n ⊗ks ks[Z])
detks[Z] (1− φθZ | (RL,s/mRL,s)n ⊗ks ks[Z])

= detks[[Z]] (1 + Θ | (RL,s/mRL,s)n)−1
.

Thus:
detks[Z−1]

(
Z−1 − ∂θ | (RL,s/mRL,s)n ⊗ks ks[Z−1]

)
|Z−1=θ

detks[Z−1] (Z−1 − φθ | (RL,s/mRL,s)n ⊗ks ks[Z−1]) |Z−1=θ

= detks[[Z]] (1 + Θ | (RL,s/mRL,s)n)−1 |Z=θ−1 . �

Let S be a finite set of places of L containing S∞(L). Denote by OS the
ring of functions regular outside S. In particular OL ⊆ OS . Let RS,s be
the subring of Ls generated by OS and ks. For example, if S = S∞(L), we
have RS,s = RL,s.

Let p be a maximal ideal of OL which is not in S. The natural inclusion
OL ↪→ OS induces an isomorphism RL,s/pRL,s

∼→ RS,s/pRS,s. By the
previous lemma, we obtain

(3.1) [Lie(E)(RL,s/pRL,s)]Rs
[E(RL,s/pRL,s)]Rs

= detks[[Z]]
(
1+Θ

∣∣ (RS,s/pRS,s)n)−1∣∣
Z=θ−1 .

Let vp de notes the p-adic Gauss valuation on L[t1, . . . , ts], i.e. :

vp

 ∑
i1,...,is∈N

αi1,...,ist
i1
1 · · · tiss

 := inf
i1,...,is∈N

{vp(αi1,...,is)} ,

where vp is the normalized p-adic valuation on L. Then vp extends to a
valuation on Ls and we denote by Ls,p the completion of Ls for the p-
adic valuation vp. Denote by Os,p the valuation ring of Ls,p. By the strong
approximation theorem, for any n > 0, there exists πn ∈ L such that
vp(πn) = −n and v(πn) > 0 for all v /∈ S ∪ p. Thus, we have

(3.2) Ls,p = Os,p +RS∪{p},s and RS,s = Os,p ∩RS∪{p},s.

Finally, denote by Ls,S the product of the completions of Ls with respect
to places of S. For example, if S = S∞(L), we have Ls,S = Ls,∞.
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Recall that RS,s is a Dedekind domain, discrete in Ls,S and such that ev-
ery open subspace of Ls,S/RS,s is of finite co-dimension. Observe also that
any element of Mn(RS,s){τ} induces a continuous ks-linear endomorphism
of (Ls,S/RS,s)n which is locally contracting. In particular, the endomor-
phism Θ is a nuclear operator of (Ls,S/RS,s)n[[Z]].

Lemma 3.4. — Let p be a maximal ideal of OL which is not in S. Then

detks[[Z]] (1 + Θ | (RS,s/pRS,s)n) =
detks[[Z]]

(
1 + Θ

∣∣∣ (Ls,S×Ls,pRS∪{p},s

)n)
detks[[Z]]

(
1 + Θ

∣∣∣ (Ls,SRS,s

)n) .

Proof. — The proof is the same as that of Lemma 1 of [11], using equal-
ities (3.2). �

Proposition 3.5. — The following equality holds in Ks,∞:

L(E/RL,s) = detks[[Z]] (1 + Θ | (Ls,∞/RL,s)n) |Z=θ−1 .

In particular, L(E/RL,s) converges in Ks,∞.

Proof. — By Lemma 3.3, we have

L(E/RL,s) =
∏
m

detks[[Z]] (1 + Θ | (RL,s/mRL,s)n)−1 |Z=θ−1 ,

where the product runs through maximal ideals of OL. Fix S ⊇ S∞(L) as
above (the case S = S∞(L) suffices). By equality (3.1), we have∏

m

detks[[Z]] (1 + Θ | (RL,s/mRL,s)n)−1

=
∏
m

detks[[Z]] (1 + Θ | (RS,s/mRS,s)n)−1
,

where the products run through maximal ideals of OL which are not in S.
Define SD,N as in [11]. It suffices to prove that for any 1 + F ∈ SD,N ,

the infinite product∏
m/∈S\S∞(L)

detks[[Z]]/ZN

(
1 + F

∣∣∣∣ ( RS,s
mRS,s

)n)
converges to

detks[[Z]]/ZN

(
1 + F

∣∣∣∣ (Ls,SRS,s

)n)−1

.

Let m1, . . . ,mr be the maximal ideals of OL which are not in S and such
that miRS,s is a maximal ideal of RS,s verifying dimks RS,s/miRS,s < D.
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Applying successively Lemma 3.4 to RS,s, RS∪{m1},s, RS∪{m1,m2},s, etc.,
we obtain the following equality:

detks[[Z]]

(
1 + F

∣∣∣∣ (Ls,SRS,s

)n)∏
m

detks[[Z]]

(
1 + F

∣∣∣∣ ( RS,s
mRS,s

)n)
= detks[[Z]]

(
1 + F

∣∣∣∣ (Ls,S × Ls,m1 × · · · × Ls,mr
RS∪{m1,...,mr},s

)n)
×

∏
m6=m1,...,mr

detks[[Z]]

(
1 + F

∣∣∣∣ ( RS,s
mRS,s

)n)
.

This allows us, replacing RS,s by RS∪{m1,...,mr},s, to suppose that RS,s has
not maximal ideal of the form mRS,s with m maximal ideal of OL which is
not in S such that dimks RS,s/mRS,s < D. Then, we can finish the proof
as in [11]. �

3.3. Ratio of co-volumes

Let V be a finite dimensional Ks,∞-vector space and ‖ · ‖ be a norm on
V compatible with ‖ · ‖∞ on Ks,∞. Let M1 and M2 be two Rs-lattices in
V and N ∈ N. A continuous ks-linear map γ : V/M1 → V/M2 is N -tangent
to the identity on V if there exists an open ks-subspace U of V such that

(1) U ∩M1 = U ∩M2 = {0};
(2) γ restricts to an isometry between the images of U ;
(3) for any u ∈ U , we have ‖γ(u)− u‖ 6 q−N‖u‖.

The map γ is infinitely tangent to the identity on V if it is N -tangent for
every positive integer N .

Proposition 3.6. — Let γ ∈ Mn(Ls){{τ}} be a power series conver-
gent on Lns,∞ with constant term equal to 1 and such that γ(M1) ⊆ M2.
Then γ is infinitely tangent to the identity on Lns,∞.

Proof. — See [11, Proposition 12]. �

For example, by Proposition 2.5, the map

expE : Lie(E)(Ls,∞)
exp−1

E (E(RL,s))
−→ E(Ls,∞)

E(RL,s)

is infinitely tangent to the identity on Lns,∞.
Now, let H1 and H2 two finite dimensional ks-vector spaces which are

also Rs-modules and set Ni := V
Mi
× Hi for i = 1, 2. A ks-linear map
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γ : N1 → N2 is N -tangent (resp. infinitely tangent) to the identity on V if
the composition

V

M1
↪−→ N1

γ−→ N2 −�
V

M2

is so. For a ks-linear isomorphism γ : N1 → N2, we define an endomorphism

∆γ := 1− γ−1∂θγZ

1− ∂θZ
− 1 =

∑
i>1

(∂θ − γ−1∂θγ)∂n−1Zn

of N1[[Z]].

Proposition 3.7. — If γ is infinitely tangent to the identity on V , then
∆γ is nuclear and

detks[[Z]](1 + ∆γ | N1)|Z=θ−1 = [M1 : M2]Rs
[H2]Rs
[H1]Rs

.

Proof. — See [11, Theorem 4]. �

3.4. Proof of Theorem 2.9

By Theorem 3.5, L(E/RL,s) converges in Ks,∞ and

L(E/RL,s) = detks[[Z]] (1 + Θ | (Ls,∞/RL,s)n) |Z=θ−1 .

The exponential map expE induces a short exact sequence of Rs-modules

0 −→ Lie(E)(Ls,∞)
exp−1

E (E(RL,s))
−→ E(Ls,∞)

E(RL,s)
−→ H(E/RL,s) −→ 0.

By Proposition 2.8, the ks-vector space H(E/RL,s) is of finite dimension.
Moreover, since the Rs-module on the left is divisible and Rs is principal,
the sequence splits. The choice of a section gives rise to an isomorphism of
Rs-modules

Lie(E)(Ls,∞)
exp−1

E (E(RL,s))
×H(E/RL,s) '

E(Ls,∞)
E(RL,s)

.

This isomorphism can be restricted to an isomorphism of ks-vector spaces

γ : Lie(E)(Ls,∞)
exp−1

E (E(RL,s))
×H(E/RL,s)

∼−→
(
Ls,∞
RL,s

)n
.

Observe that γ corresponds with the map induced by expE . By Proposi-
tion 3.6, the map γ is infinitely tangent to the identity on Lns,∞. By the
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second point of Proposition 2.5, we have expE ∂θ exp−1
E = φθ, hence the

equality of ks[[Z]]-linear endomorphisms of
(
Ls,∞
RL,s

)n
[[Z]]:

1 + Θ = 1− γ∂θγ−1Z

1− ∂θZ
.

Thus, by Proposition 3.7, we obtain

detks[[Z]](1 + Θ | (Ls,∞/RL,s)n)|Z=θ−1

= [Lie(E)(RL,s) : exp−1
E (E(RL,s))]Rs [H(E/RL,s)]Rs .

This concludes the proof.

4. Applications

4.1. The nth tensor power of the Carlitz module

Let α be a non-zero element of Rs. Let Eα be the Anderson module
defined by the morphism of ks-algebras φ : Rs →Mn(Rs){τ} given by

φθ = ∂θ +Nατ,

where

∂θ =


θ 1 · · · 0

0
. . . . . .

...
...

. . . . . . 1
0 · · · 0 θ

 and Nα =


0 · · · · · · 0
...

...

0
...

α 0 · · · 0

 .

In other words, if t(x1, . . . , xn) ∈ Cns,∞, we have

φθ

x1
...
xn

 =


θx1 + x2

...
θxn−1 + xn
θxn + ατ(x1)

 .

The case α = 1 is denoted by C⊗n, the nth tensor power of Carlitz
module, introduced in [2]. In this section, we show that the exponential
map associated to C⊗n is surjective on Cns,∞ and we recall its kernel.
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4.1.1. Surjectivity and kernel of expC⊗n

By Proposition 2.5, there exists a unique exponential map expC⊗n asso-
ciated with C⊗n and by [2, Section 2], there exists a unique formal power
series

logC⊗n =
∑
i>0

Piτ
i ∈Mn(Cs,∞){{τ}}

such that P0 = In and logC⊗n C⊗nθ = ∂θ logC⊗n . These two maps are in-
verses of each other, i.e. we have the equality of formal power series

logC⊗n expC⊗n = expC⊗n logC⊗n = In.

Furthermore, by [2, Proposition 2.4.2 and 2.4.3], the series expC⊗n(f) con-
verges for all f ∈ Cns,∞ and logC⊗n(f) for all f = (f1, . . . , fn) ∈ Cns,∞ such
that v∞(fi) > n− i− nq

q−1 for 1 6 i 6 n.
For an n-tuple (r1, . . . , rn) of real numbers, we denote by Dn(ri, i =

1, . . . , n) the polydisc{
f ∈ Cns,∞ | v∞(fi) > ri, i = 1, . . . , n

}
.

Proposition 4.1. — The exponential map expC⊗n is surjective on Cns,∞.

To prove this, we reduce to the one dimensional case.

Lemma 4.2. — The following assertions are equivalent:
(1) expC⊗n is surjective on Cns,∞;
(2) C⊗nθ is surjective on Cns,∞;
(3) τ − 1 is surjective on Cs,∞.

Proof. — It is easy to show that (1) implies (2). Indeed, let y ∈ Cns,∞.
By hypothesis, there exists x ∈ Cns,∞ such that expC⊗n(x) = y. Hence we
have

C⊗nθ expC⊗n(∂−1
θ x) = expC⊗n(x) = y.

Next we prove that (2) implies (3). Since C⊗nθ is supposed to be surjective
on Cns,∞, for any y = (y1, . . . , yn) ∈ Cns,∞, there exists x = (x1, . . . , xn) ∈
Cns,∞ such that 

θx1 + x2 = y1

...
θxn−1 + xn = yn−1

θxn + τ(x1) = yn.
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In particular, we get

(4.1) τ(x1)− (−θ)nx1 =
n∑
i=1

(−θ)n−iyi.

Thus τ − (−θ)n is surjective on Cs,∞. But we have

τ
(

(−θ)
n
q−1

)
= (−θ)n(−θ)

n
q−1 ,

hence τ − 1 is also surjective on Cs,∞.
In fact, it is also easy to check that (3) implies (2). As in the previous

case, the surjectivity of τ − (−θ)n is deduced from the surjectivity of τ −
1. Hence, for a fixed y = (y1, . . . , yn) ∈ Cns,∞, there exists x1 ∈ Cs,∞
verifying equation (4.1). Then, by back-substitution, we find successively
x2, . . . , xn ∈ Cs,∞ such that x = (x1, . . . , xn) satisfies C⊗nθ (x) = y.
We finally prove that (2) implies (1). Since logC⊗n converges on the

polydisc Dn(n − i − nq
q−1 , i = 1, . . . , n) and expC⊗n logC⊗n is the identity

map on it, this polydisc is included in the image of the exponential. We will
“grow” this polydisc to show that expC⊗n is surjective. For i = 1, . . . , n, we
define

r0,i := n− i− nq

q − 1 = −i− n

q − 1 ,

and for k > 1,

rk+1,i =
{
rk,i+1 if 1 6 i 6 n− 1
qrk,1 if i = n.

By induction, we prove that for any integer k > 0 and any 1 6 i 6 n− 1,

(4.2) rk,i+1 6 rk,i − 1.

We also prove that for any integer k > 0 and i ∈ {1, . . . , n}, we have
rk,i 6 r0,i−k. In particular, for any 1 6 i 6 n, the sequence (rk,i) tends to
−∞, i.e. the polydiscs Dn(rk,i, i = 1, . . . , n) cover Cns,∞. Thus, it suffices
to show that Dn(rk,i, i = 1, . . . , n) ⊆ Im expC⊗n for any integer k > 0.
The case k = 0, corresponding to the convergence domain of logC⊗n ,

is already known. Let us suppose that Dn(rk,i, i = 1, . . . , n) is included
in the image of expC⊗n for an integer k > 0. Let y be an element of
Dn(rk+1,i, i = 1, . . . , n) \Dn(rk,i, i = 1, . . . , n).

We claim that there exists x ∈Dn(rk,i, i= 1, . . . , n) such that C⊗nθ (x) = y.
Assume temporally this. Since Dn(rk,i, i = 1, . . . , n) ⊆ Im expC⊗n , there

exists z ∈ Cns,∞ such that expC⊗n(z) = x. Thus

expC⊗n(∂θz) = C⊗nθ expC⊗n(z) = C⊗nθ (x) = y.

In particular y is in the image of the exponential as expected.
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It only remains to prove the claim. By hypothesis, there exists x =
(x1, . . . , xn) ∈ Cns,∞ such that

x2 = y1 − θx1

...
xn = yn−1 − θxn

τ(x1)− (−θ)nx1 =
n∑
i=1

(−θ)n−iyi.

We need to show that x is in Dn(rk,i, i = 1, . . . , n). Let begin by showing
v∞(x1) > rk,1. If v∞(x1) = −n

q−1 , then v∞(x1) > r0,1 > rk,1. So we may
suppose that v∞(x1) 6= −n

q−1 . Then

v∞(τ(x1)− (−θ)nx1) = min(qv∞(x1) ; v∞(x1)− n).

In particular,

qv∞(x1) > v∞

(
n∑
i=1

(−θ)n−iyi

)
> min

16i6n
(v∞(yi)− n+ i) > min

16i6n
(rk+1,i − n+ i),

where the last inequality comes from the fact that y is in Dn(rk+1,i, i =
1, . . . , n). But, by the inequality (4.2), we have

rk+1,n 6 rk+1,n−1 − 1 6 · · · 6 rk+1,1 − n+ 1.

Hence we get
qv∞(x1) > rk+1,n = qrk,1,

as desired.
Finally, we show that v∞(xi) > rk,i for all 2 6 i 6 n. Since y ∈

Dn(rk+1,i, i = 1, . . . , n), we have

v∞(x2) > min(v∞(y1) ; v∞(x1)− 1) > min(rk+1,1 ; rk,1 − 1) = rk,2,

where the last equality comes from the definition of rk+1 and from inequal-
ity (4.2). On the same way, we obtain the others needed inequalities. �

Lemma 4.3. — The application τ − 1: Cs,∞ → Cs,∞ is surjective.

Proof. — Since
∑
i>0 τ

i(x) converges for x ∈ Cs,∞ such that v∞(x) > 0,
we have

{x ∈ Cs,∞ | v∞(x) > 0} ⊆ Im(τ − 1).
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Thus, since C∞(t1, . . . , ts) is dense in Cs,∞, it suffices to show that
C∞(t1, . . . , ts) ⊆ (τ − 1)(Cs,∞). Observe that (τ − 1)(C∞[t1, . . . , ts]) =
C∞[t1, . . . , ts]. Now let f ∈ C∞(t1, . . . , ts). We can write

f = g

h
with g, h ∈ C∞[t1, . . . , ts] and v∞(h) = 0.

Now write h = δ − z with δ ∈ Fq[t1, . . . , ts] \ {0} and z ∈ C∞[t1, . . . , ts]
such that v∞(z) > 0. Then, in Cs,∞, we have

f = g

h
=
∑
k>0

gzk

δk+1 .

On the one hand, since the series converges, there exists k0 ∈ N such that

v∞

∑
k>k0

gzk

δk+1

 > 0.

In particular, this sum is in the image of τ −1. On the other hand, we have
k0−1∑
k=0

gzk

δk+1 ∈
1
δk0

C∞[t1, . . . , ts].

But we can write 1
δk0 = β

γ with β ∈ Fq[t1, . . . , ts] and γ ∈ Fq[t1, . . . , ts]\{0}.
Hence

k0−1∑
k=0

gzk

δk+1 ∈
1
γ
C∞[t1, . . . , ts] ⊆ (τ − 1)

(
1
γ
C∞[t1, . . . , ts]

)
.

Thus, by linearity of τ − 1, we get f ∈ (τ − 1)(Cs,∞). �

Denote by Λn the kernel of the morphism of Rs-modules

expC⊗n : Lie(C⊗n)(Cs,∞) −→ C⊗n(Cs,∞).

Recall that the Carliz period π̃ is defined as

π̃ := θ(−θ)
1
q−1

∞∏
i=1

(
1− θ1−qi

)−1
∈ (−θ)

1
q−1K∞,

where (−θ)
1
q−1 is a choosen (q − 1)-th root of −θ.

Proposition 4.4. — The Rs-module Λn is free of rank 1 and is gener-
ated by a vector with π̃n as last coordinate.

Proof. — See [2, Section 2.5]. �
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4.1.2. Characterization of Anderson modules isomorphic to C⊗n

We characterize Anderson modules which are isomorphic, in a sense de-
scribed below, to the nth tensor power of the Carlitz module. We obtain
an n-dimensional analogue of Proposition 6.2 of [4].

Definition 4.5. — Two Anderson modules E and E′ are isomorphic if
there exists a matrix P ∈GLn(Cs,∞) such that EθP =PE′θ inMn(Cs,∞){τ}.

Let α ∈ Rs. Denote by Eα the Anderson module defined at the beginning
of Section 4.1. Note that Eα and C⊗n are isomorphic if and only if there
exists a matrix P ∈ GLn(Cs,∞) such that

(4.3) ∂θP = P∂θ and N1τ(P ) = PNα.

Let us set

Us :=
{
α∈C∗s,∞

∣∣∣∣∃ β ∈C∗∞, γ ∈Fq(t1, . . . , ts), v∞
(
α− β τ(γ)

γ

)
>v∞(α)

}
.

Lemma 4.6. — The map which associates to any element x of C∗s,∞
the element τ(x)

x of C∗s,∞ induces a short exact sequence of multiplicative
groups

1 −→ k∗s −→ C∗s,∞ −→ Us −→ 1.

Proof. — The kernel comes from Lemma 2.3.
Let α ∈ C∗s,∞ such that there exists x ∈ C∗s,∞ verifying τ(x) = αx. Since

C∞ is an algebraically closed field, one can suppose that v∞(α) = 0. We
write x = γ+m with γ ∈ Fq(t1, . . . , ts) andm ∈ C∗s,∞ such that v∞(m) > 0.
Then, we have v∞(τ(γ)− αγ) > 0, i.e. α ∈ Us.
Reciprocally, let α ∈ Us and β ∈ C∗∞, γ ∈ Fq(t1, . . . , ts) such that

v∞

(
α− β τ(γ)

γ

)
> v∞(α).

We set δ := β τ(γ)
γ . Observe that

∏
i>0

τ i(δ)
τ i(α) converges in C∗s,∞. Now, since

τ is ks-linear, there exists ε ∈ C∗∞Fq(t1, . . . , ts) such that τ(ε) = δ. Then,
we set

(4.4) ωα := ε
∏
i>0

τ i(δ)
τ i(α) ∈ C∗s,∞.

Thus, we have τ(ωα) = αωα. Observe that ωα is defined up to a scalar
factor in F∗q whereas it depends a priori on the choices of β, γ and ε. �

We are now able to characterize Anderson modules which are isomorphic
to C⊗n.
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Proposition 4.7. — Let α ∈ Rs. The following assertions are equiva-
lent:

(1) Eα is isomorphic to C⊗n,
(2) α ∈ Us,
(3) expα is surjective,
(4) ker expα is a free Rs-module of rank 1,

where expα is the exponential map associated with Eα by Proposition 2.5.

Proof. — Setting P = ωαIn where ωα is defined by (4.4), we see that (2)
implies (1).
We prove that (1) implies (3). Let P ∈ GLn(Cs,∞) such that C⊗nθ P =

PEθ. Using equalities (4.3), we check that

P−1 expC⊗n P∂θ = EθP
−1 expC⊗n P.

Thus, by unicity in Proposition 2.5, we get P−1 expC⊗n P = expα. In par-
ticular, by Proposition 4.1, we deduce that expα is surjective.
Next, we prove that (3) implies (2). We can assume that v∞(α) = 0. By

Lemma 4.6, it suffices to show that ker(ατ−1) is not trivial. Let us suppose
the converse. As at the beginning of the proof of Lemma 4.2, we easily show
that the surjectivity of expα on Cns,∞ implies that of ατ −1 on Cs,∞. Thus,
ατ − 1 is an automorphism of the ks-vector space Cs,∞. We verify that
v∞(f) = 0 if and only if v∞(ατ(f) − f) = 0. Let α ∈ Fq(t1, . . . , ts) such
that v∞(α − α) > 0. Then, ατ − 1 is an automorphism of the ks-vector
space Fq(t1, . . . , ts), which is obviously false.
It is easy to show that (1) implies (4). Indeed, since Eα is isomorphic to

C⊗n, we have

ker expα = 1
ωα

ker expC⊗n .

Thus, by Proposition 4.4, ker expα is a free Rs-module of rank 1 generated
by a vector with π̃n

ωα
as last coordinate.

Finally, we prove that (4) implies (2). Let f be a non zero element of
ker expα such that ∂−1

θ f /∈ ker expα. Thus, the vector g := expα(∂−1
θ f) ∈

Cns,∞ is non zero and Eθ(g) = 0. Denote by g1, . . . , gn its coordinates. We
have 

θg1 + g2 = 0
...

θgn−1 + gn = 0
θgn + ατ(g1) = 0.
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Since g 6= 0, we deduce that gi 6= 0 for all 1 6 i 6 n. Summing, we obtain
ατ(g1)− (−θ)ng1 = 0. Thus

ατ
(

(−θ)
−n
q−1 g1

)
= (−θ)

−n
q−1 g1.

We conclude, by Lemma 4.6, that α ∈ Us. �

Example. — Looking at the degree in t1, we easily show that t1 /∈ Us.
So Et1 is not isomorphic to C⊗n and expt1 is not surjective.

4.2. Pellarin’s L-functions

Let α ∈ Rs\{0} and Eα be the Anderson module defined at the beginning
of Section 4.1. By Theorem 2.9, we have a class formula for

L(Eα/Rs) :=
∏
P∈A
prime

[Lie(Eα)(Rs/PRs)]Rs
[Eα(Rs/PRs)]Rs

.

We compute theRs-module structure of Lie(Eα)(Rs/PRs) and Eα(Rs/PRs).
Then, we show that we recover special values of Pellarin’s L-functions if
we take α = (t1 − θ) · · · (ts − θ).

4.2.1. Fitting ideal of Lie(Eα)(Rs/PRs)

Let us recall some facts about hyperdifferential operators. For more de-
tails, we refer the reader to [6].

Let j > 0 be an integer. The jth hyperdifferential operator Dj is the
ks-linear endomorphism of Rs given by Dj(θk) =

(
k
j

)
θk−j for k > 0. For

any f, g ∈ Rs, we have the Leibnitz rule

Dj(fg) =
j∑

k=0
Dk(f)Dj−k(g).

Lemma 4.8. — For any a ∈ Rs, we have

∂(a)


0
...
0
1

 =


Dn−1(a)

...
D1(a)
a

 .
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Proof. — By linearity, it suffices to prove the equality for a = θk, k ∈ N.
The action of ∂(θk) is the left multiplication by

θ 1
. . . . . .

. . . 1
θ


k

=

θIn +


0 1

. . . . . .
. . . 1

0



k

=
k∑
i=0

(
k

i

)
θk−i


0 1

. . . . . .
. . . 1

0


i

,

hence the result comes from the definition of hyperdifferential operators.
�

Lemma 4.9. — Let P be a prime of A and m a positive integer. Then
∂(Pm) is zero modulo P if and only if m is greater than or equal to n.

Proof. — By the previous lemma, it suffices to show that for any k > 0,
the congruence Dk(Pm) = 0 mod P holds if and only if m > k + 1. The
case k = 0 being obvious, let us suppose the result for an integer k. By the
Leibnitz rule, we have

Dk+1(Pm) =
∑

i+j=k+1
Di(Pm−1)Dj(P )

= PDk+1(Pm−1) +D1(P )Dk(Pm−1) + · · ·+Dk+1(P )Pm−1,

which is zero modulo P if m > k + 2. Reciprocally, observe that
Dk+1(P k+1) = PDk+1(P k) +D1(P )Dk(P k)

+D2(P )Dk−1(P k) + · · ·+Dk+1(P )P k

= D1(P )Dk(P k) mod P

which is non zero modulo P by hypothesis. �

Thanks to this lemma, we can compute the first Fitting ideal.

Proposition 4.10. — Let P be a prime of A. The Rs-module
Lie(Eα)(Rs/PRs) is isomorphic to Rs/P

nRs and is generated by the
residue class of t(0, . . . , 0, 1).

Proof. — By definition, Lie(Eα)(Rs/PRs) is the ks-vector space
(Rs/PRs)n equipped with the Rs-module structure given by ∂. This Rs-
module is finitely generated and, since ∂(P qn) = P q

n

In by Lemma 2.6,
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the polynomial P qn annihilates it. Since Rs is principal, by the structure
theorem, there exists integers e1 6 · · · 6 em such that

Lie(Eα)(Rs/PRs) '
Rs

P e1Rs
× · · · × Rs

P emRs
.

Since Lie(Eα)(Rs/PRs) is a ks-vector space of dimension ndegP , we
have e1 + · · · + em = n. But, by the previous lemma, the residue
class of t(0, . . . , 0, 1) is not annihilated by Pn−1, hence em > n. Thus,
Lie(Eα)(Rs/PRs) is cyclic and generated by the residue class of this
vector. �

4.2.2. Fitting ideal of Eα(Rs/PRs)

Let P be a prime of A and denote its degree by d. We consider R :=
Rs/PRs and Eα(R) the Rs-module Rn where the action of Rs is given
by φ, as defined at the beginning of Section 4.1.
For i = 1, . . . , n, we denote by ei : Cns,∞ → Cs,∞ the projection on the

ith coordinate. By analogy with [2], we define the Rs-module

Wn(R) :=
{
w ∈ R((t−1))/R[t]

∣∣ατ(w) = (t− θ)nw mod R[t]
}
,

where τ(w) =
∑
τ(ri)ti if w =

∑
rit

i ∈ R((t−1)).

Proposition 4.11. — The map
ψ : Eα(R) −→ R((t−1))/R[t]

c 7−→ −
∞∑
i=1

e1φθi−1(c)t−i

induces an isomorphism of Rs-modules between Eα(R) and Wn(R).

Proof. — See [2, Proposition 1.5.1]. �

Observe that for any c ∈ Eα(R), we have ψ(φθ(c)) = tφθ(c) mod R[t].
Moreover, since it is a ks-vector space of dimension nd, Wn(R) is a finitely
generated and torsion ks[t]-module.

For w ∈ Wn(R), applying d − 1 times ατ to the relation ατ(w) =
(t− θ)nw, we get

ατ(α) · · · τd−1(α)τd(w) =
d−1∏
i=0

(
t− θq

i
)n

w.

But τd(w) = w in Wn(R) and
∏d−1
i=0 (t− θqi) = P (t) mod R[t] where P (t)

denotes the polynomial in t obtained substituting t form θ in P . Thus we
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obtain

(4.5) Pn(t)− ατ(α) · · · τd−1(α) = 0 in Wn(R).

Since we have the isomorphism
Rs
PRs

' A

PA
⊗Fq ks,

for any x ∈ Rs, there exists a unique y ∈ ks such that xτ(x) · · · τd−1(x) =
y mod PRs. We denote by ρα(P ) the element of ks such that ρα(P ) =
ατ(α) · · · τd−1(α) mod PRs. Note that, since P is prime, ρα(P ) = 0 mod P
if and only if P divides α in Rs. Then, by (4.5), we deduce that Wn(R) is
annihilated by Pn(t)− ρα(P ), or equivalently

(4.6) Eα(R) ⊆ kerφPn−ρα(P ) =
{
x ∈ Rn | φPn−ρα(P )(x) = 0

}
.

Lemma 4.12. — For any a ∈ ks[t] prime to P (t) := P|θ=t , the ks-vector
spaceWn(R)[a] of a-torsion points ofWn(R) is of dimension at most degt a.

Proof. — By definition, we have

Wn(R)[a] =
{
w ∈ 1

a
R[t]/R[t]

∣∣∣∣ατ(w) = (t− θ)nw mod R[t]
}

⊆ R((t−1))/R[t].

Let w ∈Wn(R)[a]. Since the ti/a for i ∈ {0, . . . ,deg a−1} form an R-basis
of 1

aR[t]/R[t], we can write

w =
deg a−1∑
i=0

λi
ti

a
,

where the λi are in R. Using the binomial formula and writing tj/a for
j > deg a in the above basis, the functional equation satisfied by w becomes

deg a−1∑
i=0

ατ(λi)
ti

a
=

deg a−1∑
i=0

∑
j

bi,jλj
ti

a
,

where the bi,j are in R. Identifying the two sides, we obtain τ(Λ) = BΛ
where Λ is the vector t(λ0, . . . , λdeg a−1) and B is the matrix of Mdeg a(R)
with coefficients bi,j/α.
But the ks-vector space V :=

{
X ∈ Rdeg a

∣∣ τ(X) = BX
}
is of dimension

at most deg a. Indeed, observe that, if v1, . . . , vm are vectors of Rdeg a such
that τ(vi) = Bvi for all i ∈ {1, . . . ,m}, linearly independent over R, there
are also linearly independent over Rτ = ks (by induction on m, see [10,
Lemma 1.7]). �
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Proposition 4.13. — Let P be a prime of A. We have the isomorphism
of Rs-modules

Eα(Rs/PRs) '
Rs

(Pn − ρα(P ))Rs
.

Proof. — Recall that we denote Rs/PRs by R. Observe that if P divides
α, we have ρα(P ) = 0 and the isomorphism of Rs-modules Lie(Eα)(R) '
Eα(R). Then, the result is the same as in Proposition 4.10.

Hence, let us suppose that α and P are coprime. The ks-vector space
Eα(R) is of dimension nd. We deduce from Lemma 4.12 that Eα(R) is a
cyclic Rs-module, i.e.

Eα(Rs) '
Rs
fRs

,

for some monic element f of Rs of degree nd. On the other hand, by
the inclusion (4.6), Eα(R) is annihilated by Pn − ρα(P ) thus f divides
Pn − ρα(P ). Since these two polynomials are monic and have the same
degree, they are equal. �

4.2.3. L-values

Let a be a monic polynomial of A and a = P e1
1 · · ·P err be its decompo-

sition into a product of primes. Then, we define

ρα(a) :=
r∏
i=1

ρα(Pi)ei .

By Propositions 4.10 and 4.13, we get

L(Eα/Rs) =
∏
P∈A
prime

[Lie(Eα)(Rs/PRs)]Rs
[Eα(Rs/PRs)]Rs

=
∏
P∈A
prime

Pn

Pn − ρα(P )

=
∑
a∈A+

ρα(a)
an

∈ Ks,∞.

As in [4, Section 4.1], observe that for any prime P of A, ρα(P ) is
the resultant of P and α seen as polynomials in θ. In particular, if α =
(t1 − θ) · · · (ts − θ), we obtain ρα(P ) = P (t1) · · ·P (ts). Thus, by Theo-
rem 2.9, we get a class formula for L-values introduced in [9]:

L(χt1 · · ·χts , n) =
∑
a∈A+

χt1(a) · · ·χts(a)
an

= [Lie(Eα)(Rs) : exp−1
E (Eα(Rs))]Rs [H(Eα/Rs)]Rs ,

where χti : A→ Fq[t1, . . . , ts] are the ring homomorphisms defined respec-
tively by χti(θ) = ti.
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4.3. Goss abelian L-series

This section is inspired by [5].
Let a ∈ A+ be squarefree and L be the cyclotomic field associated with a,

i.e. the finite extension of K generated by the a-torsion of the Carlitz mod-
ule. We denote by ∆a the Galois group of this extension, it is isomorphic
to (A/aA)×.
Note that A[∆a] =

∏
i Fi[θ] for some finite extensions Fi of Fq. In par-

ticular, A[∆a] is a principal ideal domain and Fitting ideals are defined as
usual. If M is a finite A[∆a]-module, we denote by [M ]A[∆a] the unique
generator f of FittA[∆a]M such that each component fi ∈ Fi[θ] of f is
monic.
We denote by ∆̂a the group of characters of ∆a, i.e. ∆̂a = hom(∆a,Fq

×).
For χ ∈ ∆̂a, we denote by Fq(χ) the finite extension of Fq generated by the
values of χ and we set

eχ := 1
#∆a

∑
σ∈∆a

χ−1(σ)σ ∈ Fq(χ)[∆a].

Then eχ is idempotent and σeχ = χ(σ)eχ for every σ ∈ ∆a.
Let F be the finite extension of Fq generated by the values of all char-

acters, i.e. F is the compositum of all Fq(χ) for χ ∈ ∆̂a. If M is an A[∆a]-
module, we have the decomposition into χ-components

F ⊗Fq M =
⊕
χ∈∆̂a

eχ
(
F ⊗Fq M

)
.

Let V be a free K∞[∆a]-module of rank n. A sub-A[∆a]-module M of
V is a lattice of V if M is free of rank one and K∞[∆a] ·M = V . Let
M be a lattice of V and χ ∈ ∆̂a. Then M(χ) := eχ

(
Fq(χ)⊗Fq M

)
is a

free A(χ)-module of rank n, discrete in V (χ) := eχ
(
Fq(χ)⊗Fq V

)
, where

A(χ) := Fq(χ) ⊗Fq A. Now let M1 and M2 be two lattices of V . For each
χ ∈ ∆̂a, there exists σχ ∈ GL(V (χ)) such that σχ(M1(χ)) = M2(χ). Then,
we define [M1(χ) : M2(χ)]A(χ) to be the unique monic representative of
detσχ in K∞(χ) := Fq(χ)⊗Fq K∞. Finally, we set

[M1 : M2]A[∆a] :=
∑
χ∈∆̂a

[M1(χ) : M2(χ)]A(χ)eχ ∈ K∞[∆a]×.

4.3.1. Gauss–Thakur sums

We review some basic facts on Gauss–Thakur sums, introduced in [12]
and generalized in [3].
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We begin with the case of only one prime. Let P be a prime of A of
degree d and ζP ∈ Fq such that P (ζP ) = 0. We denote by ΛP the P -
torsion of the Carlitz module and let λP be a non zero element of ΛP .
We consider the cyclotomic extension KP := K(ΛP ) = K(λP ) and we
denote its Galois group by ∆P . We have ∆P ' (A/PA)×. More precisely,
if b ∈ (A/PA)×, the corresponding element σb ∈ ∆P is uniquely determined
by σb(λP ) = Cb(λP ). We denote by OKP the integral closure of A in KP .
We have OKP = A[λP ].

We define the Teichmüller character
ωP : ∆P −→ F∗qd

σb 7−→ b(ζP ),

where σb is the unique element of ∆P such that σb(λP ) = Cb(λP ). Let
χ ∈ ∆̂P . Since the Teichmüller character generates ∆̂P , there exists j ∈
{0, . . . , qd− 2} such that χ = ωjP . We expand j = j0 + j1q+ · · ·+ jd−1q

d−1

in base q (j0, . . . , jd−1 ∈ {0, . . . , q − 1}). Then, the Gauss–Thakur sum
(see [12]) associated with χ is defined as

g(χ) :=
d−1∏
i=0

− ∑
δ∈∆P

ω−q
i

P (δ)δ(λP )

ji

∈ Fq(χ)⊗Fq OKP .

We compute the action of τ = 1⊗ τ on these Gauss–Thakur sums (see [12,
proof of Theorem II]). Let 1 6 j 6 d − 1. Since by the Carlitz action
σθσb(λP ) = θσb(λP ) + τ (σb(λP )), we have

τ
(
g(ωq

j

P )
)

= −
∑

σb∈∆P

ωq
j

P (σb) (σbσθ(λP )− θσb(λP )) .

Then, by substitution, we get

(4.7) τ
(
g(ωq

j

P )
)

=
(
ζq
j

P − θ
)
g(ωq

j

P ).

Now, we return to the general case. Since a is squarefree, we can write a =
P1 · · ·Pr with P1, . . . , Pr distinct primes of respective degrees d1, . . . , dr.
Since ∆̂a ' ∆̂P1 × · · · × ∆̂Pr , for every character χ ∈ ∆̂a, we have

(4.8) χ = ωN1
P1
· · ·ωNrPr ,

for some integers 0 6 Ni 6 qdi − 2 and where ωPi is the Teichmüller
character associated with Pi. The product fχ :=

∏
Ni 6=0 Pi is the conductor

of χ. Then, the Gauss–Thakur sum (see [3, Section 2.3]) associated with χ
is defined as

g(χ) :=
r∏
i=1

g(ωNiPi ) ∈ F ⊗Fq OL,
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or equivalently

g(χ) =
r∏
i=1

di−1∏
j=0

g(ωq
j

Pi
)Ni,j ,

where the Ni,j are the q-adic digits of Ni. By equality (4.7), we obtain

(4.9) τ (g(χ)) =
r∏
i=1

di−1∏
j=0

(
ζq
j

Pi
− θ
)Ni,j

︸ ︷︷ ︸
α(χ)

g(χ).

Lemma 4.14. — The ring OL is a free A[∆a]-module of rank one gen-
erated by ηa :=

∑
χ∈∆̂a

g(χ).

Proof. — See [3, Lemma 16]. �

4.3.2. The Frobenius action on the χ-components

Recall that L is the extension of K generated by the a-torsion of the
Carlitz module. Let L∞ := L ⊗K K∞ on which τ acts diagonally and ∆a

acts on L. As in Section 2.2, we have a morphism of A[∆a]-modules

expC⊗n : Lie(C⊗n)(L∞) −→ C⊗n(L∞).

Let χ ∈ ∆̂a. We get an induced map

expC⊗n : eχ
(
Lie(C⊗n)(Fq(χ)⊗Fq L∞)

)
−→ C⊗n

(
eχ(Fq(χ)⊗Fq L∞)

)
,

where the action of τ on Fq(χ) ⊗Fq L∞ is on the second component. But,
by Lemma 4.14, we have

eχ(Fq(χ)⊗Fq L∞) = g(χ)K∞(χ),

where K∞(χ) := Fq(χ)⊗Fq K∞.
We have the obvious isomorphism of modules over A(χ) := Fq(χ)⊗Fq A

g(χ)K∞(χ) ∼−→ K∞(χ),

where the action on the right hand side is denoted by τ̃ and given by τ̃(f) =
α(χ)(1⊗ τ)(f) for any f ∈ K∞(χ), where α(χ) is defined by equality (4.9).
In particular, this isomorphism maps C⊗nθ into ∂θ+N1τ̃ = ∂θ+Nα(χ)τ with
notation of Section 4.1 and expC⊗n into expα(χ). Thus, by Lemma 4.14, we
have the isomorphism of A(χ)-modules

eχ
(
Fq(χ)⊗Fq H(C⊗n /OL)

)
'

Eα(χ)(K∞(χ))
expα(χ)

(
Lie(Eα(χ))(K∞(χ))

)
+ Eα(χ)(A(χ))

.
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We denote the right hand side by H
(
Eα(χ)/A(χ)

)
. Note that we have also

eχ
(
Fq(χ)⊗Fq exp−1

C⊗n(C⊗n(OL))
)

= exp−1
α(χ)

(
Eα(χ)(A(χ))

)
.

4.3.3. L-values

Let χ ∈ ∆̂a and denote its conductor by fχ. Recall that the special value
at n > 1 of Goss L-series (see [8, Chapter 8]) associated with χ is defined by

L(n, χ) :=
∑
b∈A+

χ(σb)
bn

∈ K∞(χ),

where the sum runs over the elements b ∈ A+ relatively prime to fχ. If
b ∈ A+ and fχ are not coprime, we set χ(σb) = 0. Then, define the Goss
abelian L-series

L(n,∆a) :=
∑
χ∈∆̂a

L(n, χ)eχ ∈ K∞[∆a]×.

Lemma 4.15. — The infinite product

∏
P∈A
prime

[
Lie(C⊗n)(OL/POL)

]
A[∆a][

C⊗n(OL/POL)
]
A[∆a]

converges in K∞[∆a] to L(n,∆a).

Proof. — On the one hand, for all χ ∈ ∆̂a, we have

L(n, χ) =
∏
P∈A
prime

(
1− χ(σP )

Pn

)−1
,

where χ(σP ) = 0 if P divides fχ. On the other hand, let χ ∈ ∆̂a. We write
χ = ωN1

P1
· · ·ωNrPr as in equality (4.8) and denote by Ni,j the q-adic digits

of Ni. Then, as in Section 4.2.2, we can prove that

[
Eα(χ)(A(χ)/PA(χ))

]
A(χ) = Pn −

r∏
i=1

di−1∏
j=0

P
(
ζq
j

Pi

)Ni,j
= Pn −

r∏
i=1

P (ζPi)Ni

= Pn − χ(σP ).

TOME 72 (2022), FASCICULE 3



1182 Florent DEMESLAY

Thus, we obtain

L(n, χ) =
∏
P∈A
prime

[
Lie(Eα(χ))(A(χ)/PA(χ))

]
A(χ)[

Eα(χ)(A(χ)/PA(χ))
]
A(χ)

.

Hence, we get the result by the discussion of Section 4.3.2 and definition
of L(n,∆a). �

Finally, we obtain a generalization of Theorem A of [5]:

Theorem 4.16. — Let a ∈ A+ be squarefree and denote by L the ex-
tension of K generated by the a-torsion of the Carlitz module. In K∞[∆a],
we have

L(n,∆a) =
[
Lie(C⊗n)(OL) : exp−1

C⊗n(C⊗n(OL))
]
A[∆a]

[
H(C⊗n /OL)

]
A[∆a] .

Proof. — By the previous lemma, L(n,∆a) is expressed in terms of
Anderson module and Fitting. Then, as in Proposition 3.5, we express
L(n,∆a) as a determinant. The proof is similar but we deal with the χ-
components eχ(Fq(χ) ⊗Fq OL) for all χ ∈ ∆̂a. Then, since A[∆a] is prin-
cipal, we conclude as in Section 3.4. We refer to [5, Section 6.4] for more
details. �
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