Dans ce court article, nous décrivons la relation entre la cohomologie d’intersection avec coefficients intégraux et l’espace propre pervers de un pour la mondromie de Milnor sur les cycles de fuite.
In this short paper, we describe the relationship between intersection cohomology with integral coefficients and the perverse eigenspace of one for the Milnor mondromy on the vanishing cycles.
Accepté le :
Publié le :
Keywords: Intersection cohomology, eigenspaces, hypersurface, perverse sheaves, monodromy
Mot clés : Cohomologie d’intersection, espaces propres, hypersurface, faisceaux pervers, monodromie
Massey, David 1
@article{AIF_2022__72_4_1535_0, author = {Massey, David}, title = {The {Perverse} {Eigenspace} of {One} for the {Milnor} {Monodromy}}, journal = {Annales de l'Institut Fourier}, pages = {1535--1546}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {4}, year = {2022}, doi = {10.5802/aif.3499}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3499/} }
TY - JOUR AU - Massey, David TI - The Perverse Eigenspace of One for the Milnor Monodromy JO - Annales de l'Institut Fourier PY - 2022 SP - 1535 EP - 1546 VL - 72 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3499/ DO - 10.5802/aif.3499 LA - en ID - AIF_2022__72_4_1535_0 ER -
%0 Journal Article %A Massey, David %T The Perverse Eigenspace of One for the Milnor Monodromy %J Annales de l'Institut Fourier %D 2022 %P 1535-1546 %V 72 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3499/ %R 10.5802/aif.3499 %G en %F AIF_2022__72_4_1535_0
Massey, David. The Perverse Eigenspace of One for the Milnor Monodromy. Annales de l'Institut Fourier, Tome 72 (2022) no. 4, pp. 1535-1546. doi : 10.5802/aif.3499. https://aif.centre-mersenne.org/articles/10.5802/aif.3499/
[1] How to glue perverse sheaves, Lecture Notes in Mathematics, 1289 (1987), pp. 42-51
[2] Faisceaux pervers, Astérisque, 100, Société Mathématique de France, 1982
[3] On the Reducibility of Characteristic Varieties, Proc. Am. Math. Soc., Volume 130 (2002) no. 7, pp. 2037-2043 | DOI | MR | Zbl
[4] Sheaves in Topology, Universitext, Springer, 2004 | DOI
[5] Intersection homology theory, Topology, Volume 19 (1980), pp. 135-162 | DOI | MR | Zbl
[6] Intersection Homology II, Invent. Math., Volume 71 (1983), pp. 77-129 | DOI | MR | Zbl
[7] Deformation formulas for parameterizable hypersurfaces (2017) (https://arxiv.org/abs/1711.11134v1)
[8] Perverse results on Milnor fibers inside parameterized hypersurfaces, Publ. Res. Inst. Math. Sci., Volume 52 (2016) no. 4, pp. 413-433 | DOI | MR | Zbl
[9] Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990 | DOI
[10] Sur les cycles évanouissants des espaces analytiques, C. R. Math. Acad. Sci. Paris, Volume 288 (1979), pp. 283-285 | Zbl
[11] A General Calculation of the Number of Vanishing Cycles, Topology Appl., Volume 62 (1995) no. 1, pp. 21-43 | DOI | MR | Zbl
[12] Lê Cycles and Hypersurface Singularities, Lecture Notes in Mathematics, 1615, Springer, 1995 | DOI
[13] Intersection cohomology, monodromy, and the Milnor fiber, Int. J. Math., Volume 20 (2009) no. 4, pp. 491-507 | DOI | MR | Zbl
[14] Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies, 61, Princeton University Press, 1968
[15] Notes on Beilinson’s “How to glue perverse sheaves”, J. Singul., Volume 1 (2010), pp. 94-115 | DOI | MR | Zbl
[16] Mixed Hodge Modules, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 2, pp. 221-333 | DOI | Numdam | MR | Zbl
[17] Topology of Singular Spaces and Constructible Sheaves, Monografie Matematyczne. Instytut Matematyczny PAN. New Series, 63, Birkhäuser, 2004
Cité par Sources :