Tritangents to smooth sextic curves
Annales de l'Institut Fourier, Volume 72 (2022) no. 6, pp. 2299-2338.

We prove that a smooth plane sextic curve can have at most 72 tritangents, whereas a smooth real sextic may have at most 66 real tritangents.

On montre qu’une courbe plane lisse de degré six a au plus 72 tritangentes, alors qu’une courbe lisse réelle de degré six a au plus 66 tritangentes réelles.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3491
Classification: 14J28,  14H50,  14N20,  14N25
Keywords: K3-surface, sextic curve, tritangent, Niemeier lattice
Degtyarev, Alex 1

1 Department of Mathematics Bilkent University 06800 Ankara (Turkey)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2022__72_6_2299_0,
     author = {Degtyarev, Alex},
     title = {Tritangents to smooth sextic curves},
     journal = {Annales de l'Institut Fourier},
     pages = {2299--2338},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {72},
     number = {6},
     year = {2022},
     doi = {10.5802/aif.3491},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3491/}
}
TY  - JOUR
AU  - Degtyarev, Alex
TI  - Tritangents to smooth sextic curves
JO  - Annales de l'Institut Fourier
PY  - 2022
DA  - 2022///
SP  - 2299
EP  - 2338
VL  - 72
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3491/
UR  - https://doi.org/10.5802/aif.3491
DO  - 10.5802/aif.3491
LA  - en
ID  - AIF_2022__72_6_2299_0
ER  - 
%0 Journal Article
%A Degtyarev, Alex
%T Tritangents to smooth sextic curves
%J Annales de l'Institut Fourier
%D 2022
%P 2299-2338
%V 72
%N 6
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.3491
%R 10.5802/aif.3491
%G en
%F AIF_2022__72_6_2299_0
Degtyarev, Alex. Tritangents to smooth sextic curves. Annales de l'Institut Fourier, Volume 72 (2022) no. 6, pp. 2299-2338. doi : 10.5802/aif.3491. https://aif.centre-mersenne.org/articles/10.5802/aif.3491/

[1] Bourbaki, Nicolas Elements of mathematics. Lie groups and Lie algebras. Chapters 4–6, Springer, 2002 (translated from the 1968 French original by Andrew Pressley) | MR | Zbl

[2] Clebsch, Alfred Zur Theorie der algebraischen Flächen, J. Reine Angew. Math., Volume 58 (1861), pp. 93-108 | DOI | MR | Zbl

[3] Conway, John H.; Sloane, Neil J. A. Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, 290, Springer, 1988 (with contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov) | DOI | MR | Zbl

[4] Degtyarev, Alex Lines in supersingular quartics (2016) (to appear, https://arxiv.org/abs/1604.05836v1)

[5] Degtyarev, Alex Lines on Smooth Polarized K3-Surfaces, Discrete Comput. Geom., Volume 62 (2019) no. 3, pp. 601-648 | DOI | MR | Zbl

[6] Degtyarev, Alex Smooth models of singular K3-surfaces, Rev. Mat. Iberoam., Volume 35 (2019) no. 1, pp. 125-172 | DOI | MR | Zbl

[7] Degtyarev, Alex Tritangents to smooth sextic curves, Preprint MPIM 19-51 (2019)

[8] Degtyarev, Alex; Itenberg, Ilia; Sertöz, Ali Sinan Lines on quartic surfaces, Math. Ann., Volume 368 (2017) no. 1-2, pp. 753-809 | DOI | MR | Zbl

[9] Elkies, Noam D. Upper bounds on the number of lines on a surface, 2017 (part of the conference New Trends in Arithmetic and Geometry of Algebraic Surfaces, BIRS conference 17w5146, http://www.birs.ca/events/2017/5-day-workshops/17w5146/videos/watch/201703150900-Elkies.html)

[10] The GAP Group GAP – Groups, Algorithms, and Programming, Version 4.10.1, 2019 (https://www.gap-system.org)

[11] González-Alonso, Víctor; Rams, Sławomir Counting lines on quartic surfaces, Taiwanese J. Math., Volume 20 (2016) no. 4, pp. 769-785 | DOI | MR | Zbl

[12] Kondō, Shigeyuki Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces, Duke Math. J., Volume 92 (1998) no. 3, pp. 593-603 (with an appendix by Shigeru Mukai) | DOI | MR | Zbl

[13] Kulikov, Viktor S. Surjectivity of the period mapping for K3 surfaces, Usp. Mat. Nauk, Volume 32 (1977) no. 4(196), pp. 257-258 | MR | Zbl

[14] McKay, Brendan D. Nauty user’s guide (version 1.5) (1990) no. TR-CS-90-0 (http://cs.anu.edu.au/people/bdm/nauty/) (Technical report)

[15] McKay, Brendan D.; Piperno, Adolfo Practical graph isomorphism. II, J. Symb. Comput., Volume 60 (2014), pp. 94-112 | DOI | MR | Zbl

[16] Mukai, Shigeru Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math., Volume 94 (1988) no. 1, pp. 183-221 | DOI | MR | Zbl

[17] Niemeier, Hans-Volker Definite quadratische Formen der Dimension 24 und Diskriminante 1, J. Number Theory, Volume 5 (1973), pp. 142-178 | DOI | MR | Zbl

[18] Nikulin, Vyacheslav V. Integral symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 43 (1979) no. 1, pp. 111-177 English translation in Math. USSR, Izv. 14 (1979), no. 1, 103–167 (1980) | MR | Zbl

[19] Nikulin, Vyacheslav V. Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 79 (2015) no. 4, pp. 103-158 | DOI | MR | Zbl

[20] Nishiyama, Ken-ichi The Jacobian fibrations on some K3 surfaces and their Mordell-Weil groups, Jpn. J. Math., New Ser., Volume 22 (1996) no. 2, pp. 293-347 | MR | Zbl

[21] Persson, Ulf Double sextics and singular K-3 surfaces, Algebraic geometry, Sitges (Barcelona), 1983 (Lecture Notes in Mathematics), Volume 1124, Springer, 1985, pp. 262-328 | DOI | MR | Zbl

[22] Pjateckiĭ-Šapiro, Ilya I.; Šafarevič, Igor’ R. Torelli’s theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 35 (1971), pp. 530-572 (English translation in Math. USSR, Izv. 5, 547–588) | MR

[23] Rams, Sławomir; Schütt, Matthias 112 lines on smooth quartic surfaces (characteristic 3), Q. J. Math., Volume 66 (2015) no. 3, pp. 941-951 | DOI | MR | Zbl

[24] Rams, Sławomir; Schütt, Matthias 64 lines on smooth quartic surfaces, Math. Ann., Volume 362 (2015) no. 1-2, pp. 679-698 | DOI | MR | Zbl

[25] Rams, Sławomir; Schütt, Matthias At most 64 lines on smooth quartic surfaces (characteristic 2), Nagoya Math. J., Volume 232 (2018), pp. 76-95 | DOI | MR | Zbl

[26] Saint-Donat, Bernard Projective models of K-3 surfaces, Am. J. Math., Volume 96 (1974), pp. 602-639 | MR | Zbl

[27] Schur, Friedrich Ueber eine besondre Classe von Flächen vierter Ordnung, Math. Ann., Volume 20 (1882) no. 2, pp. 254-296 | DOI | MR | Zbl

[28] Segre, Beniamino The maximum number of lines lying on a quartic surface, Q. J. Math., Oxf. Ser., Volume 14 (1943), pp. 86-96 | MR | Zbl

[29] Shimada, Ichiro; Shioda, Tetsuji On a smooth quartic surface containing 56 lines which is isomorphic as a K3 surface to the Fermat quartic, Manuscr. Math., Volume 153 (2017) no. 1-2, pp. 279-297 | DOI | MR | Zbl

[30] Soicher, Leonard H. GRAPE, GRaph Algorithms using PErmutation groups, Version 4.8.1, 2018 (refereed GAP package, https://gap-packages.github.io/grape)

[31] Veniani, Davide Cesare Lines on K3 quartic surfaces in characteristic 2, Q. J. Math., Volume 68 (2017) no. 2, pp. 551-581 | DOI | MR | Zbl

[32] Veniani, Davide Cesare The maximum number of lines lying on a K3 quartic surface, Math. Z., Volume 285 (2017) no. 3-4, pp. 1141-1166 | DOI | MR | Zbl

[33] Veniani, Davide Cesare Symmetries and equations of smooth quartic surfaces with many lines (2017) (to appear, https://arxiv.org/abs/1708.01219)

Cited by Sources: