The Perverse Eigenspace of One for the Milnor Monodromy
Annales de l'Institut Fourier, Online first, 12 p.

In this short paper, we describe the relationship between intersection cohomology with integral coefficients and the perverse eigenspace of one for the Milnor mondromy on the vanishing cycles.

Dans ce court article, nous décrivons la relation entre la cohomologie d’intersection avec coefficients intégraux et l’espace propre pervers de un pour la mondromie de Milnor sur les cycles de fuite.

Received:
Accepted:
Online First:
DOI: 10.5802/aif.3499
Classification: 32B15,  32C18,  32B10,  32S25,  32S15,  32S55
Keywords: Intersection cohomology, eigenspaces, hypersurface, perverse sheaves, monodromy
Massey, David 1

1 Dept. of Mathematics Northeastern University Boston, MA, 02115 (USA)
@unpublished{AIF_0__0_0_A70_0,
     author = {Massey, David},
     title = {The {Perverse} {Eigenspace} of {One} for the {Milnor} {Monodromy}},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2022},
     doi = {10.5802/aif.3499},
     language = {en},
     note = {Online first},
}
TY  - UNPB
TI  - The Perverse Eigenspace of One for the Milnor Monodromy
JO  - Annales de l'Institut Fourier
PY  - 2022
DA  - 2022///
PB  - Association des Annales de l’institut Fourier
N1  - Online first
UR  - https://doi.org/10.5802/aif.3499
DO  - 10.5802/aif.3499
LA  - en
ID  - AIF_0__0_0_A70_0
ER  - 
%0 Unpublished Work
%T The Perverse Eigenspace of One for the Milnor Monodromy
%J Annales de l'Institut Fourier
%D 2022
%I Association des Annales de l’institut Fourier
%Z Online first
%U https://doi.org/10.5802/aif.3499
%R 10.5802/aif.3499
%G en
%F AIF_0__0_0_A70_0
Massey, David. The Perverse Eigenspace of One for the Milnor Monodromy. Annales de l'Institut Fourier, Online first, 12 p.

[1] Beilinson, Alexander A. How to glue perverse sheaves, Lecture Notes in Mathematics, 1289 (1987), pp. 42-51

[2] Beilinson, Alexander A.; Bernstein, Joseph; Deligne, Pierre Faisceaux pervers, Astérisque, 100, Société Mathématique de France, 1982

[3] Braden, Tom On the Reducibility of Characteristic Varieties, Proc. Am. Math. Soc., Volume 130 (2002) no. 7, pp. 2037-2043 | Zbl

[4] Dimca, Alexandru Sheaves in Topology, Universitext, Springer, 2004

[5] Goresky, Mark; MacPherson, Robert Intersection homology theory, Topology, Volume 19 (1980), pp. 135-162

[6] Goresky, Mark; MacPherson, Robert Intersection Homology II, Invent. Math., Volume 71 (1983), pp. 77-129

[7] Hepler, Brian Deformation formulas for parameterizable hypersurfaces (2017) (https://arxiv.org/abs/1711.11134v1) | arXiv

[8] Hepler, Brian; Massey, David B. Perverse results on Milnor fibers inside parameterized hypersurfaces, Publ. Res. Inst. Math. Sci., Volume 52 (2016) no. 4, pp. 413-433

[9] Kashiwara, Masaki; Schapira, Pierre Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990

[10] Lê, Dũng Tráng Sur les cycles évanouissants des espaces analytiques, C. R. Math. Acad. Sci. Paris, Volume 288 (1979), pp. 283-285

[11] Massey, David B. A General Calculation of the Number of Vanishing Cycles, Topology Appl., Volume 62 (1995) no. 1, pp. 21-43

[12] Massey, David B. Lê Cycles and Hypersurface Singularities, Lecture Notes in Mathematics, 1615, Springer, 1995

[13] Massey, David B. Intersection cohomology, monodromy, and the Milnor fiber, Int. J. Math., Volume 20 (2009) no. 4, pp. 491-507

[14] Milnor, John W. Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies, 61, Princeton University Press, 1968

[15] Reich, Ryan Notes on Beilinson’s “How to glue perverse sheaves”, J. Singul., Volume 1 (2010), pp. 94-115

[16] Saito, Morihiko Mixed Hodge Modules, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 2, pp. 221-333

[17] Schürmann, Jörg Topology of Singular Spaces and Constructible Sheaves, Monografie Matematyczne. Instytut Matematyczny PAN. New Series, 63, Birkhäuser, 2004

Cited by Sources: