We construct global weak solutions to isothermal quantum Navier–Stokes equations, with or without Korteweg term, in the whole space of dimension at most three. Instead of working on the initial set of unknown functions, we consider an equivalent reformulation, based on a time-dependent rescaling, that we introduced in a previous paper to study the large time behavior, and which provides suitable a priori estimates, as opposed to the initial formulation where the potential energy is not signed. We proceed by working on tori whose size eventually becomes infinite. On each fixed torus, we consider the equations in the presence of drag force terms. Such equations are solved by regularization, and the limit where the drag force terms vanish is treated by resuming the notion of renormalized solution developed by I. Lacroix-Violet and A. Vasseur. We also establish global existence of weak solutions for the isothermal Korteweg equation (no viscosity), when initial data are well-prepared, in the sense that they stem from a Madelung transform.
Nous construisons des solutions faibles globales pour l’équation de Navier-Stokes quantique isotherme, avec ou sans terme de Korteweg, dans tout l’espace en dimension au plus trois. Au lieu de travailler sur les inconnues originales, nous considérons une reformulation équivalente basée sur un changement d’échelle dépendant du temps, introduit précédemment pour étudier le comportement en temps grand, et qui fournit des estimations a priori convenables, par opposition à la formulation originale dans laquelle l’énergie potentielle n’a pas de signe. Nous travaillons sur des tores dont la taille tend vers l’infini. Sur chacun des tores, nous considérons les équations en présence d’une force de traînée. Ces équations sont résolues par régularisation, et on traite la limite où la force de traînée devient nulle en reprenant la notion de solution renormalisée développée par I. Lacroix-Violet et A. Vasseur. Nous montrons également l’existence globale de solutions faibles pour l’équation de Korteweg isotherme (sans viscosité) lorsque les données initiales sont bien préparées, au sens où elles proviennent d’une transformée de Madelung.
Revised:
Accepted:
Published online:
Keywords: Weak solutions, Renormalized solutions, Quantum isothermal fluids, Navier–Stokes equation, Korteweg equation
Mot clés : Solutions faibles, Solutions renormalisées, Fluides quantiques isothermes, équation de Navier-Stokes, équation de Korteweg
Carles, Rémi 1; Carrapatoso, Kleber 2; Hillairet, Matthieu 3
@article{AIF_2022__72_6_2241_0, author = {Carles, R\'emi and Carrapatoso, Kleber and Hillairet, Matthieu}, title = {Global weak solutions for quantum isothermal fluids}, journal = {Annales de l'Institut Fourier}, pages = {2241--2298}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {6}, year = {2022}, doi = {10.5802/aif.3489}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3489/} }
TY - JOUR AU - Carles, Rémi AU - Carrapatoso, Kleber AU - Hillairet, Matthieu TI - Global weak solutions for quantum isothermal fluids JO - Annales de l'Institut Fourier PY - 2022 SP - 2241 EP - 2298 VL - 72 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3489/ DO - 10.5802/aif.3489 LA - en ID - AIF_2022__72_6_2241_0 ER -
%0 Journal Article %A Carles, Rémi %A Carrapatoso, Kleber %A Hillairet, Matthieu %T Global weak solutions for quantum isothermal fluids %J Annales de l'Institut Fourier %D 2022 %P 2241-2298 %V 72 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3489/ %R 10.5802/aif.3489 %G en %F AIF_2022__72_6_2241_0
Carles, Rémi; Carrapatoso, Kleber; Hillairet, Matthieu. Global weak solutions for quantum isothermal fluids. Annales de l'Institut Fourier, Volume 72 (2022) no. 6, pp. 2241-2298. doi : 10.5802/aif.3489. https://aif.centre-mersenne.org/articles/10.5802/aif.3489/
[1] Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses, 10, Société Mathématique de France, 2000 (with a preface by Dominique Bakry and Michel Ledoux) | MR | Zbl
[2] On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., Volume 287 (2009) no. 2, pp. 657-686 | DOI | MR | Zbl
[3] Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Commun. Math. Phys., Volume 238 (2003) no. 1-2, pp. 211-223 | DOI | MR | Zbl
[4] Quelques modèles diffusifs capillaires de type Korteweg, C. R. Méc. Acad. Sci. Paris, Volume 332 (2004) no. 11, pp. 881-886 | Zbl
[5] On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier–Stokes models, J. Math. Pures Appl., Volume 86 (2006) no. 4, pp. 362-368 | DOI | MR | Zbl
[6] On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., Volume 87 (2007) no. 1, pp. 57-90 | DOI | MR | Zbl
[7] On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Partial Differ. Equations, Volume 28 (2003) no. 3-4, pp. 843-868 | DOI | MR | Zbl
[8] On Navier–Stokes–Korteweg and Euler–Korteweg systems: application to quantum fluids models, Arch. Ration. Mech. Anal., Volume 233 (2019) no. 3, pp. 975-1025 | DOI | MR | Zbl
[9] Relative entropy for compressible Navier–Stokes equations with density dependent viscosities and various applications, ESAIM, Proc. Surv., Volume 58 (2017), pp. 40-57 | MR | Zbl
[10] Derivation of viscous correction terms for the isothermal quantum Euler model, Z. Angew. Math. Mech., Volume 90 (2010) no. 3, pp. 219-230 | DOI | MR | Zbl
[11] Rigidity results in generalized isothermal fluids, Ann. Henri Lebesgue, Volume 1 (2018), pp. 47-85 | DOI | Zbl
[12] Large-time behavior of compressible polytropic fluids and nonlinear Schrödinger equation, Q. Appl. Math., Volume 80 (2022) no. 3, pp. 549-574 | Zbl
[13] Universal dynamics for the defocusing logarithmic Schrödinger equation, Duke Math. J., Volume 167 (2018) no. 9, pp. 1761-1801 | DOI | MR | Zbl
[14] Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society; New York University Courant Institute of Mathematical Sciences, 2003 | Zbl
[15] Équation de Schrödinger avec non-linéarité logarithmique, C. R. Math. Acad. Sci. Paris, Volume 288 (1979) no. 4, pp. 253-256 | MR | Zbl
[16] Équations d’évolution avec non linéarité logarithmique, Ann. Fac. Sci. Toulouse, Math., Volume 2 (1980) no. 1, pp. 21-51 | Zbl
[17] Global dissipative solutions of the defocusing isothermal Euler–Langevin–Korteweg equations, Asymptotic Anal., Volume 126 (2022) no. 3-4, pp. 255-283 | DOI
[18] Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics and its Applications, 26, Oxford University Press, 2004 | MR | Zbl
[19] On the existence of globally defined weak solutions to the Navier–Stokes equations, J. Math. Fluid Mech., Volume 3 (2001) no. 4, pp. 358-392 | DOI | MR | Zbl
[20] About the barotropic compressible quantum Navier–Stokes equations, Nonlinear Anal., Theory Methods Appl., Volume 128 (2015), pp. 106-121 | MR | Zbl
[21] Global weak solutions to compressible Navier–Stokes equations for quantum fluids, SIAM J. Math. Anal., Volume 42 (2010) no. 3, pp. 1025-1045 | MR | Zbl
[22] Global weak solutions to the compressible quantum Navier–Stokes equation and its semi-classical limit, J. Math. Pures Appl., Volume 114 (2018), pp. 191-210 | DOI | MR | Zbl
[23] Symmetries and Global Solvability of the Isothermal Gas Dynamics Equations, Arch. Ration. Mech. Anal., Volume 175 (2005) no. 3, pp. 389-430 | Zbl
[24] Mathematical topics in fluid mechanics. Vol. 2: Compressible models, Oxford Lecture Series in Mathematics and its Applications, 10, Clarendon Press, 1998 | MR | Zbl
[25] Isothermal Navier–Stokes equations and Radon transform, SIAM J. Math. Anal., Volume 47 (2015) no. 1, pp. 626-653 | DOI | MR | Zbl
[26] Solutions faibles de l’équation de Navier–Stokes des fluides compressibles, Séminaire Bourbaki, Vol. 2016/2017. Exposés 1120–1135 (Astérisque), Société Mathématique de France, 2017, pp. 565-584 (Exp. No. 1135) | Zbl
[27] Estimates of solutions to isothermal equations of the dynamics of a viscous gas, Mat. Sb., Volume 208 (2017) no. 8, pp. 31-55 | DOI | MR
[28] Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations, Invent. Math., Volume 206 (2016) no. 3, pp. 935-974 | DOI | MR | Zbl
[29] Global weak solutions to the compressible quantum Navier–Stokes equations with damping, SIAM J. Math. Anal., Volume 48 (2016) no. 2, pp. 1489-1511 | DOI | MR | Zbl
Cited by Sources: