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TRITANGENTS TO SMOOTH SEXTIC CURVES

by Alex DEGTYAREV (*)

Abstract. — We prove that a smooth plane sextic curve can have at most 72
tritangents, whereas a smooth real sextic may have at most 66 real tritangents.
Résumé. — On montre qu’une courbe plane lisse de degré six a au plus 72

tritangentes, alors qu’une courbe lisse réelle de degré six a au plus 66 tritangentes
réelles.

1. Introduction

All algebraic varieties considered in the paper are over C. Sumtimes, we
discuss subfields k ⊂ C (most notably, k = R: by definition, a real variety
is a complex one equipped with an anti-holomorphic involution), but we
never consider fields of positive characteristic.

1.1. Principal results

This paper concludes the study of the maximal number of straight lines in
a smooth polarized K3-surface. The most classical case, viz. that of spatial
quartics X ⊂ P3, goes as far back as to A. Clebsch [2] (the upper bound of
m(11m−24) lines in a smooth degreem surfaceX ⊂ P3, yielding at most 80
lines in a quartic) and F. Schur [27] (an example of a smooth quartic with 64
lines). The sharp upper bound of 64 lines was established in B. Segre [28].
Two recent papers aroused new interest to this classical problem: first, a
minor gap in Segre’s proof was discovered and corrected by S. Rams and
M. Schütt [24], where the argument was also extended to all characteristics

Keywords: K3-surface, sextic curve, tritangent, Niemeier lattice.
Math. classification: 14J28, 14H50, 14N20, 14N25.
(*) The author was partially supported by the TÜBİTAK grant 118F413.
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p > 5 of the ground field, and second, an alternative, purely arithmetical
(or rather lattice theoretic) proof was given in [8]; this approach allowed us
to obtain, in addition to mere upper bounds, a complete classification of
all large (i.e., more than 52) configurations of lines, prove the uniqueness
of the line maximizing quartic, and establish the sharp upper bound of 56
real lines in a real smooth quartic surface (also realized by a unique real
quartic). A great deal of other works have appeared almost immediately
and, for the moment, the case of spatial quartic surfaces still remains the
best studied one: there are sharp upper bounds on the number of lines over
algebraically closed fields of positive characteristic (see [4, 23, 24, 25]) and
over R (see [8]), partial bounds over Q (see [6]), upper bounds for singular
quartics, both K3 (see [31, 32]) and not (see [11]), explicit equations of
quartics with many lines (see [8, 29, 33]), etc.
Lines in smooth polarized K3-surfaces X → Pd+1 of all degrees 2d >

4, both birational and hyperelliptic (cf. [26]), were studied in [5], using
an arithmetical reduction similar to [8] and an appropriate taxonomy of
prospective Fano graphs. (It appears that, so far, the more conventional
geometric arguments have failed to produce even reasonable bounds on the
number of lines.) Among other results, found in [5] are sharp upper bounds
on the number of lines, both over C and R, and a complete description of
all large configurations of lines, especially in the two most “classical” cases,
viz. sextics in P4 and octics (most notably, triquadrics) in P5, which give
rise to a number of interesting Fano graphs. An unexpected discovery is the
fact that the configurations of lines simplify dramatically when the degree
grows: asymptotically, for 2d� 0, all lines are either linearly independent in
H2(X) or, else, among the fiber components of a certain fixed elliptic pencil;
in either case, their number does not exceed 24. (The true sharp bound
oscillates between 21, 22, and 24, periodically in the degree 2d� 0, whereas
its real counterpart oscillates between 19, 20, and 21, with a larger period.)
The other side of the coin is the fact that in the remaining “classical” case,
the smallest degree 2d = 2 (double planes), the dual adjacency graph of
lines may be too large: the star of a single vertex is more complicated than
the whole Fano graph of a quartic. For this reason, the case 2d = 2 was
left out as not feasible in [5]; it is treated in the present paper by means of
considerably different arithmetical techniques (see Section 1.2).
In [6] it was conjectured that the maximal number of lines in a smooth

2-polarized K3-surface is 144, with the maximum realized by the double
plane X → P2 ramified over the sextic curve
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(This equation is borrowed from Sh. Mukai [16], as the surface in ques-
tion admits a faithful action of the Mukai group M9; explicit equations of
the predicted 144 lines were found independently by D. Festi and Y. Za-
ytman, private communication.) The conjecture is motivated by the fact
that, like Schur’s quartic [27] and some line maximizing sextics in P4 and
octics in P5 (see [5, 6]), this surface minimizes the discriminant of a singu-
lar K3-surface admitting a smooth model of a given degree. In the present
paper we settle (in the affirmative) and extend the conjecture, see Theo-
rem 1.1, Addendum 1.2, and Theorem 1.3. We state our principal results
in terms of tritangents to the ramification locus C ⊂ P2 (a smooth sextic
curve) rather than lines in the surface X → P2, dividing the numbers by 2
(see Section 2.2 below for further details). Certainly, when speaking about
tritangents, we allow the collision of some of the tangency points; in other
words, a tritangent to a smooth sextic C ⊂ P2 is merely a line L ⊂ P2

such that the local intersection index (L ◦ C)P at each intersection point
P ∈ L ∩ C is even.

Theorem 1.1 (see Sections 9.1 and 9.2). — Let t(C) denote the number
of tritangents to a smooth sextic C ⊂ P2. Then either

• t(C) = 72, and then C is the sextic given by (1.1), or
• t(C) = 66, and then C is one of the two sextics that are described

in Section 9.1(2), (3), or
• t(C) 6 65.

Previously known bounds are t(C) 6 76 in N. Elkies [9] (cf. Corollary 2.5
below) and t(C) 6 108 given by Plücker’s formulas. Note that, unlike the
28 bitangents to any smooth quartic curve (and like the case of other po-
larized K3-surfaces), counting tritangents to a sextic is not an enumerative
problem: tritangents are not stable under deformation and a typical sextic
has no tritangents at all.

Addendum 1.2 (see Section 9.1). — The number t(C) as in Theo-
rem 1.1 takes all values in the set {0, 1, . . . , 65, 66, 72} except, possibly,
61.

Twelve sextics (six configurations of lines) with 62 6 t(C) 6 65 are
described in Section 9.1(4)–(9), but we do not assert the completeness of
this list. In spite of extensive, although not exhaustive, search, we could
not find a sextic with 61 tritangents. There are reasons (e.g., Corollary 2.5
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below or the large number of sextics with 60 tritangents) to believe that 61
is a natural threshold in the problem, but taking the classification down to
61 tritangents would require too much computing power.
As a by-product of the partial classification given by Theorem 1.1, we

obtain a sharp upper bound on the number of real tritangents to a real
sextic.

Theorem 1.3 (see Section 9.3). — The number of real tritangents to a
real smooth (over C) sextic C ⊂ P2 does not exceed 66. Up to real projective
transformation, a smooth real sextic with 66 real tritangents is unique, see
Section 9.1(2).

Remark 1.4. — At present, I do not know what other values are taken
by the number tR of real tritangents to a real smooth sextic. In the range
61 6 tR 6 65, among the known examples, there is but one other config-
uration, with tR = 63 tritangents, see Section 9.1(6) (and Section 9.3 for
the explanation and further remarks).

1.2. Contents of the paper

As in [5, 8], the line counting problem has a simple arithmetical reduction
(see Theorem 2.1): one can effectively decide whether a given graph Γ can
serve as the Fano graph of a polarized K3-surface. The candidates Γ to be
tried were constructed in [5, 8] line by line, starting from a sufficiently large
and sufficiently simple graph. Unfortunately, this straightforward approach
seems to diverge in the case of degree 2, and we choose another one, viz. we
replant the prospective Néron–Severi lattice NS := ZΓ/ ker to an appropri-
ate Niemeier lattice. (The idea of embedding h⊥ ⊂ NS to a Niemeier lattice
is not new, cf. Kondō [12], Nikulin [19], Nishiyama [20], etc. The novelty is
the fact that, as we need to keep track of the polarization h, we have to re-
build the hyperbolic lattice NS to embed it to a definite Niemeier lattice N .
As a result, instead of counting roots in NS, we work with square 4 vectors
in a certain root-free sublattice S ⊂ N ; unlike [6], this lattice S or even its
genus is not assumed fixed. This construction is explained in Section 2.4,
see Proposition 2.2.) Then, instead of dealing with abstract graphs of a pri-
ori unbounded complexity, we merely need to consider subsets L of several
finite sets F(~) known in advance. The precise arithmetical conditions on
the subsets L that may serve as Fano graphs are stated in Section 2.5 and
Section 2.6.

ANNALES DE L’INSTITUT FOURIER
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This approach has a number of advantages. First, for most 6-polarized
Niemeier lattices N 3 ~ we have an immediate bound |L| 6 130 (often
even |F(~)| 6 130) obtained as explained in Section 4. Second, the sets
F(~) have rich intrinsic structure, splitting into orbits and combinatorial
orbits (see Section 3.1), which can be used in the construction of large geo-
metric subsets: instead of building them line-by-line from scratch, we try to
patch together precomputed close to maximal intersections with the com-
binatorial orbits. These algorithms are described in Section 3. Finally, since
we are working with known sets, all symmetry groups can be expressed in
terms of permutations, which makes the computation in GAP [10] extremely
effective.
In Sections 5–8 we treat, one by one, the 23 Niemeier lattices rationally

generated by roots, outlining the details of the computation in those few
cases where the a priori upper bound |L| 6 130 fails. In Section 9, we draw
a formal punch-line, collecting together our findings for individual Niemeier
lattices and completing the proofs of the principal results of the paper.

1.3. Acknowledgements

I would like to express my gratitude to Noam Elkies, Dino Festi, Dmitrii
Pasechnik, Ichiro Shimada, and Davide Veniani for a number of fruitful
discussions concerning the subject. This paper was completed during my
research stay at the Max–Planck–Institut für Mathematik, Bonn; I am
grateful to this institution for its hospitality and financial support.

2. The reduction

The tritangent problem is reduced to an arithmetical question about the
Néron–Severi lattice NS(X) of a smooth 2-polarizedK3-surfaceX, see The-
orem 2.1. The construction of Section 2.4, combined with Proposition 2.2,
replants NS(X) to a Niemeier lattice. The invertibility of this construction
is discussed in Section 2.6.

2.1. Lattices (see [18])

The principal goal of this section is fixing the terminology and notation.
A lattice is a free abelian group L of finite rank equipped with a symmetric
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bilinear form b : L ⊗ L → Z. Since b is assumed fixed (and omitted from
the notation), we abbreviate x · y := b(x, y) and x2 := b(x, x). A lattice L
is even if x2 = 0 mod 2 for all x ∈ L; otherwise, L is odd. The determinant
detL ∈ Z is the determinant of the Gram matrix of b in any integral
basis; L is called nondegenerate (unimodular) if detL 6= 0 (respectively,
detL = ±1). The inertia indices σ±L are those of L⊗R. A nondegenerate
lattice L is called hyperbolic if σ+L = 1.
The hyperbolic plane is the only unimodular even lattice of rank 2.

Explicitly, U = Za + Zb, where a2 = b2 = 0 and a · b = 1. One has
σ+U = σ−U = 1.
A nondegenerate lattice L admits a canonical inclusion

L ↪→ L∨ := {x ∈ L⊗Q |x · y ∈ Z for all y ∈ L}

to the dual group L∨. The finite abelian group L := discrL := L∨/L

(qL in [18]) is called the discriminant group of L. Clearly, |L| = (−1)σ−L
detL. This group is equipped with the nondegenerate symmetric bilinear
form

L ⊗ L → Q/Z, (x mod L)⊗ (y mod L) 7→ (x · y) mod Z,

and, if L is even, its quadratic extension

L → Q/2Z, x mod L 7→ x2 mod 2Z.

We denote by Lp := discrp L := L⊗Zp the p-primary components of discrL.
The 2-primary component L2 is called even if x2 ∈ Z for all order 2 elements
x ∈ L2; otherwise, L2 is odd. The determinant detLp is the determinant of
the “Gram matrix” of the quadratic form in any minimal set of generators.
(This is equivalent to the alternative definition given in [18].) Unless p = 2
and L2 is odd (in which case the determinant is not defined or used), we
have detLp = up/|Lp|, where up is a well-defined element of Z×p /(Z×p )2.
The length `(A) of a finite abelian group A is the minimal number of

generators of A. We abbreviate `p(A) := `(A⊗ Zp) for a prime p.
Given a lattice L and q ∈ Q, we use the notation L(q) for the same abelian

group with the form x⊗ y 7→ q(x · y), assuming that it is still a lattice. We
abbreviate −L := L(−1), and this notation applies to discriminant forms
as well. The notation nL, n ∈ Z+, is used for the orthogonal direct sum of
n copies of L.
A root in an even lattice L is a vector of square ±2. A root system is a

positive definite lattice generated by roots. Any root system has a unique
decomposition into orthogonal direct sum of irreducible components, which
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are of types An, n > 1, Dn, n > 4, E6, E7, or E8 (see, e.g., [1]), according
to their Dynkin diagrams.
A Niemeier lattice is a positive definite unimodular even lattice of rank

24. Up to isomorphism, there are 24 Niemeier lattices (see [17]): the Leech
lattice Λ, which is root free, and 23 lattices rationally generated by roots.
In the latter case, the isomorphism class of a lattice N := N(D) is uniquely
determined by that of its maximal root system D. For more details, see [3].

2.2. The covering K3-surface

Given a smooth sextic curve C ⊂ P2, the double covering ϕ : X → P2

ramified over C is a K3-surface. The “hyperplane section” ϕ∗OP2(1) is a
2-polarization of X, i.e., a complete fixed point free degree 2 linear system;
it is viewed as an element

h ∈ PicX = NS(X) ⊂ H2(X;Z) ∼= −2E8 ⊕ 3U.

Here, the group H2(X;Z) = H2(X;Z) is regarded as a lattice via the
intersection form; it can be characterized as the only unimodular even lat-
tice of rank 22 and signature σ+ − σ− = −16. The Néron–Severi lattice
NS(X) = H1,1(X) ∩H2(X;Z) is a primitive hyperbolic sublattice; in par-
ticular, ρ(X) := rkNS(X) 6 20.

Conversely, any 2-polarization h of aK3-surfaceX gives rise to a degree 2
map ϕh : X → P2 ramified over a sextic curve C ⊂ P2 (see [21, 26]).
This curve is smooth if and only if no (−2)-curve is contracted by ϕh, or,
equivalently, there is no class e ∈ NS(X) such that e2 = −2 and e · h = 0.
With the ramification locus in mind, a 2-polarized K3-surface (X,h) with
this extra property is called smooth.

A line in a 2-polarized K3-surface (X,h) is a smooth rational curve
L ⊂ X such that L · h = 1. Any two distinct lines L1, L2 ⊂ X either are
disjoint, L1 ·L2 = 0, or intersect at a single point, L1 ·L2 = 1, or intersect
at three points, L1 · L2 = 3, the latter being the case if and only if L1,
L2 are interchanged by the deck translation of the covering ϕh : X → P2.
Since, on the other hand, L2 = −2, each line is unique in its homology
class [L] ∈ NS(X). Each 2-polarized K3-surface has finitely many lines
(typically none). The Fano graph Fn(X,h) is the set of lines in X in which
each pair of lines L1, L2 (regarded as vertices of the graph) is connected by
an edge of multiplicity L1 · L2 (i.e., no edge, simple edge, or triple edge).

Let C ⊂ P2 be a smooth sextic and ϕ : X → P2 the covering K3-surface.
If L ⊂ P2 is a tritangent to C, its pull-back ϕ−1(L) splits into two lines
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L1, L2; they intersect at the three points of tangency of L and C (possi-
bly, infinitely near) and are interchanged by the deck translation τ of ϕ.
Conversely, any line in X projects to a tritangent to C. Thus, the set
of tritangents to C is identified with FnX/∗, where the free involution
∗ : FnX → FnX induced by τ is intrinsic to the graph: it sends a vertex L
to the only vertex connected to L by a triple edge.

2.3. The arithmetic reduction of the tritangent problem

Throughout this paper, by a 2-polarized lattice we mean a hyperbolic
even lattice NS equipped with a distinguished class h ∈ NS, h2 = 2. The
Fano graph of a 2-polarized lattice NS 3 h is the set

Fn(NS, h) :=
{
l ∈ NS

∣∣ l2 = −2, l · h = 1
}

with two points (vertices) l1, l2 connected by an edge of multiplicity l1 · l2.
This graph is equipped with a natural involution

l 7→ l∗ := h− l;

the vertex l∗, called the dual of l, is connected to l by a triple edge.
Usually, we assume that the orthogonal complement h⊥ ⊂ NS is root

free. Under this additional assumption, for l1, l2 ∈ Fn(NS, h), one has

l1 · l2 = 3 (iff l1 = l∗2) , 1, 0, or − 2 (iff l1 = l2) ;

hence, all edges of Fn(NS, h) other than (l, l∗) are simple.
The following statement is well known: it follows from the global Torelli

theorem for K3-surfaces [22], surjectivity of the period map [13], and Saint-
Donat’s results on projective K3-surfaces [26] (cf. also [8, Theorem 3.11]
or [6, Theorem 7.3]).

Theorem 2.1. — A graph Γ is the Fano graph of a smooth 2-polarized
K3-surface if and only if Γ ∼= Fn(NS, h) for some 2-polarized lattice NS 3 h
admitting a primitive embedding NS ↪→ −2E8⊕3U and such that h⊥ ⊂ NS
is root free.

2.4. Embedding to a Niemeier lattice

Let NS 3 h be a 2-polarized lattice. Consider the orthogonal complement
h⊥ ⊂ NS. Each vector l ∈ Fn(NS, h) projects to l′ := l − 1

2h ∈ (h⊥)∨, and,
assuming Fn(NS, h) 6= ∅, there is a unique index 2 extension

(2.1) −S ⊃ h⊥ ⊕ Z~, ~2 = −6,

ANNALES DE L’INSTITUT FOURIER
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containing all vectors l′ + 1
2~, l ∈ Fn(NS, h). The lattice S := S(NS, h)

obtained from −S by reverting the sign of the binary form is positive
definite, and there is an obvious canonical bijection between Fn(NS, h) and
the set

L = L(S, ~) :=
{
l ∈ S

∣∣ l2 = 4 and l · ~ = 3
}

;

the elements of L are called lines in S. Furthermore, the sublattice h⊥ ⊂ NS
is root free if and only if so is ~⊥ ⊂ S; in this case, we call S 3 ~ admissible.

For the images l1, l2 ∈ L of l′1, l′2 ∈ Fn(NS, h) one has l1 · l2 = 2− l′1 · l′2.
Hence, if S 3 ~ is admissible, then, for l1, l2 ∈ L, one has

(2.2) l1 · l2 = −1 (iff l1 = l∗2) , 1, 2, or 4 (iff l1 = l2) .

We will say that l1, l2 intersect (are disjoint) if l1 · l2 = 1 (respectively,
l1 · l2 = 2). Accordingly, we regard L as a graph, with two distinct vertices
l1, l2 connected by a simple (triple) edge whenever l1 · l2 = 1 (respectively,
l1 · l2 = −1.)

Proposition 2.2. — Let NS 3 h be a primitive 2-polarized sublattice of
−2E8⊕3U, Fn(NS, h) 6= ∅, and let S := S(NS, h) be the lattice constructed
as in (2.1). Then

(1) S admits a primitive embedding to a Niemeier lattice N ;
(2) S admits an embedding S ↪→ N to a Niemeier lattice such that the

torsion of N/S is a 3-group and S is orthogonal to a root r̄ ∈ N .

Proof. — Let ρ := rkNS andN := discrNS, so that `(N ) 6 22−ρ by [18,
Theorem 1.12.2]. Since h /∈ 2NS∨ (by the assumption that Fn(NS, h) 6= ∅),
we have

discrh⊥ =
〈 1

2h
〉
⊕N ,

( 1
2h
)2 = 3

2 mod 2Z,

and the construction changes this to

discrS =
〈 1

2~
〉
⊕ (−N ),

( 1
2~
)2 = 2

3 mod 2Z.

In particular, `(discrS) 6 `(N ) + 1 < 24 − ρ, and [18, Theorem 1.12.2]
implies the existence of a primitive embedding S ↪→ N . For the second
statement, we compute

S := discr (S ⊕ Zr̄) =
〈 1

2~
〉
⊕
〈 1

2 r̄
〉
⊕ (−N ),

( 1
2 r̄
)2 = 1

2 mod 2Z.

This time we have `(Sp) = `(Np) < 23 − ρ = 24 − rk(S ⊕ Zr̄) for each
prime p > 3, whereas `(Sp) = `(Np) + 1 6 24 − rk(S ⊕ Zr̄) for p = 2, 3.
Since S2 is odd, the possible equality does not impose any extra restric-
tion at p = 2. For p = 3, in the case of equality, the “wrong” determinant

TOME 72 (2022), FASCICULE 6
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det(−S3) = −|S| mod (Z×3 )2 does inhibit the existence of a primitive em-
bedding. However, since `(S3) > 3 in this case, we may pass to an iterated
index 3 extension and reduce the length. �

2.5. Admissible sets

In the rest of the paper, we mainly use statement (2) of Proposition 2.2:
it lets us avoid the Leech lattice, although at the expense of the possible
imprimitivity (which makes some statements somewhat weaker and more
complicated, see, e.g., Proposition 2.7 below). The idea is to construct a
lattice S (or, rather, its set of lines) directly inside a Niemeier lattice. Thus,
we fix a Niemeier lattice N , a square 6 vector ~ ∈ N , and, optionally, a
root r̄ ∈ ~⊥ (which is typically omitted from the notation). Consider the
set

F := F(~) :=
{
l ∈ N

∣∣ l2 = 4, l · ~ = 3 (and l · r̄ = 0)
}
.

It is equipped with the involution

∗ : l 7→ l∗ := ~− l.

The elements of F(~) are called lines. The span of a subset L ⊂ F(~) is the
lattice

spanL := (Z3L + Z3~) ∩N ⊂ N.
If L is symmetric, L∗ = L, the summation with Z3~ is redundant as ~ ∈ ZL.
On a few occasions, we also consider the integral and rational span

spanZ L := (ZL + Z~) ∩N ⊂ spanL ⊂ spanQ L := (QL + Q~) ∩N.

(The latter is primitive in N .) Via span, we extend to subsets L ⊂ F(~)
much of the terminology applied to lattices. Thus, we define the rank of L
as rkL := rk spanL, and we say that L is generated by a subset L′ ⊂ L if
L = F(~) ∩ spanL′.
By definition, the torsion of N/ spanL is a 3-group and ~ ∈ 3(spanL)∨.

A finite index extension S ⊃ spanL is called mild if

S ⊂ {v ∈ N | v · ~ = 0 mod 3}

(i.e., S ⊂ N and still ~ ∈ 3S∨) and S contains no roots r ∈ ~⊥ ⊂ N .
Note that the latter condition is equivalent to the requirement that S itself
should be root free. Indeed, since S is positive definite and ~ ∈ 3S∨, we
have r · ~ = 0 or ±3 for any root r ∈ S, and in the latter case ~ ∓ r is a
root in ~⊥.

ANNALES DE L’INSTITUT FOURIER



TRITANGENTS TO SMOOTH SEXTIC CURVES 2309

Definition 2.3. — A subset L ⊂ F(~) is called admissible if
(1) L is symmetric (or ∗-invariant), i.e., L∗ = L, and
(2) the sublattice ~⊥ ∩ spanL contains no roots.

A subset L ⊂ F(~) is complete if L = F(~)∩spanL. A subset L is saturated
if the identity L = F(~)∩S holds for any mild extension S ⊃ spanL. Finally,
we say that L is Q-complete if L = F(~) ∩ spanQ L.

Often, it is easier to check (2.2), which follows from (1), (2) above. Indeed,
since S is definite, we have −1 6 l1 · l2 6 4. Thus, forbidden are l1 · l2 = 3
or 0, as then l1 − l2 or l1 − l∗2 = l1 + l2 − ~, respectively, would be a root
in ~⊥.

The following bound is due to N. Elkies.

Theorem 2.4 (N. Elkies [9]). — Let V be a Euclidean vector space,
dimV = n, and let v1, . . . , vN ∈ V be a collection of unit vectors such
that the products vi · vj , i 6= j, take but two values τ1, τ2. Assume that
τ1 + τ2 6 0 and 1 + τ1τ2n > 0. Then

N 6
(1− τ1) (1− τ2)n

1 + τ1τ2n
.

Selecting a single vector from each pair l, l∗ ∈ L and applying Theo-
rem 2.4 to the normalized projections to ~⊥ ⊂ spanL, we arrive at the
following corollary.

Corollary 2.5 (N. Elkies [9]). — The size of an admissible set L is
bounded via

|L| 6 48 (rkL− 1)
26− rkL

.

Since |L| is even, this implies that |L| 6 152 or 122 for rkL = 20 or 19,
respectively.

2.6. Geometric sets

According to Theorem 2.1 and Proposition 2.2, the Fano graph of any
smooth 2-polarized K3-surface X can be represented as a complete admis-
sible subset L ⊂ F(~) for an appropriate pair ~, r̄ ∈ N as in Section 2.5.
For some lattices (those with few roots), the admissibility condition is

not enough to eliminate large sets of lines, and we need to use the full range
of restrictions.

Recall that we start with the Néron–Severi lattice NS(X) 3 h, and as
long as the configurations of lines are concerned, we can assume this lattice
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rationally generated by lines. Indeed, let N := QFn(X) ∩ NS(X); clearly,
h ∈ N . We can pick a vector ω ∈ (N⊥)⊗C, ω2 = 0, in the same component
of the positive cone as the period (class of a holomorphic 2-form) ωX of X,
and such that ω⊥ ∩H2(X) = N . (This condition merely means that ω is
generic; it can be chosen arbitrary close to ωX .) By the surjectivity of the
period map [13], there is a K3-surface X ′ → P2 such that ωX′ = ω, so that
NS(X ′) = N . (The fact that h ∈ N defines a map X ′ → P2 with a smooth
ramification locus follows from that for X, cf. [26] or Section 2.2.) Clearly,
we have Fn(X ′) = Fn(X), cf. Section 2.2, and the lines in X ′ generate
(over Q) its Néron–Severi lattice N by the construction.
Thus, assuming that NS(X) 3 h is rationally generated by lines, we can

pass to the positive definite lattice S 3 ~ as in (2.1) and embed the latter
to a Niemeier lattice N , mapping Fn(X) bijectively onto the admissible
set L = F(~) ∩ S. Most steps of this construction are invertible. However,
starting from an admissible set L ⊂ F(~), we may have to take for S a mild
extension of spanL rather than spanL itself and, still, we cannot guarantee
that the lattice NS obtained from S by the backward construction admits
a primitive embedding to H2(X) ∼= −2E8 ⊕ 3U. This discussion motivates
the following definition.

Definition 2.6. — An admissible set L ⊂ F(~) is called geometric if
L is complete in some mild extension S ⊃ spanL such that the lattice NS
obtained from S 3 ~ by the inverse of construction (2.1) admits a primitive
embedding to −2E8 ⊕ 3U.

Using [18, Theorem 1.12.2], one can recast this property as follows. (For
a mild extension S ⊃ spanL there is a splitting discrS =

〈 1
2~
〉
⊕ T , and

we merely restate the restrictions on T ∼= −discrNS in terms of discrS.)

Proposition 2.7. — For N 3 ~ as above, an admissible set L ⊂ F(~)
is geometric if and only if:

(1) rkL 6 20 ; we denote δ := 22− rkL > 2, and
there is a mild extension S ⊃ spanL in which L is a complete subset and
such that the discriminant S := discrS has the following properties at each
prime p:

(2) if p > 3, then `(Sp) < δ or `(Sp) = δ and detSp = 3|S| mod (Q×p )2;
(3) `(S2) < δ or `(S2) = δ and S2 is odd or detS2 = ±3|S| mod (Q×2 )2;
(4) `(S3) 6 δ or `(S3) = δ + 1 and detS3 = |S| mod (Q×3 )2.

Remark 2.8. — In practice, when eliminating large admissible sets, we
use just a few simple consequences of Section 2.7. The main rôle is played by
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condition (1), see Section 3.2.1 below. Then, conditions (2) and (3) are used,
as they apply directly to the original discriminant discrp(spanL) = Sp,
p 6= 3. Condition (4) is typically used when there is an obvious maximal
mild extension, and we never insist that L should be complete in S, thus
eliminating both L itself and all its oversets.

3. The approach

Throughout this section, we consider a Niemeier lattice N := N(D)
generated over Q by a fixed root system D =

⊕
kDk, k ∈ Ω, where Dk are

the irreducible components (aka Dynkin diagrams) and Ω is the index set.
We construct N as a subgroup of

⊕
iD
∨
i ; the vectors in

discrD := D∨/D =
⊕
k

discrDk

that are declared “integral” are as described in [3, Table 16.1]. (We also use
the convention of [3] for the numbering of the discriminant classes of irre-
ducible root systems.) We denote by O := O(N) the full orthogonal group
of N , and by R := R(N) ⊂ O(N) its subgroup generated by reflections.
Both groups preserve D; the reflection group R(N) preserves each Dk and
acts identically on discrD.

3.1. Notation

We fix a square 6 vector ~ ∈ N and, sometimes, a root r̄ ∈ D orthogo-
nal to ~. (This root is usually omitted from the notation.) We denote by
O~(N) ⊂ O(N) and R~(N) ⊂ R(N) the subgroups stabilizing ~ (and r̄).
Let

F = F(~) = F (~, r̄) :=
{
l ∈ N

∣∣ l2 = 4, l · ~ = 3 (and l · r̄ = 0)
}

be the set of lines. This set splits into a number of O~(N)-orbits ōn, which
split further into R~(N)-orbits o ⊂ ōn; the latter are called combinatorial
orbits. It is immediate that the duality l 7→ l∗ preserves orbits and combi-
natorial orbits; hence, we can speak about the dual orbits ō∗n and o∗. The
number of combinatorial orbits in an orbit ōn is denoted by m(ōn). The
set of all combinatorial orbits is denoted by O := O(~). This set inherits a
natural action of the group

stab ~ := O~(N)/R~(N),
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which preserves each orbit ōn. (By an obvious abuse of notation, occasion-
ally we treat ōn as a subset of O; likewise, subsets of O are sometimes
treated as sets of lines.) We denote by Orbm(ōn, k) the length m orbit of
the action of stab ~ on the set of unordered ∗-invariant (if so is ōn) k-tuples
of combinatorial orbits o ⊂ ōn. The usage of this notation implies implicitly
that such an orbit is unique.
The support of a vector v ∈ N = N(D) is the subset

supp v :=
{
k ∈ Ω

∣∣ vk 6= 0 ∈ D∨k
}
⊂ Ω.

The support is invariant under reflections; hence, we can speak about the
support supp o of a combinatorial orbit o.
The count and bound of a combinatorial orbit o are defined via

(3.1) c(o) := |o|, b(o) := max {|L ∩ o| |L ⊂ F is geometric} .

Clearly, c and b are constant within each orbit ōn and invariant under
duality. In some cases, we replace b(o) by rough bounds, see Section 4.4
below for details. We extend these notions to subsets C ⊂ O by additivity:

c(C) :=
∑
o∈C

c(o), b(C) :=
∑
o∈C

b(o).

Thus, we have a naïve a priori bound

(3.2) |L| 6 b(O) =
∑

m(ōn)b(o), o ⊂ ōn.

Clearly, the true count |L ∩ C| is genuinely additive, whereas the sharp
bound on |L ∩ C| is only subadditive; thus, our proof of Theorem 1.1 will
essentially consist in reducing (3.2) down to a preset goal. To this end, we
will consider the set

B = B(F) := {L ⊂ F | L is geometric} /O~(N)

and, for a collection of orbits C = ō1 ∪ . . . and integer d ∈ N, let

Bd(C) := {[L] ∈ B | L is generated by L ∩ C and |L ∩ C| > b(C)− d} .

Unless specified otherwise, the sets Bd(C) (for reasonably small values of d)
are computed by brute force, using patterns (see Section 3.3 below).

3.2. Idea of the proof

To prove Theorem 1.1, we consider, one by one, all 23 Niemeier lattices
generated by roots. For each lattice N , we set a goal

(3.3) |L| >M := 122 or 132
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and try to find all geometric subsets L ⊂ N satisfying this inequality. First,
we list all O(N)-orbits of square 6 vectors ~ ∈ N , compute the naïve bounds
b(O) given by (3.2), and disregard those vectors for which b(O) < M . In
the remaining cases, we list all O~(N)-orbits of roots r̄ orthogonal to ~ and
repeat the procedure. This leaves us with relatively few triples ~, r̄ ∈ N ,
which are treated on a case-by-case basis in Sections 5–refS.24A1 below.
A typical argument runs as follows. We choose a self-dual union C of

orbits ōn and use patterns (see Section 3.3 below) to compute the set
Bb(O)−M (C). (As a modification, we take C disjoint from its dual C∗ and
use the obvious relation Bd(C) = B2d(C ∪ C∗).) More generally, we can
consider several pairwise disjoint self-dual unions of orbits C1, . . . , Cm and
compute the sets Bdi(Ci) for appropriately chosen integers di > 0 such that

d1 + . . .+ dm + 2(m− 1) > b(O)−M.

As a result of this procedure, we can assert that, apart from a few explicitly
listed exceptions L1, . . . , Ls contained in the above sets Bdi

(Ci), we have
|L| < M for any geometric set L ⊂ F. In each case, we manage to choose
the unions Ci and goals di so that the exceptional sets Lk are sufficiently
large, so that they can be analysed further as explained below.

3.2.1. Maximal sets

The best case scenario is that of a maximal (with respect to inclusion, in
the class of geometric sets) geometric set L. Such a set admits no geometric
extensions; hence, it can be either discarded, if |Lk| < M , or listed as an ex-
ception in the respective statement. Besides, maximal sets can be discarded
at early stages of the computation, without completing the whole pattern;
however, we only use this approach in Section 8.3, where intermediate lists
grow too large.
An obvious sufficient condition of maximality is given by Proposition 2.7.

Lemma 3.1. — Any maximal geometric set is saturated. Conversely,
any saturated geometric set L of the maximal rank rkL = 20 is maximal.

3.2.2. Extension by a maximal orbit

If a set L ∈ Bd(C) is not maximal, we try to list its geometric extensions
L′ ⊃ L satisfying (3.3). Clearly, it suffices to consider C-proper extensions
only, i.e., those with the property that L′ ∩ C = L ∩ C. Thus, we merely
extend the partial pattern

π : C→ N, o 7→ |L ∩ o| ,
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(see Section 3.3 below) used to construct L by a few (usually one or at most
two) extra values π(o), o ∈ Or C.
In many cases, a geometric set L ∈ Bd(C) has the property that∑(

b(o)− b′(o)
)
> b(O)−M, o ∈ Oδ :=

{
o ∈ O

∣∣ |L ∩ o| < b(o)
}
,

where b′(o) is the second largest value taken by |L′ ∩ o| with L′ admissible.
This implies that any admissible extension L′ ⊃ L satisfying (3.3) must
have maximal intersection, |L′ ∩ o| = b(o), for at least one orbit o ∈ Oδ.
Trying these orbits one by one (i.e., extending the pattern via π(o) = b(o)),
we obtain larger sets, which are usually maximal. (This computation uses
patterns, see Section 3.3 below, and takes into account the symmetry of L.)

3.2.3. Other extensions

In the few remaining cases, we either analyze the lines contained in
spanQ L (if rkL = 20) or obtain maximal C-proper extensions L′ ⊃ L

by adding one or, rarely, two extra lines.

3.3. Patterns

Since we are interested in large geometric sets, we construct them orbit-
by-orbit, by stacking together maximal or close to maximal intersections
L ∩ o. This process is guided by patterns, i.e., ∗-invariant functions

π : O→ N, o 7→ |L ∩ o| .

Having ~, r̄ ∈ N fixed, we start with precomputing all geometric sets L ⊂ o

in each combinatorial orbit o. (Certainly, it suffices to consider one represen-
tative in each orbit ōn; the rest is obtained by translations.) Then, in order
to compute one of the sets Bd(C) in Section 3.1, we list all (stab ~)-orbits of
restricted patterns π : C → N satisfying the inequality

∑
π(o) > b(C) − d,

o ∈ C, order the orbits appropriately (typically, by the decreasing of π(o)),
and construct a geometric set L by adding one orbit at a time, as a se-
quence ∅ = L0 ⊂ L1 ⊂ L2 ⊂ . . .. At each step k and for each set Lk−1
constructed at the previous step, we proceed as follows:

(1) compute the stabilizer G of Lk−1 under the action of R~(N);
(2) find the G-orbits of the geometric sets L′ ⊂ ok of size |L′| = π(ok);
(3) for a representative L′ of eachG-orbit, consider the set Lk generated

by the union Lk−1∪L′; then, select those sets Lk that are geometric;
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(4) to reduce the overcounting, select, for the next step, those sets Lk
that satisfy the equality |Lk ∩ oi| = π(oi) for each i 6 k.

If the defect d is not too large, this procedure works reasonably fast and
results in a reasonably small collection of sets that are to be analyzed
further.

Remark 3.2. — Although it is not obvious a priori, it turns out that large
geometric sets are often determined by their patterns uniquely up to R~(N).
Furthermore, a large set is easily reconstructed from its pattern, as the
algorithm above converges very fast. For this reason, we often describe large
geometric sets, especially those that are not Q-complete (see Definition 2.3),
by their patterns.
A pattern π taking a constant value vn on each orbit ōn is described via

π =
〈〈
v1, v2, . . .

〉〉
.

Sometimes, we use a “double value” vn = a|b; this means that a cluster
cn ⊂ ōn is fixed (and described elsewhere) so that the restriction of π to ōn
takes two values: π(o) = a for o ⊂ cn and π(o) = b for o ⊂ ōn r cn.

Remark 3.3. — In some cases, where b(O) exceeds the goal by just a few
units, we use patterns to show directly that Bb(O)−M (O) = ∅. These cases
are marked with a X in the tables, and any further explanation is typically
omitted (and so usually is the list of orbits).

3.4. Clusters

Sometimes, the number of combinatorial orbits in an orbit ō is too large,
making it difficult to compute all patterns. In these cases, we subdivide
ō into a number of clusters ck ⊂ ō, not necessarily disjoint, and compute
patterns and, then, geometric sets cluster by cluster. The subdivision is
chosen so that stab ~ acts transitively on the set of clusters. To reduce the
overcounting, we assume that the clusters are ordered lexicographically, by
the decreasing of the sequence(
|L ∩ ck| , δ0(ck), δ1(ck), . . .

)
,

δi(ck) := #
{
o ⊂ ck

∣∣ |L ∩ o| = b(o)− i
}
.

In particular, this convention implies that, when computing the set Bd(ō),
for the first cluster c1 one must have |L∩ c1| > b(c1)−md/n, where n is the
total number of clusters and the multiplicity m is the number of clusters
containing any fixed orbit o ⊂ ō. More generally, extending a geometric
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set L from c1, . . . , ck to the next cluster ck+1, one must have |L ∩ ck+1| 6
|L ∩ ck| and

|L ∩ ck+1| > b(ck+1)− 1
n− k

(
md−

k∑
i=1

(b(ci)− |L ∩ ci|)
)
.

Certainly, if the clusters are not disjoint, we also take into account the
intersections ck+1∩ci, i = 1, . . . , k, when computing the restricted patterns
π : ck+1 → N.

4. Counts and bounds

In this section, we explain the computation of the bounds b(o) on the
number of lines within a combinatorial orbit o, see (3.1).

4.1. Blocks

Consider a combinatorial orbit o. In order to estimate the count c(o) and
bound b(o), we break the root system D into blocks, D = B1 ⊕ B2 ⊕ . . .,
each block Bk consisting of whole components Di. Then, ~ and l ∈ F(~)∩o
split into

⊕
k ~k and

⊕
k lk, respectively, with ~k, lk ∈ B∨k . We denote by

o|k := o|Bk
⊂ B∨k the restriction of o to Bk (which, in fact, is nothing

but the orthogonal projection of o to B∨k ). This restriction consists of a
whole R~k

(Bk)-orbit of vectors; in particular, we have a well defined square
l2k ∈ Q, product lk · ~k ∈ Q, and discriminant class lk mod Bk ∈ discrBk.
Usually, these data determine an irreducible block up to isomorphism, the
reason being the following simple observation (which follows from the fact
that all roots in N are assumed to lie in D):

• each vector lk ∈ o|k is either integral, lk ∈ Bk (and then l2k = 0, 2,
or 4) or shortest vector in its discriminant class;

• each vector ~k is either integral, ~k ∈ Bk (and then ~2
k = 0, 2, 4,

or 6) or shortest or second shortest vector in its discriminant class.
Here, shortest are the vectors minimizing the square within a given discrim-
inant class, whereas second shortest are those of square (minimum+ 2). In
fact, ~k can be a second shortest vector in at most one block Bk.

The count of a block B is defined in the obvious way: c(B) = |o|B |. The
bound is defined via b(B) = max|B|, where B ⊂ o|B is a ∗-invariant (if
o∗ = o) subset satisfying the following condition: for l′, l′′ ∈ B, one has

(4.1) l′2 − l′ · l′′ = 0 (iff l′ = l′′) , 2, 3, or 5 (iff l′ = (l′′)∗) .

ANNALES DE L’INSTITUT FOURIER



TRITANGENTS TO SMOOTH SEXTIC CURVES 2317

In other words, we bound the cardinality of subsets L ⊂ o satisfying (2.2)
and such that all lines l ∈ L have the same fixed restriction to all other
blocks B′ 6= B.
If D is broken into two blocks, B1 ⊕B2, we obviously have

(4.2) c(o) = c(B1)c(B2), b(o) 6 min
{
c(B1)b(B2), b(B1)c(B2)

}
.

By induction, for any number of blocks Bk, this implies

(4.3) c(o) =
∏
k

c(Bk), b(o) 6 c(o) min
k

b(Bk)
c(Bk) .

This bound (with Bk = Dk the irreducible components of D) and corre-
sponding bound on b(O) given by (3.2) are always listed first in the tables
below. If b(O) > M , we try to improve the bounds b(o) using one of the
following arguments:

(1) Lemma 4.1 below applied to an appropriate splitting in two blocks;
(2) a computation using larger blocks, see Section 4.2 below;
(3) a brute force enumeration of admissible subsets L ⊂ o; the bounds

whose sharpness is confirmed by this computation are underlined.
In the tables, we refer to this list for the reasons for the improved bounds.

4.2. Brute force via blocks

For some large combinatorial orbits o, the exact computation of b(o) by
brute force is not feasible, and we improve the original bound given by (4.3)
by using larger blocks. Typically, we consider two blocks B1 (one of the
irreducible components of D) and B2 (the sum of all other components).
Then, we compute all admissible (rather than just satisfying (4.1)) sets
L(l1) ⊂ o with a fixed restriction l1 ∈ B∨1 , replacing (4.2) with

b(o) 6 c(B1) max|L(l1)|.

If this bound is still not good enough, we vary l1 ∈ B∨1 and try to construct
an admissible set L ⊂ o by packing together precomputed large (usually
maximal or submaximal) sets L(l′1), L(l′′1 ), etc., obtaining a better bound
and, if necessary, a complete list of large admissible sets in o.

4.3. Self-dual combinatorial orbits

Let o be a self-dual combinatorial orbit, o∗ = o, and break D into
blocks Bk. Each block is also self-dual: l̄k := ~k−lk ∈ o|k whenever lk ∈ o|k.
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In particular, l̄k = lk mod Bk. Hence, we have

2lk · ~k = ~2
k (since

(
l̄2k = l2k

)
,

lk · l̄k = l2k − δk for some δk ∈ Z.

The integer δ(Bk) := δk = 2l2k − lk · ~k, constant throughout the block, is
called the defect of the block Bk; it takes values in the range 0 6 δk 6 5,
and the defects of all blocks sum up to 5 = l2 − l · l∗. Furthermore, for
any pair of vectors l′, l′′ ∈ o|k, the difference l2k − l′ · l′′ is an integer taking
values in

(4.4) 0 6 l2k − l′ · l′′ 6 δk,

the two extreme values corresponding to l′′ = l′ and l′′ = l̄′, respectively. As
a consequence, we have b(Bk) 6 1 if δ(Bk) = 1 and b(Bk) 6 2 if δ(Bk) = 2;
in the latter case, all maximal admissible subsets are of the form {lk, l̄k}.

Lemma 4.1. — Assume that a self-dual orbit o is broken into two blocks,
B2 and B3, of defects 2 and 3, respectively. Then

b(o) 6 max
{

4u+ min
{
c3 − 2u, (c2 − 2u)b3

} ∣∣u = 0, . . . , 1
2 min {c2, c3}

}
,

where we abbreviate cδ := c(Bδ) and bδ := b(Bδ), δ = 2, 3.

Proof. — Let L ⊂ o be an admissible set, and let l2 ⊕ l3 ∈ L. There is a
dichotomy: either l̄2 ⊕ l3 is in L or it is not. In the former case, we have{

l2 ⊕ l3, l̄2 ⊕ l3, l2 ⊕ l̄3, l̄2 ⊕ l̄3
}
⊂ L

and, by (2.2) and (4.4), no other vector l2 ⊕ l′3 or l̄2 ⊕ l′3 with l′3 6= l3, l̄3 is
in L. Each 4-element subset of this form consumes two vectors from o|3, and
all these vectors are pairwise distinct. Let U ⊂ o|2 be the set of vectors l2
as above, and denote u := |U |; clearly, 0 6 2u 6 min{c2, c3}.
Otherwise, in the obvious notation, we have

l2 ⊕ S(l2) ⊂ L, l̄2 ⊕ S
(
l̄2
)
⊂ L,

where S(l2) ⊂ o|3 is a certain subset and S(l̄2) = S(l2). Since we assume
that S(l2)∩ S(l̄2) = ∅, all subsets S(l2), l2 ∈ o|2 rU , are pairwise disjoint
and do not contain any of the 2u vectors l3 coupled with l2 ∈ U ; hence,
their total cardinality does not exceed c3 − 2u. On the other hand, since
|S(l2)| 6 b3 for each l2 ∈ o|2, this cardinality does not exceed (c2 − 2u)b2.
Taking the minimum and maximizing over all values of u, we arrive at the
bound in the statement. �
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4.4. Computing counts and bounds

For “small” blocks Bk ∼= A6 7, D6 7, E6, E7, E8, the counts c(Bk) and
bounds b(Bk) used in (4.3) are obtained by a direct computation. For larger
blocks, we use the standard combinatorial description of the A- and D-type
root systems as sublattices of the odd unimodular lattice

Hn :=
⊕

Zei, e2
i = 1, i ∈ I := {1, . . . , n} .

(When working with this lattice, we let oo :=
∑
i∈o ei for a subset o ⊂ I.)

Then, given a vector ~k =
∑
i αiei ∈ Hn ⊗ Q, we subdivide the block

B∨k ⊂ Hn ⊗Q into “subblocks”

Bk(α) :=
{∑

i

βiei

∣∣∣∣∣ i ∈ supp(α)
}
, supp(α) := {i ∈ I |αi = α} ,

on which ~k is constant. We obtain counts and bounds, in the sense of (4.1),
for each subblock and use an obvious analogue of (4.3) to estimate b(Bk).
The technical details are outlined in the next two sections.

4.5. Root systems An

A block Bk of type An is oI⊥ ⊂ Hn+1:

An =
{∑

i

αiei ∈ Hn+1

∣∣∣∣∣∑
i

αi = 0
}
.

One has discr An = Z/(n+1), with a generator of square n/(n+1) mod 2Z,
and the shortest representatives of the discriminant classes are vectors of
the form

ēo := 1
n+ 1

(
|ō|1̄o − |o|1̄ō

)
, ē2

o = |o| |ō|
n+ 1 ,

where o ⊂ I and ō is the complement. We have ēō = −ēo and

ēr · ēs = |r ∩ s| − |r||s|
n+ 1 .

If |r| = |s|, or, equivalently, er and es are in the same discriminant class,
then

(4.5) ē2
r − ēr · ēs = 1

2 |r M s| ,

where M is the symmetric difference. Hence, in the case where lk is a short-
est vector in its (nonzero) discriminant class, the bound b(Bk(α)) can be
estimated by the following lemma, applied to S = supp(α).
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Lemma 4.2. — Consider a finite set S, |S| = n, and let S be a collection
of subsets s ⊂ S with the following properties:

(1) all subsets s ∈ S have the same fixed cardinality m;
(2) if r, s ∈ S, then |r M s| ∈ {0, 4, 6, 10};
(3) in the case (n,m) = (10, 5), if s ∈ S, then also s̄ ∈ S.

Then, for small (n,m), the maximal cardinality |S| is as follows:

(n,m) : (n, 1) (n, 2) (6, 3) (7, 3) (8, 3) (9, 3) (10, 3) (11, 3) (8, 4) (9, 4) (10, 5)
max|S| : 1 bn/2c 4 7 8 12 13 17 9 12 24

More generally, for m = 3 one has |S| 6 bnb(n− 1)/2c/3c.

Note that, if a collection S is as in the lemma, then so is the collection
{s̄ | s ∈ S}. Hence, we can always assume that 2m 6 n.
Proof of Lemma 4.2. — The first two values are obvious; the others

are obtained by listing all admissible collections. The general estimate for
m = 3 follows from the observation that any two subsets in S have at most
one common point and, hence, each point of S is contained in at most
b(n− 1)/2c subsets. �

There remains to consider a subblock Bk(α) of a block Bk containing
vectors of the form lk = 1̄r− 1̄s, where r, s ⊂ I, r∩s = ∅, and |r| = |s| = 1
or 2. In the latter case, one must have lk · ~k = 3, and it follows that
|(r ∪ s) ∩ supp(α)| 6 2 for each α ∈ Q. The bounds are as follows:

(1) if |(r ∪ s) ∩ supp(α)| = 1, then, obviously, b(Bk(α)) = 1;
(2) if |r ∩ supp(α)| = 2 (or |s∩ supp(α)| = 2), distinct sets r ∩ supp(α)

must be pairwise disjoint and, hence, b(Bk(α)) =
⌊ 1

2 |supp(α)|
⌋
;

(3) if |r ∩ supp(α)| = |s ∩ supp(α)| = 1, then distinct sets r ∩ supp(α)
must also be pairwise disjoint and, hence, b(Bk(α)) = |supp(α)|.

4.6. Root systems Dn

A block Bk of type Dn can be defined as the maximal even sublattice
in Hn:

(4.6) Dn =
{∑

i

αiei ∈ Hn

∣∣∣∣∣∑
i

αi = 0 mod 2
}
.

One has discr Dn = Z/2 ⊕ Z/2 (if n is even) or Z/4 (if n is odd); the
shortest vectors are

ei, i ∈ I, and ēo := 1
2
(
1̄o − 1̄ō

)
, o ⊂ I, ē2

o = n

4
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(the class ēo mod Dn depends on the parity of |o|) and we have a literal
analogue of (4.5) for any pair r, s ⊂ I. Thus, if Bk 3 ēo, the bounds
b(Bk(α)) are estimated by Lemma 4.2 (if α 6= 0) or Lemma 4.3 below (if
α = 0) applied to S = supp(α).

Lemma 4.3. — For n 6 10, the maximal cardinality of a collection S

satisfying conditions (2) and (3) (if n = 10) of Lemma 4.2 is bounded as
follows:

n = 1 2 3 4 5 6 7 8 9 10
|S| 6 1 1 1 2 2 4 8 10 16 32

These bounds are sharp for n 6 8.

Proof. — If n 6 6, the statement is easily proved by inspection, using
Lemma 4.2.
Let n = 8. Represent a subset s ∈ S as the root ēs ∈ D∨8 . Then, con-

dition 2 implies that all subsets s ∈ S have cardinality of the same parity
and, hence, all roots are in the same discriminant class; thus, they lie in an
extension E8 ⊃ D8. By Lemma 4.2(2), the roots ēs constitute a union Γ
of (affine) Dynkin diagrams other than Ã1 admitting an isometry to E8,
which gives us a bound |S| 6 12. Furthermore, the roots ēs are distin-
guished by the property ēs · 2e1 = 1 mod 2. Thus, each affine component
of Γ must have even degree. The maximal graph with these properties is
2D̃4, resulting in the bound |S| 6 10.

If n = 7, we extend the ambient set S and each subset by an extra point
and argue as above, obtaining roots ēs ∈ E8 with the property ēs · 2e1 = 1.
This time, the roots are linearly independent and |S| 6 rk E8 = 8. This is
realized by 2D4.

In general, represent s ∈ S by the vector 1̄s ∈ Hn. (If n = 10, select
one subset s from each pair s, s̄.) Then 1̄2

s = n and the pairwise products
1̄r · 1̄s = n − 2|r M s|, r 6= s, take but two values n − 8 or n − 12. Since
n 6 10, Theorem 2.4 applies and bounds the number of vectors by 16. If
n = 10, this bound is to be doubled. �

The few remaining cases are listed below.
(1) If Bk(α) 3 ±2ei, i ∈ supp(α), then b(Bk(0)) = 1.

Assume that lk =
∑

(±ei), i ∈ o ⊂ S, |o| 6 4. If α = 0, then
(2) |o ∩ supp(α)| = 0, 1, or 2 and b(Bk(α)) 6 1, 2, or 4

3 |supp(α)|,
respectively,
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similar to Section 4.5. (The last number is a bound on the size of a
union of (affine) Dynkin diagrams other than Ã1 admitting an isometry to
D|supp(α)|.) If α 6= 0, the numbers of signs ± within supp(α) are also fixed,
and the options are as follows:

(3) m := |o ∩ supp(α)| 6 3 and all signs are the same: by an analogue
of (4.5), a bound on b(Bk(α)) is given by Lemma 4.2 applied to
S = supp(α);

(4) |o ∩ supp(α)| = 2 and the signs differ: b(Bk(α)) = |supp(α)| as in
Section 4.5(3).

Remark 4.4. — If n > 5, the group O(Dn) is an index 2 extension
of R(Dn): it is generated by the reflection against the hyperplane orthogo-
nal to any of ei. Hence, up to O(Dn), we can assume that, in the expression
~k =

∑
i αiei, all coefficients αi > 0. We always make this assumption (and

adjust the results afterwards) when describing the orbits and computing
counts and bounds.

5. Root systems with few components

In this section, we consider the 20 Niemeier lattices generated over Q by
root systems with few (up to six) irreducible components. We set the goal

|L| >M := 122

and prove the following theorem.

Theorem 5.1. — Fix a root system D with at most six irreducible
components and a configuration (~, r̄) in the Niemeier lattice N(D). Then,
with the exception of

• |L| = 144 and L is conjugate to Mi
144 ⊂ N(4A5⊕D4), see (5.1), or

• |L| = 130 and L is conjugate to Li
130 ⊂ N(6A4), see (5.2),

one has |L| 6 120 for each geometric set L.

Proof. — For each configuration (~, r̄) (or just vector ~), we list all
O~(N)-orbits ōn and indicate the number m(ōn) of combinatorial orbits
o ⊂ ōn, the count c(o), and the naïve bound on |L ∩ o| given by (4.3).
Sometimes, this bound is improved by one of the arguments (1)–(3) in Sec-
tion 4.1; the best bound obtained is denoted by b(o). The results are listed
in several tables below.
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Table 5.1. The lattice N(4A5 ⊕D4)

1:
[[ 3

2
]]
3

[[ 3
2
]]
3

[[ 3
2
]]
3

[[ 3
2
]]
3

{
0
}
0 456 156

1:
[ 3

2
]
3

[ 3
2
]
3

[
0
]
0

[
0
]
0

[
0
]
1 6∗ 4 2

2:
[ 3

2
]
3

[ 1
2
]
5

[ 1
2
]
5

[ 1
2
]
5

[
0
]
0 8 27 9

3:
{

6
}+

∗

[[
0
]]
0

[[
0
]]
0

[[
0
]]
0

[[
0
]]
0 912 168→ 126

1:
[
3
]
3

[
0
]
3

[
0
]
0

[
0
]
0

[
0
]
1 3∗∗ 160 32→ 22 (3)

2:
[
3
]
3

[
0
]
5

[
0
]
5

[
0
]
5

[
0
]
0 2∗ 216 36→ 30 (2)

44:
[[ 3

2
]]
3

[[ 3
2
]]
3

{
0
}
0

[[
0
]]
0

[[
3
]]
1 528 124→ 122X

47:
[[ 3

2
]]
3

[[ 3
2
]]
3

[[
2
]]
◦

{
0
}
0

[[
1
]]
1 480 124→ 122X

Convention 5.2. — In the tables, the number m(ōn) is marked with
a ∗ if ōn is self-dual; it is marked with ∗∗ if also each combinatorial orbit
o ⊂ ō is self-dual. If ōn is not self-dual, then its dual ō∗n = ōn+1 is omitted.
For the components ~k of ~ we use the notation

[[
~2
k

]]
d
, where d is either

the discriminant class of ~k or, if ~k ∈ Dk, the symbol 0 (if ~k = 0), ◦ (if
~2
k = 2), • (if ~2

k = 4), or ∗ (if ~2
k = 6). If these data do not determine ~k,

we use a superscript:

• + or − to select a second shortest vector (one of the form ēo + r,
where r = ei−ej ∈ Dk is a root and i, j ∈ o or i, j ∈ ō, respectively,
see Sections 4.5 and 4.6) in a discriminant class d 6= 0;

• +, if ~ = ~k ∈ Dn ⊂ Hn or An−1 ⊂ Hn is of the form 2e1− e2− e3
rather than e1 + e2 + e3 − e4 − e5 − e6, see Sections 4.5 and 4.6;

• the discriminant class of 1
2~k, if ~2 ∈ Dn ∩ 2D∨n .

If Dk contains the root r̄, this notation is changed to
{
~2
k

}
d
.

For the components lk of a line, we use the notation
[
lk · ~k

]
d
, where d

and an occasional superscript have the same meaning as for ~.

Also shown in the tables is the naïve a priori estimate b(O) given by (3.2).
For the vast majority of configurations we have b(O) 6 M , and these
configurations are omitted. (The complete set of tables is available in [7].)
The few cases where b(O) > M are shown in bold, and we treat them
separately below, except those marked with a X (see Section 3.3). In these
“trivial” cases marked with a X we usually also omit the list of orbits.
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5.1. The lattice N(4A5 ⊕D4)

There are 93 configurations to be considered, and the maximal naïve
bound is b(O) = 156 (see Table 5.1).

5.1.1. Configuration 1

There are two sets L ∈ B17(ō2), defined by the patterns π such that
π|ō2 = const = 7 or 9. The former has rank 19, and its only nontrivial
geometric ō2-proper (see Section 3.2.2) extension has π(o) = π(o∗) = 2 for
a pair of dual orbits o, o∗ ⊂ ō1 and π(o′) = 0 for all other orbits o′ ⊂ ō1.
The other set, which is denoted Mi

144, is maximal, see Section 3.2.1. This
set of size 144 is determined by the pattern (see Remark 3.2)

(5.1) π =
〈〈

0, 9, 9
〉〉

(not Q-complete).

5.1.2. Configuration 3

It is not practical to compute the admissible sets for all orbits; thus, we
argue as in Section 4.2 and only compute admissible subsets L ⊂ o ⊂ ō1 of
size at least 18. This suffices to show that there is a unique set L ∈ B4(ō1),
with the pattern π taking values (22, 22, 18) on ō1 and identical 0 on ō2.
This set is maximal (see Section 3.2.1).

Table 5.2. The lattice N(6A4)

1:
[[6

5
]]
3

[[ 6
5
]]
3

[[ 6
5
]]
2

[[ 6
5
]]
2

[[ 6
5
]]
3

{
0
}
0 452 156→ 150

1:
[ 6

5
]
3

[ 6
5
]
3

[ 3
5
]
1

[
0
]
0

[
0
]
0

[
0
]
1 10∗ 6 2

2:
[ 6

5
]
3

[ 4
5
]
2

[
0
]
0

[ 2
5
]
4

[ 3
5
]
4

[
0
]
0 20∗ 18 6

3:
[ 3

5
]
4

[ 3
5
]
4

[ 3
5
]
1

[ 3
5
]
1

[ 3
5
]
4

[
0
]
0 1∗∗ 32 16→ 10 (1)

7:
[[4

5
]]
4

[[ 4
5
]]
4

[[ 6
5
]]
3

[[
2
]]
◦

{
0
}
0

[[ 6
5
]]
3 476 140→ 132X

21:
[[ 14

5
]]−
4

[[ 4
5
]]
4

[[ 6
5
]]
3

{
0
}
0

[[
0
]]
0

[[ 6
5
]]
3 500 132→ 126X

27:
{ 4

5
}
4

[[ 4
5
]]
4

[[ 4
5
]]
4

[[ 6
5
]]
2

[[ 6
5
]]
3

[[ 6
5
]]
2 424 128→ 122X
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5.2. The lattice N(6A4)

There are 39 configurations to be considered, and the maximal naïve
bound is b(O) = 150 (see Table 5.2).

5.2.1. Configuration 1

There is a unique set Li
130 ∈ B28(O); it has 130 lines and is described by

the pattern (see Remark 3.2)

(5.2) π =
〈〈

0, 6, 10
〉〉

(not Q-complete).

This case completes the technical details of the proof of Theorem 5.1. �

6. The lattice N(8A3)

Starting from this section, we relax the goal to

|L| >M := 132.

The result of this section is the following theorem.
Theorem 6.1. — Let L ⊂ N(8A3) be a geometric set. Then, unless

|L| = 132 and L is conjugate to Si
132, see (6.1), or Sii

132, see (6.2), one has
|L| 6 130.

Proof. — We proceed as in Section 5, listing pairs ~, r̄ ∈ N(8A3) and
respective orbits (and following the notation of Section 5).

6.1. Configuration 1

The only maximal geometric set, denoted Si
132, does have 132 lines. It

is characterized by the constant pattern (see Remark 3.2)

(6.1) π =
〈〈

12, 12
〉〉
.

6.2. Configuration 4

There are 162 sets L ∈ B10(ō4). Most are maximal; one of them, denoted
Sii

132, has 132 lines and is determined by the pattern

(6.2) π =
〈〈

0, 3, 3, 4, 4, 0, 0
〉〉
.

Eleven sets are of rank 19; extending these sets by a maximal orbit (see
Section 3.2.2), we arrive at the bound |L| 6 112.
On the other hand, there is a unique set L ∈ B6(ō1 ∪ ō2 ∪ ō∗2 ∪ ō6 ∪ ō∗6).

One has |L| = 92, and this set is maximal, see Section 3.2.1. �
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Table 6.1. The lattice N(8A3)
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Table 6.1. The lattice N(8A3)

1:
�

4
�+

•

��
2
��

◦

��
0
��

0

��
0
��

0

��
0
��

0

��
0
��

0

��
0
��

0

��
0
��

0 728 200 → 132�
1:

�
2
�
2

�
1
�
2

�
0
�
2

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
2

�
0
�
0 3∗∗ 72 24 → 12 (3)

2:
�
2
�
2

�
1
�
3

�
0
�
3

�
0
�
0

�
0
�
3

�
0
�
0

�
0
�
0

�
0
�
1 8∗ 64 16 → 12 (2)

4:
�� 3

4

��
3

�� 3
4

��
3

�� 3
4

��
3

��
1
��

2

��
1
��

2

�
0
�

0

�� 3
4

��
1

��
1
��

2 448 160
1:

� 3
4

�
3

� 3
4

�
3

�
0
�
0

�
1
�
2

�
0
�
0

�
0
�
3

�
0
�
0

� 1
2

�
1 12∗ 4 2

2:
� 1

2

�
2

� 1
2

�
2

�
0
�
0

�
1
�
2

�
1
�
2

�
0
�
0

�
0
�
0

�
0
�
0 6 9 3

4:
� 1

2

�
2

� 3
4

�
3

� 3
4

�
3

�
0
�
0

� 1
2

�
3

�
0
�
0

�
0
�
0

� 1
2

�
1 12 12 4

6:
� 3

4

�
3

� 3
4

�
3

� 3
4

�
3

�
0
�
0

�
0
�
0

�
0
�+

2

� 3
4

�
1

�
0
�
0 2 1 1

5:
� 3

4

�
3

�� 3
4

��
3

�� 3
4

��
3

��
1
��

2

��
1
��

2

��
0
��

0

�� 3
4

��
1

��
1
��

2 420 136 �

7:
�

3
�+

2

��
1
��

2

��
1
��

2

��
0
��

0

��
0
��

0

��
0
��

0

��
1
��

2

��
0
��

0 600 172 → 136�

10:
�� 3

4

��
3

�� 3
4

��
3

�� 3
4

��
3

��
2
��

◦

�
0
�

0

��
1
��

2

�� 3
4

��
1

��
0
��

0 472 152 → 148�

14:
� 11

4

�−

3

�� 3
4

��
3

�� 3
4

��
3

��
0
��

0

��
0
��

0

��
1
��

2

�� 3
4

��
1

��
0
��

0 548 152 → 140�

15:
�� 11

4

��−

3

�� 3
4

��
3

�� 3
4

��
3

�
0
�

0

��
0
��

0

��
1
��

2

�� 3
4

��
1

��
0
��

0 496 148 → 138�

18:
�� 3

4

��
3

�� 3
4

��
3

�� 3
4

��
3

��
0
��

0

��
0
��

0

�
3
�+

2

�� 3
4

��
1

��
0
��

0 600 152 → 146�

19:
�� 3

4

��
3

�� 3
4

��
3

�� 3
4

��
3

�
0
�

0

��
0
��

0

��
3
��+

2

�� 3
4

��
1

��
0
��

0 520 144 → 140�

21:
��

1
��

2

��
1
��

2

��
1
��

2

��
2
��

◦

�
0
�

0

��
0
��

0

��
1
��

2

��
0
��

0 472 164 → 140�

27:
� 3

4

�
3

�� 3
4

��
3

�� 3
4

��
3

�� 3
4

��
3

�� 3
4

��
3

�� 3
4

��
3

�� 3
4

��
3

�� 3
4

��
3 420 140 �

Proof. — We proceed as in §5, listing pairs �, r̄ ∈ N(8A3) and respective
orbits (and following the notation of §5).

There are 28 configurations to be considered, and the maximal naïve
bound is b(O) = 160 (see Table 6.1).

6.1. Configuration 1

The only maximal geometric set, denoted Si
132, does have 132 lines. It

is characterized by the constant pattern (see Remark 3.5)

(6.2) π =
��

12, 12
��

.

TOME 1 (-1), FASCICULE 0

7. The lattice N(12A2)

The ultimate result of this section is the following theorem.

Theorem 7.1. — Let L ⊂ N(12A2) be a geometric set. Then, unless
• |L| = 144 and L is conjugate to Mii

144, see (7.5), or
• |L| = 132 and L is conjugate to Siii

132, see (7.8),
one has |L| 6 130.

In the course of the proof of this theorem we also discover and describe
(by means of their patterns, see Remark 3.2) several geometric sets L of
size |L| > 124.
Proof of Theorem 7.1. — We proceed as in Section 5, analyzing pairs

(~, r̄) one by one. (The notation in the table is explained in Section 5.)
There are 9 configurations to be considered, and the maximal naïve bound
is b(O) = 190 (see Table 7.1).
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Table 7.1. The lattice N(12A2)
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Table 7.1. The lattice N(12A2)

1:
� 8

3

�−

2

�� 2
3

��
2

�� 2
3

��
2

�� 2
3

��
2

��
0
��

0

�� 2
3

��
2

��
0
��

0

��
0
��

0

�� 2
3

��
2

��
0
��

0

��
0
��

0

��
0
��

0 572 196 → 190
1:

� 4
3

�
1

� 2
3

�
2

� 2
3

�
2

� 1
3

�
1

�
0
�
0

�
0
�
0

�
0
�
2

�
0
�
1

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0 30∗ 18 6

2:
� 4

3

�
1

� 1
3

�
1

� 1
3

�
1

� 1
3

�
1

�
0
�
0

� 1
3

�
1

�
0
�
0

�
0
�
0

� 1
3

�
1

�
0
�
0

�
0
�
0

�
0
�
0 1∗∗ 32 16 → 10 (1)

2:
�� 8

3

��−

2

�� 2
3

��
2

�� 2
3

��
2

�� 2
3

��
2

�
0
�

0

�� 2
3

��
2

��
0
��

0

��
0
��

0

�� 2
3

��
2

��
0
��

0

��
0
��

0

��
0
��

0 492 176 → 170
1:

� 4
3

�
1

� 2
3

�
2

� 2
3

�
2

� 1
3

�
1

�
0
�
0

�
0
�
0

�
0
�
2

�
0
�
1

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0 20∗ 18 6

2:
� 4

3

�
1

� 2
3

�
2

� 2
3

�
2

�
0
�
0

�
0
�
1

� 1
3

�
1

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
2

�
0
�
0

�
0
�
0 10∗ 6 2

3:
� 4

3

�
1

� 1
3

�
1

� 1
3

�
1

� 1
3

�
1

�
0
�
0

� 1
3

�
1

�
0
�
0

�
0
�
0

� 1
3

�
1

�
0
�
0

�
0
�
0

�
0
�
0 1∗∗ 32 16 → 10 (1)

4:
�
2
�
◦

�
1
�
◦

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0 5 4 2

3:
�� 8

3

��−

2

� 2
3

�
2

�� 2
3

��
2

�� 2
3

��
2

��
0
��

0

�� 2
3

��
2

��
0
��

0

��
0
��

0

�� 2
3

��
2

��
0
��

0

��
0
��

0

��
0
��

0 464 160
1:

�
2
�
◦

�
0
�
0

�
1
�
◦

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0 4 4 2

3:
� 4

3

�
1

� 2
3

�
2

� 2
3

�
2

� 1
3

�
1

�
0
�
0

�
0
�
0

�
0
�
2

�
0
�
1

�
0
�
0

�
0
�
0

�
0
�
0

�
0
�
0 12 18 6

4:
�� 2

3

��
2

�� 2
3
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7.1. Configuration 1

We subdivide the orbit ō1 into five pairwise disjoint clusters c1, . . . , c5
constituting Orb5(ō1, 6). Explicitly,

(7.1) ck :=
{
l ∈ ō1

∣∣ lk · ~k = 1
3
}
, k ∈ K :=

{
k ∈ Ω

∣∣ ~k = 2
3
}
.

Then, arguing as in Section 3.4, we compute B58(ō1) = ∅.

7.2. Configuration 2

There are four sets L ∈ B30(ō1). One, denoted Lii
130, is maximal and has

130 lines; it is characterized by the pattern

(7.2) π :=
〈〈

6, 0, 10, 0, 0
〉〉

(not Q-complete).

The three other sets are of rank 19; extending them by an extra orbit (see
Section 3.2.3), we arrive at a number of sets of size |L| 6 118 and one, up
to O~(N), maximal set Liii

124 of size 124. The latter is characterized by any
of the five patterns

(7.3) πc =
〈〈

5|4, 2, 8, 0, 0
〉〉
, c := c1 ∈ Orb5(ō1, 16);

explicitly, c = {l ∈ ō1 | lk · ~k 6= 1
3} for some k ∈ K (see Section 7.1).

On the other hand, there are 13 sets L ∈ B6(ō2∪ō3∪ō4∪ō∗4), all saturated
and with |L| 6 94. One set is of rank 19; extending it by an extra orbit
(see Section 3.2.3), we obtain a number of sets with at most 92 lines.

7.3. Configuration 3

There is a single set L ∈ B14(ō3); it is maximal and |L| = 120.

7.4. Configuration 4

There are 733 sets L ∈ B14(ō1); they are all saturated and |L| 6 126.
Extending the 32 sets of rank 19 by a maximal orbit (see Section 3.2.2),
we arrive at |L| 6 112. The only, up to O~(N), set Liv

126 with 126 lines
constitutes B0(ō1); it is characterized by any of the four patterns

(7.4) πc =
〈〈

2, 0, 3|2
〉〉
, c := c3 ∈ Orb4(ō3, 6).

On the other hand, there are 105 sets L ∈ B14(ō2 ∪ ō3), which are all of
rank 18 or 19. Extending them by a maximal orbit (see Section 3.2.2), we
arrive at |L| 6 118.
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7.5. Configuration 6

There are 16 sets L ∈ B48(ō3). One of them, denoted Mii
144, is maximal

and contains 144 lines. It is determined by the pattern

(7.5) π =
〈〈

0, 0, 9
〉〉

(not Q-complete).

Extending the remaining 15 sets by one or two extra orbits (see Sec-
tion 3.2.3), we obtain, among others, a set with 124 lines and one with
128 lines. The latter, denoted by Lv

128, is characterized by the pattern

(7.6) π =
〈〈

0, 2, 7
〉〉
.

The 124-element set Lvi
124 is characterized by any of the six patterns

(7.7) πc =
〈〈

0, 3|2, 7|6
〉〉
,

where c := c3 ∈ Orb6(ō3, 8) and c2 ∈ Orb1(ō2, 4, stab c) is determined by c.

7.6. Configuration 7

There are 244 sets L ∈ B22(ō3), all saturated. One of these sets, denoted
Siii

132, has 132 lines; it is determined by the pattern

(7.8) π =
〈〈

3, 0, 4, 0, 0, 0
〉〉
.

For the other sets, one has |L| 6 116. Twenty sets are of rank 19; extending
them by a maximal orbit (see Section 3.2.2), we obtain at most 120 lines.
On the other hand, there are nine sets L ∈ B8(ō1 ∪ ō2 ∪ ō4 ∪ ō5 ∪ ō∗5),

which are all saturated and have |L| 6 104. Extensions of the two sets of
rank 19 by an extra orbit (see Section 3.2.3) have at most 108 lines.

7.7. Configuration 8

There are 94 sets L ∈ B9(ō5). Most are maximal, and |L| 6 116. The
extensions of the two sets of rank 19 by a maximal orbit (see 3.2.2) are
maximal sets with at most 110 lines. �
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8. The lattice N(24A1)

The results of this section are summarized by the following theorem.

Theorem 8.1. — Let L ⊂ N(24A1) be a geometric set. Then, unless
• |L| = 144 and L is conjugate to Miii

144, see (8.9), or
• |L| = 132 and L is conjugate to one of the sets Siv

132, Sv
132, Svi

132,
or Svii

132, see (8.1), (8.2), (8.10), or (8.11), respectively,
one has |L| 6 130.

Proof. — We proceed as in the previous sections. Each component vk ∈
D∨k , k ∈ Ω = [1, . . . , 24], of a vector v ∈ N is a multiple of the generator
rk ∈ Dk. To save space, we use the notation

· (if vk = 0) , −
(
if vk = ± 1

2rk
)
,

◦ (if vk = ±rk) , • (the position of r̄) .

The signs always agree, so that ~k · lk > 0 for any line l ∈ F(~) and k ∈ Ω.
There are three configurations (see Table 8.1). Fix a basis {rk}, k ∈ Ω,

Table 8.1. The lattice N(24A1)

1: ◦ ◦ ◦ • · · · · · · · · · · · · · · · · · · · · 512 256→ 160X
1: −−− · −− · · · − · · · · · · · · −− · · · · 16∗∗ 32 16→ 10 (3)

2: −−−−−◦ •− · · − · − · · · · · · · · · · · 464 240→ 184
1: −−−− · − · · · · · · · · − · · − · · · · · − 56∗ 8 4→ 3 (3)
2: ◦ · · · · ◦ · · · · · · · · · · · · · · · · · · 8 1 1

3: −−−−−−−−•− · · · − · · · · · · − · · − 440 220
1: −−−−− · · − · · − · − · · · · · · · · · · · 110∗ 4 2

for 24A1 consisting of roots. The kernel

N mod 24A1 ⊂ discr 24A1 ∼= (Z/2)24

of the extension is the Golay code C24 (see [3]). The map supp identifies
codewords with subsets of Ω; then, C24 is invariant under complement and,
in addition to ∅ and Ω, it consists of 759 octads, 759 complements thereof,
and 2576 dodecads.

To simplify the notation, we identify the basis vectors rk (assumed fixed)
with their indices k ∈ Ω. For a subset S ⊂ Ω, we let 1̄S :=

∑
r, r ∈ S, and

abbreviate [S] := 1
2 1̄S ∈ N if S ∈ C24 is a codeword.
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8.1. Configuration 1

We have |stab ~| = 5760 and ~ is the sum of three roots. Using patterns
(see Section 3.3), we compute B38(ō1) = ∅, arriving at |L| 6 120.

8.2. Configuration 2

We have |stab ~| = 1344 and ~ = [O] + r~, where O ∈ C24 is an octad
and r~ /∈ O. Let K := Ω r (O ∪ {r~, r̄}) and break ō1 into eight clusters

co :=
{
o ⊂ ō1

∣∣ (K ∩ supp o) ⊂ o
}
,

o ∈ C24, |o| = 8, o ∩ O = ∅, r̄ /∈ o, r~ ∈ o.

They constitute the orbit Orb8(ō1, 14). Each combinatorial orbit o ⊂ ō1
belongs to two clusters, and each pair of clusters intersects in a single pair
of dual orbits.
The set B52(ō1) is computed cluster by cluster, as explained in Sec-

tion 3.4. We arrive at a number of sets L of size |L| 6 120 and a few
those with 124 6 |L| 6 132. All sets are maximal. The large sets found can
be described as

L = ō1 ∩ span
(
r̄, h̄, ūs, v

)⊥
,

where
• r̄ and h̄ := [O]− 2r~ = ~− 3r~ generate the subspace ō1

⊥ ⊂ N ,
• ūs := 1̄K − 2s for a certain fixed point s ∈ O,

and the extra vector v is specified below, using the ad hoc notation
• v̄o := [orO]− [o ∩ O] for a codeword o ∈ C24.

Then, the large sets are as follows:

Siv
132 : v = k, k ∈ K;(8.1)

Sv
132 : v = v̄o, r̄ ∈ o, r ∈ o, t ∈ o, |o ∩ O| = 2, |o| = 8;(8.2)

Lvii
126 : v = v̄o, r̄ /∈ o, r ∈ o, t ∈ o, |o ∩ O| = 2, |o| = 8;(8.3)

Lviii
126 : v = v̄o + r~, r̄ ∈ o, r /∈ o, t ∈ o, |o ∩ O| = 4, |o| = 8;(8.4)

Lix
126 : v = [o], r̄ ∈ o, r /∈ o, t /∈ o, |o ∩ O| = 0, |o| = 8;(8.5)

Lx
126 : v = v̄o, r̄ /∈ o, r ∈ o, t ∈ o, |o ∩ O| = 2, |o| = 12;(8.6)

Lxi
124 : v = v̄o, r̄ ∈ o, r ∈ o, t ∈ o, |o ∩ O| = 2, |o| = 12;(8.7)

Lxii
124 : v = [o]− r~, r̄ ∈ o, r ∈ o, t /∈ o, |o ∩ O| = 2, |o| = 8.(8.8)

In each case, it is straightforward that the set of data required for the
description is unique up to O~(N).
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8.3. Configuration 3

We have |stab ~| = 7920 and ~ = [O], where O ∈ C24 ia a dodecad. Let
K := Ω r (O ∪ r̄). Each support o := supp o, o ∈ ō1, is an octad, so that
|o∩O| = 6 and |o∩K| = 2; conversely, each 2-element set s ⊂ K extends to
a unique pair of such octads, representing a pair of dual orbits o, o∗ ⊂ ō1.
We break ō1 into eleven clusters

ck :=
{
o ⊂ ō1

∣∣ supp o 3 k
}
, k ∈ K.

Each orbit belongs to two clusters, and each pair of clusters intersects in
a single pair of dual orbits. We compute the set B88(ō1) cluster by cluster,
as explained in Section 3.4. Note that the first cluster c has |L ∩ c| > 24
(and, hence, δ0(c) > 4) and, in case of equality, also |L ∩ ck| = 24 for each
k ∈ K. In this latter case, we reduce overcounting by using the following
observations:

• if δ0(c) = 6, there is exactly one other cluster c′ with δ0(c′) = 6, so
that L ∩ o = L ∩ o∗ = ∅ for the two orbits o, o∗ ⊂ c ∩ c′;

• if δ0(c) = 4, then δ0(ck) = 4 for each k ∈ K (thus, no preferred
order), and we can choose c′ so that |L ∩ o| = |L ∩ o∗| = 1 for
o, o∗ ⊂ c ∩ c′.

In these two cases, we start with the pair c, c′ and employ the extra sym-
metry.
The result is one maximal set Miii

144 and two submaximal sets Svi
132,

Svii
132. As a by-product, we have found six sets L with 124 6 |L| 6 130 and

a number of sets of size |L| 6 120. Most large sets can be described as

L = ō1 ∩ span
(
r̄, 1̄K, r, v

)⊥
,

where r ∈ K is a certain fixed point and the extra vector v is described
below. This description depends on a codeword o ∈ C24 (we use the shortcut
w̄o := 3v̄o + [O], where v̄o is as in Section 8.2) and, occasionally, an extra
point s ∈ o ∩ O or t ∈ K r r. Then, the large sets are as follows:

Miii
144 : v = t;(8.9)

Svi
132 : v = [o]− s, r̄ /∈ o, r /∈ o, |o ∩ O| = 2, |o| = 8;(8.10)

Svii
132 : v = w̄o, r̄ ∈ o, r ∈ o, |o ∩ O| = 4, |o| = 8;(8.11)

Lxiii
130 : v = [o]− s, r̄ ∈ o, r /∈ o, |o ∩ O| = 2, |o| = 8;(8.12)

Lxiv
128 : v = w̄o − 3t, r̄ ∈ o, r ∈ o, t ∈ o, |o ∩ O| = 4, |o| = 8;(8.13)

Lxv
126 : v = w̄o, r̄ /∈ o, r ∈ o, |o ∩ O| = 4, |o| = 8;(8.14)
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Lxvi
126 : v = w̄o, r̄ /∈ o, r ∈ o, |o ∩ O| = 4, |o| = 12;(8.15)

Lxvii
124 : v = w̄o, r̄ /∈ o, r /∈ o, |o ∩ O| = 4, |o| = 8.(8.16)

In (8.16) we require, in addition, that the 6-element set (o ∩ O) ∪ {r̄, r}
should not be contained in an octad. Under this extra assumption, the set
of data needed for the description is unique up to O~(N). �

Remark 8.2. — In Section 8.3, there is one more 126-element set L. How-
ever, since L is graph isomorphic to Lxv

126
∼= Lxvi

126 and, on the other hand,
we do not assert the completeness in this range, we omit its description,
which is more complicated.

Remark 8.3. — In the course of this computation, we have observed all
even line counts 38 6 |L| 6 120 realized by geometric sets of rank 20.

9. Proofs of the main results

In this concluding section, we fill in a few missing links to complete the
proofs of the principal results of the paper stated in the introduction.

9.1. Proof of Theorem 1.1 and Addendum 1.2

As explained in Section 2.2, instead of counting tritangents to smooth
sextics one can study (doubling the numbers) the Fano graphs of smooth
2-polarized K3-surfaces. By Theorem 2.1, the latter task is equivalent to
the study of the Fano graphs of certain 2-polarized lattices NS 3 h, and
Proposition 2.2 and subsequent definitions reduce it further to the study
of geometric subsets L ⊂ F(~) in 6-polarized Niemeier lattices N 3 ~ other
than the Leech lattice Λ (as we can always assume that there is a root
r̄ ∈ ~⊥). This is done in Theorems 5.1, 6.1, 7.1, and 8.1, and there remains
to observe that all sets of size 144 are isomorphic as abstract graphs,

(1) Mi
144
∼= Mii

144
∼= Miii

144, T = [12, 6, 12]∗,
and there are two isomorphism classes of sets of size 132:

(2) Si
132
∼= Sii

132
∼= Siii

132
∼= Siv

132
∼= Sv

132
∼= Svi

132, T = [2, 0, 66]∗,
(3) Svii

132, T = [4, 0, 32]∗.
The graphs are compared by means of the GRAPE package [14, 15, 30] in
GAP [10]. A posteriori, the large graphs L found in the paper are distin-
guished by their size |L|, discriminant form discr(spanZ L), and, in a few
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cases below, the size |AutL| of the group of abstract graph automorphisms
(also computed by GRAPE). Instead of discr(spanZ L), we give a list of rep-
resentatives of the genus of the transcendental lattice T := NS⊥ of the
corresponding 2-polarized K3-surface, using the inline notation [2a, b, 2c]
for the even rank 2 form T = Zu + Zv, u2 = 2a, u · v = b, v2 = 2c. The
meaning of the superscript ∗ is explained in Section 9.2(1) below.

This observation establishes the bounds stated in Theorem 1.1, and the
uniqueness is proved in Section 9.2 below. For the record, we give a similar
classification for the other large geometric sets found in the course of the
computation and described elsewhere in the paper:

(4) Li
130
∼= Lii

130
∼= Lxiii

130, T = [12, 3, 12]∗;
(5) Lv

128
∼= Lxiv

128, T = [12, 2, 12]∗;
(6) Lvii

126
∼= Lviii

126
∼= Lxv

126
∼= Lxvi

126, T = [2, 1, 72]∗, [6, 1, 24], or [8, 1, 18];
(7) Liv

126
∼= Lx

126, |AutL| = 144, T = [14, 7, 14]∗;
(8) Lix

126, |AutL| = 504, T = [14, 7, 14]∗;
(9) Liii

124
∼= Lvi

124
∼= Lxi

124
∼= Lxii

124
∼= Lxvii

124 , T = [4, 0, 38]∗ or [6, 2, 26].
Besides, we have found 9 isomorphism classes of geometric sets of size 120.
Note that, unlike (1)–(3), we do not assert the completeness of these lists.
The statement of Addendum 1.2 is essentially given by Remark 8.3 and

the above list, as geometric sets with fewer than 38 lines are easily con-
structed directly, mostly within an appropriate single combinatorial orbit o.

9.2. Proof of Theorem 1.1 (uniqueness)

Proof. — In full agreement with Corollary 2.5, all large geometric sets
listed in Section 9.1 are of the maximal rank rkL = 20. Therefore, the
isomorphism classes of the smooth 2-polarized K3-surfaces (or, equiva-
lently, the projective equivalence classes of sextics C ⊂ P2) with the given
Fano graph Fn(X,h) ∼= L are given by the global Torelli theorem [22] (cf.
also [8, Theorem 3.11]) as the classes of primitive embeddings NS ↪→ L :=
−2E8 ⊕ 3U up to the group O+

h (L) of auto-isometries of L preserving h
and the positive sign structure (i.e., orientation of maximal positive definite
subspaces of L⊗R; here, NS 3 h is the 2-polarized lattice obtained from a
mild extension S ⊃ spanL 3 ~ by the inverse construction of Section 2.4).
The classification of embeddings is done using Nikulin [18]. With an

extension S (and, hence, lattice NS) fixed, the genus of the transcendental
lattice T := NS⊥ is determined by the discriminant discrNS ∼= −discrT .
Then, for each representative T of this genus, the isomorphism classes of
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the embeddings with NS⊥ ∼= T are in a one-to-one correspondence with
the double cosets

Oh(NS)\Aut(discrNS)/O+(T ).

There are obvious identities and inclusions

Oh(NS) = O~(S) ⊂ O~(spanL) ⊂ O~ (spanZ L) = AutL.

Besides, we have the following lemma.

Lemma 9.1. — Let L ⊂ N be a geometric set, and assume that

rkL = 20, det (spanZ L) < 1296.

Then the only mild extension S ⊃ spanL is S = spanL = spanZ L.

Proof. — For the Néron–Severi lattice NS(X) of a K3-surface X corre-
sponding to S we have

|detNS(X)| = det (spanZ L) /3i2, i := [S : spanZ L] .

On the other hand, since X is smooth and of the maximal Picard rank 20,
we have |detNS(X)| > 108 by [6, Theorem 1.5]. This implies i < 2, hence
i = 1. �

Lemma 9.1 applies to all geometric sets listed in Section 9.1(1)–(9) (and
to the nine sets of size 120 mentioned thereafter). Then, a direct computa-
tion shows that the natural map AutL→ Aut(discrNS) is surjective. This
fact renders the other group O+(T ) redundant and proves that each pair
(L, T ) listed is realized by either

(1) a single curve C ∼= C̄ (marked with a ∗ in the list) or
(2) a pair C, C̄ of complex conjugate curves.

(The former is the case whenever T admits an orientation reversing auto-
isometry; note that we do not assert that the curve admits a real structure,
although most likely it does.) In particular, each of the three configura-
tions listed in items (1), (2), (3) is realized by a single curve, as stated in
Theorem 1.1. �

9.3. Proof of Theorem 1.3

Let C ⊂ P2 be a real sextic. By definition, this means that C is in-
variant under a certain fixed real structure (anti-holomorphic involution)
c : P2 → P2. This involution lifts to two commuting anti-holomorphic auto-
morphisms c± of the covering K3-surface ϕ : X → P2, so that c+ ◦ c− = τ
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is the deck translation. A priori, c± are either involutions or of order 4,
with c2± = τ . However, if we assume that C has a real tritangent L, then
at least one of the three tangency points (possibly, infinitely near) must
be real; thus, the ramification locus of ϕ has a real point and both lifts c±
are involutions, i.e., real structures on X. Furthermore, we can select c+ so
that both pull-backs L1, L2 ⊂ ϕ−1(L) are real (and then they are complex
conjugate with respect to c−); then, the pull-backs L′1, L′2 ⊂ ϕ−1(L′) of
any other real tritangent L′ are also real, as each of L′i intersects exactly
one of L1, L2 at a single point, which must be real.
Thus, we reduce the problem to counting real lines in a real 2-polarized

K3-surface (X,h). More precisely, this means that we fix a real struc-
ture c : X → X, c∗(h) = −h, and count lines L ⊂ X satisfying c∗[L] =
−[L]. (Recall that each line is unique in its homology class and that anti-
holomorphic maps reverse the orientation of complex curves.) Arguing as
in [8], we can perturb the period of X to change NS(X) to the sublattice
rationally generated by the real lines; then, all lines in the new surface X
are real and Ker(1−c∗) ⊂ T (X) = NS(X)⊥. Using the classification of real
structures found in [18], we obtain the following statement.

Lemma 9.2 (cf. [8, Lemma 3.10]). — A smooth 2-polarized K3-surface
X is equilinear deformation equivalent to a real surface Y in which all lines
are real if and only if the orthogonal complement Fn(X,h)⊥ contains A1
or U(2) as a sublattice.

If rk Fn(X,h) = 20, the Picard rank rkNS(X) = 20 is also maximal, the
moduli space is finite, and the statement can be made more precise.

Lemma 9.3. — Let X be a 2-polarized K3-surface, rk Fn(X,h) = 20.
Then, the real structures c : X → X with respect to which all lines are
real are in a one-to-one correspondence with pairs of roots ±r ∈ T (X).
Under this correspondence, −c∗ is the reflection against the hyperplane
r⊥ ⊂ H2(X;Z).

There remains to examine the list found in Section 9.1 and observe that
the maximum, which is 132 lines, is realized by a unique graph, viz. the
one in item (2), and the corresponding transcendental lattice T contains
a single pair of roots. The next known examples are item (6) with 126
lines and two of the nine graphs with 120 lines, but we do not assert the
completeness of our lists in this range.
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