We prove that a smooth plane sextic curve can have at most 72 tritangents, whereas a smooth real sextic may have at most 66 real tritangents.
On montre qu’une courbe plane lisse de degré six a au plus 72 tritangentes, alors qu’une courbe lisse réelle de degré six a au plus 66 tritangentes réelles.
Revised:
Accepted:
Published online:
Keywords: $K3$-surface, sextic curve, tritangent, Niemeier lattice
Mot clés : Surface $K3$, courbe de degré six, tritangente, réseau de Niemeier
Degtyarev, Alex 1
@article{AIF_2022__72_6_2299_0, author = {Degtyarev, Alex}, title = {Tritangents to smooth sextic curves}, journal = {Annales de l'Institut Fourier}, pages = {2299--2338}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {6}, year = {2022}, doi = {10.5802/aif.3491}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3491/} }
TY - JOUR AU - Degtyarev, Alex TI - Tritangents to smooth sextic curves JO - Annales de l'Institut Fourier PY - 2022 SP - 2299 EP - 2338 VL - 72 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3491/ DO - 10.5802/aif.3491 LA - en ID - AIF_2022__72_6_2299_0 ER -
%0 Journal Article %A Degtyarev, Alex %T Tritangents to smooth sextic curves %J Annales de l'Institut Fourier %D 2022 %P 2299-2338 %V 72 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3491/ %R 10.5802/aif.3491 %G en %F AIF_2022__72_6_2299_0
Degtyarev, Alex. Tritangents to smooth sextic curves. Annales de l'Institut Fourier, Volume 72 (2022) no. 6, pp. 2299-2338. doi : 10.5802/aif.3491. https://aif.centre-mersenne.org/articles/10.5802/aif.3491/
[1] Elements of mathematics. Lie groups and Lie algebras. Chapters 4–6, Springer, 2002 (translated from the 1968 French original by Andrew Pressley) | MR | Zbl
[2] Zur Theorie der algebraischen Flächen, J. Reine Angew. Math., Volume 58 (1861), pp. 93-108 | DOI | MR | Zbl
[3] Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, 290, Springer, 1988 (with contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov) | DOI | MR | Zbl
[4] Lines in supersingular quartics (2016) (to appear, https://arxiv.org/abs/1604.05836v1)
[5] Lines on Smooth Polarized K3-Surfaces, Discrete Comput. Geom., Volume 62 (2019) no. 3, pp. 601-648 | DOI | MR | Zbl
[6] Smooth models of singular -surfaces, Rev. Mat. Iberoam., Volume 35 (2019) no. 1, pp. 125-172 | DOI | MR | Zbl
[7] Tritangents to smooth sextic curves, Preprint MPIM 19-51 (2019)
[8] Lines on quartic surfaces, Math. Ann., Volume 368 (2017) no. 1-2, pp. 753-809 | DOI | MR | Zbl
[9] Upper bounds on the number of lines on a surface, 2017 (part of the conference New Trends in Arithmetic and Geometry of Algebraic Surfaces, BIRS conference 17w5146, http://www.birs.ca/events/2017/5-day-workshops/17w5146/videos/watch/201703150900-Elkies.html)
[10] GAP – Groups, Algorithms, and Programming, Version 4.10.1, 2019 (https://www.gap-system.org)
[11] Counting lines on quartic surfaces, Taiwanese J. Math., Volume 20 (2016) no. 4, pp. 769-785 | DOI | MR | Zbl
[12] Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of surfaces, Duke Math. J., Volume 92 (1998) no. 3, pp. 593-603 (with an appendix by Shigeru Mukai) | DOI | MR | Zbl
[13] Surjectivity of the period mapping for surfaces, Usp. Mat. Nauk, Volume 32 (1977) no. 4(196), pp. 257-258 | MR | Zbl
[14] Nauty user’s guide (version 1.5) (1990) no. TR-CS-90-0 (http://cs.anu.edu.au/people/bdm/nauty/) (Technical report)
[15] Practical graph isomorphism. II, J. Symb. Comput., Volume 60 (2014), pp. 94-112 | DOI | MR | Zbl
[16] Finite groups of automorphisms of surfaces and the Mathieu group, Invent. Math., Volume 94 (1988) no. 1, pp. 183-221 | DOI | MR | Zbl
[17] Definite quadratische Formen der Dimension und Diskriminante , J. Number Theory, Volume 5 (1973), pp. 142-178 | DOI | MR | Zbl
[18] Integral symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 43 (1979) no. 1, pp. 111-177 English translation in Math. USSR, Izv. 14 (1979), no. 1, 103–167 (1980) | MR | Zbl
[19] Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 79 (2015) no. 4, pp. 103-158 | DOI | MR | Zbl
[20] The Jacobian fibrations on some surfaces and their Mordell-Weil groups, Jpn. J. Math., New Ser., Volume 22 (1996) no. 2, pp. 293-347 | MR | Zbl
[21] Double sextics and singular - surfaces, Algebraic geometry, Sitges (Barcelona), 1983 (Lecture Notes in Mathematics), Volume 1124, Springer, 1985, pp. 262-328 | DOI | MR | Zbl
[22] Torelli’s theorem for algebraic surfaces of type , Izv. Akad. Nauk SSSR, Ser. Mat., Volume 35 (1971), pp. 530-572 (English translation in Math. USSR, Izv. 5, 547–588) | MR
[23] 112 lines on smooth quartic surfaces (characteristic 3), Q. J. Math., Volume 66 (2015) no. 3, pp. 941-951 | DOI | MR | Zbl
[24] 64 lines on smooth quartic surfaces, Math. Ann., Volume 362 (2015) no. 1-2, pp. 679-698 | DOI | MR | Zbl
[25] At most 64 lines on smooth quartic surfaces (characteristic 2), Nagoya Math. J., Volume 232 (2018), pp. 76-95 | DOI | MR | Zbl
[26] Projective models of - surfaces, Am. J. Math., Volume 96 (1974), pp. 602-639 | MR | Zbl
[27] Ueber eine besondre Classe von Flächen vierter Ordnung, Math. Ann., Volume 20 (1882) no. 2, pp. 254-296 | DOI | MR | Zbl
[28] The maximum number of lines lying on a quartic surface, Q. J. Math., Oxf. Ser., Volume 14 (1943), pp. 86-96 | MR | Zbl
[29] On a smooth quartic surface containing 56 lines which is isomorphic as a K3 surface to the Fermat quartic, Manuscr. Math., Volume 153 (2017) no. 1-2, pp. 279-297 | DOI | MR | Zbl
[30] GRAPE, GRaph Algorithms using PErmutation groups, Version 4.8.1, 2018 (refereed GAP package, https://gap-packages.github.io/grape)
[31] Lines on K3 quartic surfaces in characteristic 2, Q. J. Math., Volume 68 (2017) no. 2, pp. 551-581 | DOI | MR | Zbl
[32] The maximum number of lines lying on a K3 quartic surface, Math. Z., Volume 285 (2017) no. 3-4, pp. 1141-1166 | DOI | MR | Zbl
[33] Symmetries and equations of smooth quartic surfaces with many lines (2017) (to appear, https://arxiv.org/abs/1708.01219)
Cited by Sources: