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GLOBAL WEAK SOLUTIONS FOR QUANTUM
ISOTHERMAL FLUIDS

by Rémi CARLES,
Kleber CARRAPATOSO & Matthieu HILLAIRET

Abstract. — We construct global weak solutions to isothermal quantum
Navier–Stokes equations, with or without Korteweg term, in the whole space of
dimension at most three. Instead of working on the initial set of unknown func-
tions, we consider an equivalent reformulation, based on a time-dependent rescal-
ing, that we introduced in a previous paper to study the large time behavior, and
which provides suitable a priori estimates, as opposed to the initial formulation
where the potential energy is not signed. We proceed by working on tori whose
size eventually becomes infinite. On each fixed torus, we consider the equations
in the presence of drag force terms. Such equations are solved by regularization,
and the limit where the drag force terms vanish is treated by resuming the notion
of renormalized solution developed by I. Lacroix-Violet and A. Vasseur. We also
establish global existence of weak solutions for the isothermal Korteweg equation
(no viscosity), when initial data are well-prepared, in the sense that they stem from
a Madelung transform.
Résumé. — Nous construisons des solutions faibles globales pour l’équation de

Navier-Stokes quantique isotherme, avec ou sans terme de Korteweg, dans tout
l’espace en dimension au plus trois. Au lieu de travailler sur les inconnues originales,
nous considérons une reformulation équivalente basée sur un changement d’échelle
dépendant du temps, introduit précédemment pour étudier le comportement en
temps grand, et qui fournit des estimations a priori convenables, par opposition à
la formulation originale dans laquelle l’énergie potentielle n’a pas de signe. Nous
travaillons sur des tores dont la taille tend vers l’infini. Sur chacun des tores, nous
considérons les équations en présence d’une force de traînée. Ces équations sont
résolues par régularisation, et on traite la limite où la force de traînée devient nulle
en reprenant la notion de solution renormalisée développée par I. Lacroix-Violet et
A. Vasseur. Nous montrons également l’existence globale de solutions faibles pour
l’équation de Korteweg isotherme (sans viscosité) lorsque les données initiales sont
bien préparées, au sens où elles proviennent d’une transformée de Madelung.

Keywords: Weak solutions, Renormalized solutions, Quantum isothermal fluids, Navier–
Stokes equation, Korteweg equation.
2020 Mathematics Subject Classification: 35D30, 35Q30, 35Q35, 35Q40, 76N15, 76Y05.
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1. Introduction

In this paper we consider the isothermal fluid equations in Rd (d 6 3):

(1.1a)

(1.1b)


∂t%+ div(%u) = 0,

∂t(%u) + div (%u⊗ u) +∇% = ε2

2 %∇
(∆√%
√
%

)
+ ν div (%Du) ,

on some time interval (0, T ). Here, the unknowns are the density % : (0, T )×
Rd → [0,∞) and the velocity field u : (0, T ) × Rd → Rd of the fluid. We
denote by Du = 1

2 (∇u + ∇u>), the symmetric part of ∇u, and ε > 0,
ν > 0 (with (ε, ν) 6= (0, 0)) are given parameters. When ε = 0 and ν > 0,
the system (1.1) corresponds to the isothermal quantum Navier–Stokes
equations; the case ε, ν > 0 corresponds to the isothermal quantum Navier–
Stokes–Korteweg equations; the case ε > 0 and ν = 0 to the quantum Euler
equation. The term ∇ρ on the left-hand side corresponds to the gradient
of the pressure of an isothermal fluid. Analytically, this corresponds to a
limiting case of equations for polytropic gases where the pressure is given by
a power-law P (ρ) = aργ with γ > 1 and a > 0. Such isothermal models are
marginally studied in the literature (see [21] for the quantum Navier–Stokes
equations on Td, d 6 2, and [25, 27] for the 2D Newtonian Navier–Stokes
case on a bounded domain) whereas they have been derived in a quantum
context [10]. We emphasize in the case of the Euler equation (ε = ν = 0),
in space dimension d = 1, the existence of global weak solution is obtained
in [23] by the vanishing viscosity method, under weak assumptions on the
initial data: 0 6 %0 ∈ L∞(R) and |u0(x)| . 1 + | ln %0(x)|. In a previous
paper [11], we studied the large-time behavior of solutions to (1.1) with
ε, ν > 0, under the assumption that sufficiently integrable solutions do
exist globally in time. To our knowledge, the question of the existence of
such solutions remains open, specifically in the isothermal case. We answer
this question herein by proving that (1.1) admits weak solutions globally in
time. The main part of this paper addresses the Navier-Stokes case ν > 0
(with ε > 0) for general initial data, while the Korteweg case ν = 0, ε > 0
is considered for well-prepared initial data (stemming from a Madelung
transform), and is much more straightforward.
Formally, solutions to (1.1) enjoy the energy equality

E(t) +
∫ t

0
D(s)ds = E(0), t > 0,

ANNALES DE L’INSTITUT FOURIER
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where the energy is defined by

(1.2) E(t) = 1
2

∫
Rd

(
%|u|2 + ε2 |∇√%|2

)
+
∫
Rd
% log %,

and the dissipation is given by

(1.3) D(t) = ν

∫
Rd
%|Du|2.

A feature of the isothermal case is that the pressure part of the energy,∫
Rd
% log %,

involves a functional which has no definite sign, as opposed to

1
γ − 1

∫
Rd
%γ

in the polytropic case. This is one of the reasons why there are fewer results
regarding the global existence of solutions in the case γ = 1 than in the
case γ > 1. Also, because we consider the case of an unbounded domain
x ∈ Rd, nonzero constant densities cannot provide finite-energy solutions
to (1.1), ruling out natural candidates for an approach based on relative
entropy like in e.g. [9].
Following [11], we circumvent this difficulty by considering the auxiliary

unknowns (R,U) as defined by

(1.4)
%(t, x) = 1

τ(t)dR
(
t,

x

τ(t)

)
‖%0‖L1

‖Γ‖L1
,

u(t, x) = 1
τ(t)U

(
t,

x

τ(t)

)
+ τ̇(t)
τ(t)x,

where Γ(y) = e−|y|
2 and the function τ is the global solution to the

nonlinear ODE

τ̈ = 2
τ
, τ(0) = 1, τ̇(0) = 0.

We recall (see [13]) that there exists a unique global solution τ ∈ C∞

([0,∞)) to this system. This solution remains uniformly bounded from
below by a strictly positive constant and its large time behavior is known:

τ(t) ∼
t→∞

2t
√

log t, τ̇(t) ∼
t→∞

2
√

log t.

By convention, the space variable for unknowns with capital letters will be
denoted by y, in contrast with the initial space variable x. System (1.1)

TOME 72 (2022), FASCICULE 6
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becomes, in the terms of the new unknown (R,U) = (R(t, y), U(t, y)),

(1.5a)

(1.5b)



∂tR+ 1
τ2 div(RU) = 0

∂t(RU) + 1
τ2 div(RU ⊗ U) + 2yR+∇R

= ε2

2τ2R∇

(
∆
√
R√
R

)
+ ν

τ2 div(RDU) + ντ̇

τ
∇R.

Since the change of unknowns (1.4) preserves the integrability properties
of density and velocity unknowns locally in time (we consider velocity and
space momenta), we focus in the whole paper on system (1.5).
An interesting feature of (1.5) is that it is again associated with a natural

energy dissipation estimate, but the new energy involved in this estimate
is sign-definite and provides important controls for the unknowns. Indeed,
as exploited in [11], the energy associated to (1.5) reads

(1.6) E(R,U) = 1
2τ2

∫
Rd

(
R|U |2 + ε2

∣∣∣∇√R∣∣∣2)+
∫
Rd

(
R|y|2 +R logR

)
,

so that, formally, solutions to (1.5) satisfy the energy equality

(1.7) E(R,U)(t) +
∫ t

0
D(R,U)(s)ds = E (R0, U0)− ν

∫ t

0

τ̇

τ3

∫
Rd
R divU,

for t > 0, where the nonnegative dissipation is given by

(1.8) D(R,U) = τ̇

τ3

∫
Rd

(
R|U |2 + ε2

∣∣∣∇√R∣∣∣2)+ ν

τ4

∫
Rd
R|DU |2.

In view of the conservation of mass, ‖R(t)‖L1 = ‖Γ‖L1 = πd for all t > 0,
we see that the functional E is positive by writing∫

Rd

(
R|y|2 +R logR

)
=
∫
Rd
R log RΓ >

1
2πd ‖R− Γ‖2L1 ,

where the last inequality stems from Csiszár-Kullback inequality (see e.g. [1,
Theorem 8.2.7]).
The construction of a positive-definite energy which is dissipated with

time is a first building-block to construct solutions to (1.5). However, it is
classical in compressible fluid mechanics that (1.7) must be completed. For
instance, studies on compactness of finite-energy solutions to (1.5) require
to handle the viscous stress RDU . Yet, the information provided by (1.7)
is insufficient (when ε = 0) to pass to the limit in this term (see e.g.
[7, 29]), because we lack information on the regularity of the density R.
More specifically, in the case of (1.5), with (1.7) alone, it is not clear also
how to define the Korteweg term when ε > 0. Another important quantity,
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known as BD-entropy, introduced in [4, 7], is now standard to handle these
difficulties. In the case of (1.5), it reads
EBD(R,U) =

1
2τ2

∫
Rd

(
R |U + ν∇ logR|2 + ε2

∣∣∣∇√R∣∣∣2)+
∫
Rd

(
R|y|2 +R logR

)
.

Exactly as above, the second integral defines a non-negative functional.
The evolution of this BD-entropy is given formally by

(1.9) EBD(R,U)(t) +
∫ t

0
DBD(R,U)(s)ds

= EBD(R0, U0) + ν

∫ t

0

2d
τ2

∫
Rd
R+ ν

∫ t

0

τ̇

τ3

∫
Rd
R divU,

for t > 0, where the above dissipation is defined by

(1.10) DBD(R,U) = τ̇

τ3

∫ (
R|U |2 + ε2

∣∣∣∇√R∣∣∣2)+ ν

τ4

∫
Rd
R|AU |2

+ νε2

τ4

∫
R
∣∣∇2 logR

∣∣2 + 4ν
τ2

∫ ∣∣∣∇√R∣∣∣2 ,
with AU := 1

2 (∇U−∇U>) the skew-symmetric part of ∇U . Hence putting
together the energy and the BD-entropy equalities, it holds

(1.11) E(t) + EBD(t) +
∫ t

0
(D(s) +DBD(s)) ds

= E(0) + EBD(0) + ν

∫ t

0

2d
τ2

∫
Rd
R,

for t > 0, and thanks to the conservation of mass and the fact that∫∞
0 τ−2(t) dt < ∞, the last term is uniformly bounded. We note that,
in view of (1.9), we gain information on the regularity of R when ν > 0
which may help in the compactness issue of weak solutions to (1.5). To
define the Korteweg term, we may also apply the classical identity:

(1.12) R∇

(
∆
√
R√
R

)
= div

(√
R∇2

√
R−∇

√
R⊗∇

√
R
)
,

in view of

(1.13)

∫
Ω

∣∣∣∇2
√
R
∣∣∣2 +

∫
Ω

∣∣∣∇R1/4
∣∣∣4 . ∫

Ω
R
∣∣∇2 logR

∣∣2
.
∫

Ω

∣∣∣∇2
√
R
∣∣∣2 +

∫
Ω

∣∣∣∇R1/4
∣∣∣4 ,

which holds true for Ω = Rd or Td (see [21, 29]).

TOME 72 (2022), FASCICULE 6
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The estimates provided by the above energy and BD-entropy turn out
to be fundamental in the construction of a weak solution, and motivate the
following definition:

Definition 1.1. — Assume ν > 0 and ε > 0. Let (
√
R0,Λ0 = (

√
RU)0)

∈ L2(Rd)×L2(Rd). We call global weak solution to (1.5), associated to the
initial data (

√
R0,Λ0 = (

√
RU)0), any pair (R,U) such that there exists a

collection (
√
R,
√
RU,SK ,TN ) satisfying

(i) The following regularities:

(〈y〉+ |U |)
√
R ∈ L∞loc

(
0,∞;L2 (Rd)) , ∇√R ∈ L∞loc

(
0,∞;L2 (Rd)) ,

ε∇2
√
R ∈ L2

loc
(
0,∞;L2 (Rd)) , √ε∇R1/4 ∈ L4

loc
(
0,∞;L4 (Rd)) ,

TN ∈ L2
loc
(
0,∞;L2 (Rd)) ,

with the compatibility conditions
√
R > 0 a.e. on (0,∞)× Rd,

√
RU = 0 a.e. on

{√
R = 0

}
.

(ii) The following equations in D′((0,∞)× Rd)

(1.14)



∂t
√
R+ 1

τ2 div
(√

RU
)

= 1
2τ2 Trace (TN ) ,

∂t(RU) + 1
τ2 div

(√
RU ⊗

√
RU
)

+ 2y
∣∣∣√R∣∣∣2 +∇

(∣∣∣√R∣∣∣2)
= div

(
ν

τ2

√
RSN + ε2

2τ2 SK
)

+ ντ̇

τ
∇R,

with SN the symmetric part of TN and the compatibility condi-
tions:

(1.15)

(1.16)

√
RTN = ∇

(√
R
√
RU
)
− 2
√
RU ⊗∇

√
R ,

SK =
√
R∇2

√
R−∇

√
R⊗∇

√
R .

(iii) For any ψ ∈ C∞0 (Rd),

lim
t→ 0

∫
Rd

√
R(t, y)ψ(y) dy =

∫
Rd

√
R0(y)ψ(y) dy,

lim
t→ 0

∫
Rd

√
R(t, y)

(√
RU
)

(t, y)ψ(y) dy =
∫
Rd

√
R0(y)Λ0(y)ψ(y) dy.

A specific feature of the previous statement is that we define weak
solutions to (1.5) in terms of

√
R and

√
RU. This is related to the fact

that these are the natural quantities that are involved in the energy and
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entropy estimates. By construction, we shall have
√
RU = 0 where

√
R = 0

so that, whenever U is mentioned, it should be understood as:

U =
√
RU√
R

1√R> 0.

Also, thanks to the regularity estimates obtained on the density, the above
weak formulation implies the classical continuity equation (see [11, Lem-
ma 2.2]). On the other hand, we mention that a solution (

√
R,
√
RU) in

the sense of distributions enjoying the regularity of (i) satisfies furthermore
that

√
R ∈ C([0,∞), L2(Rd)−w) and RU ∈ C([0,∞);L1(Rd)−w). Conse-

quently, we may require the initial conditions in terms of item (iii)). Finally,
we do not claim for an energy estimate in our definition, however we shall
derive these solutions from approximate finite-energy, finite-entropy solu-
tions, so that the global weak solutions we construct satisfy: There exist
absolute constants C,C ′ such that, for almost all t > 0, there holds:

(1.17)

(1.18)

E(t) +
∫ t

0
D(s) ds 6 C(E(0)),

EBD(t) +
∫ t

0
DBD(s) ds 6 C ′ (E(0), EBD(0)) ,

with E ,D, EBD,DBD as defined in (1.6)-(1.8)-(1.9)-(1.10). In terms of our
weak solutions, the term R|DU |2 appearing in these estimates must be
understood as |SN |2 (and, similarly, R|AU |2 as |TN − SN |2, and R|∇U |2
as |TN |2). In addition, item (i) along with (1.14) imply the conservation of
mass, ∫

Rd
R(t, y)dy =

∫
Rd
R0(y)dy, ∀ t > 0,

which is hence fixed through all the paper. The extra integral terms present
on the right hand side of (1.7) and (1.9) do not appear in the estimates
(1.17) and (1.18): thanks to Cauchy-Schwarz inequality, and the conser-
vation of mass, they can be controlled by the dissipation D (see [11, Re-
mark 2.13] as well as the proof of Proposition 2.6 below). Note that in the
previous definition, the entropy of R is not mentioned. The reason is the
following lemma.

Lemma 1.2. — Let d > 1. For all M > 0, there exists C(M) such that
for all f ∈ H1 ∩ F(H1)(Rd) satisfying∫

Rd

(
1 + |y|2

)
|f(y)|2dy +

∫
Rd
|∇f(y)|2 dy 6M,

TOME 72 (2022), FASCICULE 6
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the L logL norm of |f |2 is controlled by∫
Rd
|f(y)|2

∣∣∣log
(
|f(y)|2

)∣∣∣dy 6 C(M).

Sketch of proof. — We distinguish the regions where |f | is smaller or
larger than one,∫

Rd
|f(y)|2

∣∣log
(
|f(y)|2

)∣∣ dy
6
∫
|f |< 1

|f(y)|2
∣∣log

(
|f(y)|2

)∣∣dy +
∫
|f |> 1

|f(y)|2
∣∣log

(
|f(y)|2

)∣∣dy
.
∫
Rd
|f(y)|2−βdy +

∫
Rd
|f(y)|2+βdy,

where β > 0 is arbitrarily small. We then invoke the localization estimate
in the former region,∫

Rd
|f |2−β 6 Cβ‖f‖2−β−dβ/2L2 ‖|y|f‖dβ/2L2 , 0 < β <

4
d+ 2 ,

which is easily established by distinguishing the regions |y| < κ and |y| > κ,
introducing |y|2/|y|2 in the latter, using Hölder inequality, and eventually
optimizing in κ. We may take β = 2

d+2 , and the term
∫
|f |2+β is then

controlled by the H1-norm of f thanks to Sobolev embedding. �

Of course if H1 ∩ F(H1) is replaced by H1, the above Lemma 1.2 is no
longer true. In view of the above discussion, we will apply this lemma to√
R. Recalling that the presence of a space momentum is natural when

working with the unknown (R,U) (due to (1.5b), implying the defini-
tion (1.6)), this yields another motivation for working with (R,U) instead
of (%, u): we definitely gain coercivity properties.
With the above definition, the main result of this paper reads:

Theorem 1.3. — Assume ν > 0, ε > 0. Let (
√
R0,Λ0 = (

√
RU)0) ∈

L2(Rd)×L2(Rd) satisfy E(0) <∞, EBD(0) <∞, as well as the compatibility
conditions√

R0 > 0 a.e. on Rd,
(√

RU
)

0
= 0 a.e. on

{√
R0 = 0

}
.

There exists at least one global weak solution to (1.5), which satisfies more-
over the energy and BD-entropy inequalities (1.17) and (1.18).

In view of [11], we readily infer the following corollary:

Corollary 1.4. — Under the assumptions of Theorem 1.3, every global
weak solution to (1.5) enjoying the energy inequality (1.17) satisfies

R(t) ⇀ Γ in L1 (Rd) , as t→∞.
ANNALES DE L’INSTITUT FOURIER
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To construct solutions of (1.5), we consider various levels of approxima-
tion, by resuming the approach of [28] (summarized in [26]) in the case
γ > 1. The first approximation consists in adding two new terms in the
left hand side of (1.5b), leading to more dissipation, hence better a priori
estimates,

r0

τ2U + r1

τ2R|U |
2U.

This yields the following system in Rd, for r0, r1 > 0:

(1.19a)

(1.19b)



∂tR+ 1
τ2 div(RU) = 0

∂t(RU) + 1
τ2 div (RU ⊗ U) + 2yR+∇R+ r0

τ2U + r1

τ2R|U |
2U

= ε2

2τ2R∇

(
∆
√
R√
R

)
+ ν

τ2 div(RDU) + ντ̇

τ
∇R.

When r0, r1 > 0 we call this system the isothermal fluid system with drag
forces, whereas when r0 = r1 = 0 we recover the original system (1.5).
When the factor 1/τ2 is absent, these terms correspond to physical models;
see e.g. [3, 6] and references therein.
The change of unknown functions (1.4) involves a time-dependent spatial

rescaling, an aspect which essentially forces us to consider the geometrical
framework x ∈ Rd. On the other hand, construction of weak solutions in the
context of compressible fluid mechanics is often performed in the periodic
case x ∈ Td: this geometry provides compactness in space more easily,
and integrations by parts are harmless. The periodic case is also rather
convenient for approximating, among others in Lebesgue spaces, the initial
density by a density bounded away from zero (see (2.7) below), a step which
would be more delicate on Rd. Note also that this property is classically
propagated by the flow in a suitable regularized continuity equation (see
e.g. [18, 21]), and such a property is needed in the presence of cold pressure
and regularizing terms (see e.g. [20, 29]). For these reasons, the second step
in our approach consists in replacing Rd with a box Td` of size ` > 0, where `
is aimed at going to infinity at the last step of the construction of solutions
to the system with drag forces (1.19) with r0, r1 > 0. The most delicate
step turns out to be the adaptation of the initial data, given on Rd, in order
to fit in the periodic framework. Details are given in Section 4.
We also emphasize another important difference whether the space vari-

able belongs to Td or to Rd. In the former case, it is possible to overcome
the lack of positivity in the energy (1.2) by introducing an intermediary

TOME 72 (2022), FASCICULE 6
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constant density, as in e.g. [8, 9, 21]. This strategy cannot be carried out
in the case x ∈ Rd, since no non-zero constant belongs to L1(Rd).

To solve (1.19) on the torus Td` , we proceed as in [29] and introduce re-
gularizing terms in (1.19a) and (1.19b). This procedure consists in adapting
to this damped quantum Navier-Stokes system the classical extra-diffusion
terms introduced in the classical references [19, 24]. The regularized system
hence becomes

(1.20a)

(1.20b)



∂tR+ 1
τ2 div(RU) = δ1

τ2 ∆R,

∂t(RU) + 1
τ2 div(RU ⊗ U) + 2yR+∇R− η1∇R−α

+ r0

τ2U + r1

τ2R|U |
2U + δ1

τ2 (∇R · ∇)U

= ε2

2τ2R∇

(
∆
√
R√
R

)
+ ν

τ2 div(RDU) + ντ̇

τ
∇R

+ δ2
τ2 ∆2U + η2

τ2R∇∆2s+1R,

where the regularization parameters verify 0 < δ1, δ2, η1, η2 < 1; α, s > 0
are chosen sufficiently large (to be fixed later on); and the drag forces
parameters r0, r1 as well as the Korteweg parameter ε are positive r0, r1, ε >

0. Such solutions are constructed in Section 2.1. Next, passing to the limit
δ1, δ2 → 0, then η1, η2 → 0, we obtain a solution to the system with drag
forces (1.19) with r0, r1, ε > 0 on the torus Td` . This is achieved in Section 3.

To pass to the limits θ → 0, where θ > 0 measures the fact that the
initial density is bounded away from zero (see (2.7)), r0, r1 → 0 and `→∞
(simultaneously), we proceed as in [22], and consider an adapted notion of
renormalized solutions, which is equivalent to our notion of weak solution
in the presence of drag forces terms, and provides a weak solution when
r0 = r1 = 0. We thus obtain a solution to (1.5) on the whole space. Note
that this step has to be the final one, insofar as the case with drag forces
requires to control r0 (logR)− in L1 (see e.g. [29]), which is inconsistent
with the property

√
R ∈ H1 in the case y ∈ Rd. These steps are performed

in Section 4.
We note that these final limits, θ → 0, r0, r1 → 0, and ` → ∞ could

be performed in a more independent fashion, by letting first θ, r0, r1 → 0,
thus obtaining a global weak solution to (1.5) on Td` , and then letting
` → ∞ (recalling that H1 ∩ F(H1) provides more compactness than the
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mereH1 space). We choose to unify these steps in order to shorten the over-
all presentation, and also since (1.5) is meaningful on Rd in view of (1.4),
but not necessarily on a (time-independent) torus.
We explain now the outcome of our main theorem in terms of the initial

system (1.1). This is the content of the following corollary:

Corollary 1.5. — Assume ν > 0 and ε > 0. Let (√%0, λ0 = (√%u)0) ∈
H1 ∩ F(H1)(Rd)× L2(Rd) satisfy the compatibility conditions

√
%0 > 0 a.e. on Rd, (√%u)0 = 0 a.e. on {√%0 = 0} ,

and assume that the associated functions (
√
R0,Λ0 = (

√
RU)0) obtained

via (1.4) satisfy E(0) < ∞ and EBD(0) < ∞. Then there exists a global
weak solution to (1.1) in the following sense: there exists a collection
(√%,√%u,TN ,SK) such that

(i) The following regularities are satisfied:

(〈x〉+ |u|)√% ∈ L∞loc
(
0,∞;L2 (Rd)) , ∇√% ∈ L∞loc

(
0,∞;L2(Rd)

)
,

ε∇2√% ∈ L2
loc
(
0,∞;L2 (Rd)) , √ε∇%1/4 ∈ L4

loc
(
0,∞;L4 (Rd)) ,

TN ∈ L2
loc
(
0,∞;L2 (Rd)) ,

with the compatibility conditions
√
% > 0 a.e. on (0,∞)× Rd,

√
%u = 0 a.e. on

{√
% = 0

}
.

(ii) The following equations hold in D′((0,∞)× Rd)

(1.21)


∂t
√
%+ div

(√
%u
)

= 1
2 Trace (TN ) ,

∂t
(√
%
√
%u
)

+ div
(√
%u⊗√%u

)
+∇

(∣∣√%∣∣2)
= div

(
ν
τ2
√
%SN + ε2

2 SK
)
,

with SN the symmetric part of TN and the compatibility condi-
tions:

(1.22)

(1.23)

√
%TN = ∇ (√%√ρu)− 2√%u⊗∇√% ,

SK = √%∇2√%−∇√%⊗∇√% .

(iii) For any ψ ∈ C∞0 (Rd),

lim
t→ 0

∫
Rd

√
%(t, x)ψ(x) dx =

∫
Rd

√
%0(x)ψ(x) dx,

lim
t→ 0

∫
Rd

√
%(t, x) (√%u) (t, x)ψ(x) dx =

∫
Rd

√
%0(x)λ0(x)ψ(x) dx.
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The main shortcoming of this construction is that we do not get the
energy inequality corresponding to (1.2) for the initial system (but the
regularity obtained ensures that, at any time t > 0, the energy E(t) is
well defined). Indeed, we remark that, if U should be going to 0 at infinity,
then, our solution u would then be a perturbation of the affine velocity field
(τ̇ /τ)x which increases at infinity. In particular, performing back the change
of variable (1.4) in the energy estimate (1.17), in the case ‖ρ0‖L1(Rd) =
‖Γ‖L1(Rd) we obtain:

1
2

[∫
Rd
ρ(t, x)

∣∣∣∣u− τ̇

τ
x

∣∣∣∣2 dx+
∫
Rd

∣∣∇√ρ(t, x)
∣∣2dx

]

+
∫
Rd
ρ(t, x) ln(ρ(t, x))dx+ d

(
ln (τ(t)) + 1

τ(t)2

)∫
R
ρ(t, x)dx

+
∫ t

0

[∫
Rd

τ̇

τ
ρ

∣∣∣∣u− τ̇

τ
x

∣∣∣∣2 dx+ ν

∫
Rd
ρ

∣∣∣∣Du− τ̇

τ

∣∣∣∣2
]

dxds 6 C0.

Another point of view consists in recalling that in [11], the large time
convergence of the second order momentum of R is established by using the
a priori bounds provided by (1.17), and the information that the energy
E defined in (1.2) is o(log t) as t → ∞: even though this information is
weaker than the expected boundedness of E (and even, decay), it seems to
be needed in the proof, suggesting that either some tools are missing in the
study of (R,U) to recover the energy inequality corresponding to (1.2) for
the initial system, or that it is just not possible.
We complement the above results, valid for ν > 0, with a global existence

result in the case of the isothermal Korteweg equation (ε > 0 and ν = 0).
The proof is fairly different from the case ν > 0, since it is based on non-
linear Schrödinger equations, but is rather short. We choose to present this
case so that the family of results in this paper is consistent. Mimicking [2,
Definition 14], we set:

Definition 1.6. — Let d > 1. Assume ν = 0 and ε > 0. Let (√%0, λ0) ∈
L2(Rd) × L2(Rd). We call global weak solution to (1.1), associated to the
initial data (√%0, λ0), any pair (√%,√%u) such that if we define % := (√%)2,
j := √%×√%u, then we have:

(i) The following regularities:
√
% ∈ L∞loc

(
0,∞;H1 (Rd)) , √

%u ∈ L∞loc
(
0,∞;L2 (Rd)) ,

with the compatibility condition
√
% > 0 a.e. on (0,∞)× Rd,

√
%u = 0 a.e. on {% = 0}.
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(ii) For every T > 0, for any test function ϕ ∈ C∞0 ([0, T [×Rd),∫ T

0

∫
Rd

(
%∂tϕ+ j · ∇ϕ

)
dtdx+

∫
Rd
%0ϕ(0)dx = 0,

and for any test function η ∈ C∞0 ([0, T [×Rd;Rd),∫ T

0

∫
Rd

(
j · ∂tη + (√%u)⊗ (√%u) : ∇η +∇%div η

+ ε2∇√%⊗∇√% : ∇η − ε2

4 %∆ div η
)

dtdx+
∫
Rd
λ0 · η(0)dx = 0.

(iii) (Generalized irrotationality condition) For almost every t > 0,

∇∧ j = 2∇√% ∧ (√%u)

holds in the sense of distributions.

Note that in the second point, the quantum pressure (right hand side
of (1.1b)) has been recast in view of (1.12). Like before, whenever u is
mentioned, it should be understood as

u =
√
%u
√
%

1√%> 0.

The generalized irrotationality condition, explained in [2, Remark 2], is the
generalization of the property %∇ ∧ u = 0 of the smooth case j = %u, to
the notion of weak solution.
Also, Definition 1.6 is readily adapted to the case of (1.5) in the following

statement. The first part of this result is the analogue of [2, Proposition 15]
in the isothermal case.

Proposition 1.7. — Let d > 1. Assume ν = 0 and ε > 0. Let ψ0 ∈
H1 ∩ F(Hα)(Rd) for some 0 < α 6 1, and assume that the initial data
for (1.1) are well-prepared in the sense that

%0 = |ψ0|2 , j0 = ε Im
(
ψ̄0∇ψ0

)
.

(1) Then there exists a global weak solution to (1.1). Furthermore, the
energy E(t) defined by (1.2) is conserved for all time t > 0.

(2) If ψ0 ∈ H1 ∩ F(H1)(Rd), then (
√
R,
√
RU) defined by

(1.24)

√
%(t, x) = 1

τ(t)d/2
√
R

(
t,

x

τ(t)

)(
‖%0‖L1

‖Γ‖L1

)1/2
,

√
%u(t, x) = 1

τ(t)
√
RU

(
t,

x

τ(t)

)(
‖%0‖L1

‖Γ‖L1

)1/2
+ τ̇(t)
τ(t)x

√
%(t, x),
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is a global weak solution to (1.5). The pseudo-energy E , defined
in (1.6), solves (1.7), where the dissipation is given by (1.8). Equiv-
alently, setting

E = 1
2τ2

∫
Rd

(∣∣∣√RU ∣∣∣2 + ε2
∣∣∣∇√R∣∣∣2)+

∫
Rd

(
R|y|2 +R logR

)
,

D = τ̇

τ3

∫
Rd

∣∣∣√RU ∣∣∣2 + ε2
∣∣∣∇√R∣∣∣2 ,

we have

E(t) +
∫ t

0
D(s)ds = E(0), ∀ t > 0.

The proof of Proposition 1.7 relies on properties of the logarithmic Schrö-
dinger equation, which is the natural candidate to provide solutions to (1.1),
as opposed to the nonlinear Schrödinger equation with power-like nonlin-
earity in the polytropic case. The specificity of this nonlinearity explains
the presence of a (fractional) momentum in the first part of the statement.
We emphasize the fact that the special structure of the initial data (due
to the use of Madelung transform) implies that the flow is irrotational (see
also the last point of Definition 1.6 and [2, Remark 2] where it is discussed).
In view of [11], we readily infer the following corollary, which is stronger
than Corollary 1.4:

Corollary 1.8. — In the second case of Proposition 1.7, every such
global weak solution satisfies∫

Rd

 1
y

|y|2

R(t, y)dy →
∫
Rd

 1
y

|y|2

Γ(y)dy

and
R(t) ⇀ Γ in L1 (Rd) , as t→∞.

Remark 1.9. — In view of the proof of Proposition 1.7, [13, Theorem 1.12]
implies that Proposition 1.7 and its corollary (from [11]) remain valid in
the case where the above pressure law p(%) = % is replaced for instance by

p(%) = c0%+
N∑
j=1

cj%
γj , cj > 0, 0 6 j 6 N, 1 < γj <

d+ 2
(d− 2)+

.

Remark 1.10. — Since our reformulation of (1.1) in terms of the un-
knowns (R,U) provides extra positivity properties, one may ask if the
isothermal case can be obtained as the limit γ → 1 in the barotropic case,
where the pressure law is p(%) = %γ , γ > 1. A first aspect is that such a
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limit might be possible only locally in time, for as proven in [11] (isothermal
case) and [12] (barotropic case), % enjoys dispersive properties with a rate
that changes precisely for the value γ = 1. For bounded time, it is plausible
that the limit γ → 1 might be handled in terms of (R,U) (adapted to the
case γ > 1) when ε > 0 because of a further uniform bound

√
R ∈ H1(Rd)

due to the Korteweg term. On the other hand, having proven Theorem 1.3,
one may ask if the solutions from Proposition 1.7 can be obtained through
the inviscid limit ν → 0. Such a convergence has been proven in [8] for the
barotropic case, and [17] for the (damped) isothermal case, both times in
a periodic setting x ∈ Td. The damping in [17] can easily be removed, but
in order to consider the case x ∈ Rd, the order of the limits ` → ∞ and
ν → 0 is certainly a delicate issue, which we leave out at this stage. Finally,
both limits γ → 1 and ν → 0 seem highly singular when ε = 0 (or goes
simultaneously to 0) even in terms of (R,U). Concerning the limit γ → 1
for instance, the estimates established in [12] are then not uniform in γ.

Organization of the paper

Until the end of Section 4, we assume ν > 0. In Section 2, we con-
struct solutions to (1.20) on the torus Td` with strictly positive densities.
In Section 3, we obtain solutions to (1.19) in the presence of drag forces,
r0, r1 > 0, by passing to the limit δ1, δ2, η1, η2 → in (1.20). Theorem 1.3
is proved in Section 4, where we let r0, r1 → 0 and ` → ∞ (with possibly
ε→ 0). Section 5 is devoted to the proof of Proposition 1.7 (ν = 0, ε > 0).
In Appendix A, we give more details about the derivation of an identity
appearing in Section 4.

2. Construction of solutions to the regularized system

We start this study by constructing weak solutions to the system (1.20)
on the torus Td` with strictly positive densities and deriving further prop-
erties satisfied by these solutions. We recall that in system (1.20) the pa-
rameters r0, r1, ε > 0 are positive, which will be hence assumed through
this section.
System (1.20) is endowed with some estimates. We first note that, inte-

grating (1.20a) we obtain the conservation of mass:

(2.1)
∫
Td
`

R(t) =
∫
Td
`

R0.
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Then, by multiplying formally (1.20b) with U/τ2 and combining with equa-
tion (1.20a), we obtain that reasonable solutions to (1.20) should satisfy
the energy estimate:

(2.2) d
dtEreg(R,U) +Dreg(R,U) = 2dδ1

τ2

∫
Td
`

R− ντ̇

τ3

∫
Td
`

R divU,

where

(2.3)

Ereg(R,U) = 1
2τ2

∫
Td
`

(
R|U |2 + ε2

∣∣∣∇√R∣∣∣2)
+
∫
Td
`

(
R|y|2 +R logR+ η1

α+ 1R
−α
)

+ η2

2τ2

∫
Td
`

|∇∆sR|2 ,

and

Dreg(R,U)

= τ̇

τ3

∫
Td
`

(
R|U |2 + ε2

∣∣∣∇√R∣∣∣2 + η2 |∇∆sR|2
)

+ ν

τ4

∫
Td
`

R|DU |2

+ δ2
τ4

∫
Td
`

|∆U |2 + δ1η2

τ4

∫
Td
`

∣∣∆s+1R
∣∣2 + 4δ1

τ2

∫
Td
`

∣∣∣∇√RN ∣∣∣2
+ 4δ1η1

ατ2

∫
Td
`

∣∣∣∇R−α/2∣∣∣2 + r0

τ4

∫
Td
`

|U |2 + r1

τ4

∫
Td
`

R|U |4

+ δ1ε
2

2τ4

∫
Td
`

R
∣∣∇2 logR

∣∣2 .
Note that the term appearing on the last line is obtained thanks to the
exact formula:

1
2

∫
R
∣∣∇2 logR

∣∣2 =
∫ ∆

√
R√
R

∆R.

On the other hand, multiplying formally (1.20a) by a smooth function Ψ
and (1.20b) by a smooth vector field Φ yields respectively

(2.4)

∫
Td
`

R0Ψ(0) +
∫ T

0

∫
Td
`

R∂tΨ +
∫ T

0

∫
Td
`

1
τ2RU · ∇Ψ

+ δ1

∫ T

0

∫
Td
`

1
τ2R∆Ψ = 0,
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and

(2.5)
∫
Td
`

R0U0Φ(0) +
∫ T

0

∫
Td
`

RU · ∂tΦ +
∫ T

0

∫
Td
`

1
τ2RU ⊗ U : ∇Φ

=
∫ T

0

∫
Td
`

R (2y · Φ− div Φ) + r0

∫ T

0

∫
Td
`

1
τ2U · Φ

+ r1

∫ T

0

∫
Td
`

1
τ2R|U |

2U · Φ

+ ε2
∫ T

0

∫
Td
`

1
2τ2

[
2∆
√
R∇
√
R · Φ + ∆

√
R
√
R div Φ

]
+ ν

∫ T

0

∫
Td
`

1
τ2RDU : ∇Φ + ν

∫ T

0

∫
Td
`

τ̇

τ
R div Φ

+ δ1

∫ T

0

∫
Td
`

1
τ2∇U : ∇R⊗ Φ + δ2

∫ T

0

∫
Td
`

1
τ2 ∆U ·∆Φ

+ η1

∫ T

0

∫
Td
`

R−α div Φ

+ η2

∫ T

0

∫
Td
`

1
τ2 ∆s+1R∆s [∇R · Φ +R div Φ] .

So, to define weak solutions to (1.20), we look for minimal regularity as-
sumptions that are induced by energy estimate (2.2) and which make (2.4)-
(2.5) meaningful for smooth test-functions. For this, we first recall the fol-
lowing lemma – which is reminiscent of [5, Lemma 2.1] with a slightly
different statement – to estimate negative power of the density which nat-
urally appear in the formulation (1.20):

Lemma 2.1. — For n ∈ N∗ and Ω = Td or Ω = Rd, there holds∥∥∇n (f−1)∥∥
L2(Ω)

.
(

1 +
∥∥f−1∥∥

L4(Ω) +
∥∥f−1∥∥

L2(n+1)(Ω)

)n+1 (
1 + ‖f‖Hσ(Ω)

)n
with σ > n+ d/2.

Proof. — Recall the embedding Hd/2+0(Ω) ↪→ L∞(Ω). We compute

∣∣∇n (f−1)∣∣2 . n∑
j=1

∑
i1+···+ij=n

∣∣∇i1f ∣∣2 · · · ∣∣∇ijf ∣∣2
f2(j+1) ,
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hence, for any j > 1, we have:∫ ∣∣∇i1f ∣∣2 · · · ∣∣∇ijf ∣∣2
f2(j+1) dx

.
∥∥∇i1f∥∥2

L∞(Ω) · · ·
∥∥∇ijf∥∥2

L∞(Ω)

∫
f−2(j+1) dx

. ‖f‖2jHσ(Ω ‖f
−1‖2(j+1)

L2(j+1)

.
(
1 + ‖f‖Hσ(Ω)

)2n (1 +
∥∥f−1∥∥

L2(j+1)(Ω)

)2(n+1)

.
(
1 + ‖f‖Hσ(Ω)

)2n (1 + ‖f−1‖L4(Ω) +
∥∥f−1∥∥

L2(n+1)(Ω)

)2(n+1)
,

which completes the proof of Lemma 2.1. �

Since Ereg enables to control theH2s+1-norm of R together with the mean
of R−α, we may infer that, for α > 4 and s > d, the energy estimate (2.2)
implies that 1/R is continuous. We also recall that the Laplace equation on
the torus enjoys classical elliptic estimate so that the dissipation Dreg (note
that r0, δ2 > 0) yields U ∈ L2

loc(R+;H2(Td` )). Introducing the regularity
expected for R and U into the continuity equation (1.20a) entails that
∂tR ∈ L2

loc(R+;H1(Td` )). Then, our definition of weak solution to (1.20)
reads as follows:

Definition 2.2. — Given (R0, U0) ∈ L1(Td` ) × L2(Td` ), we say that
(R,U) is a global weak solution to (1.20) associated to the initial data
(R0, U0) if we have:

(i) (R,U) satisfies

(2.6)

R ∈ H1
loc
(
R+;H1 (Td`)) ∩ C (R+;H2s (Td`))

∩ L2
loc
(
R+;H2s+2 (Td`)) ,

1/R ∈ C
(
R+ × Td`

)
,

U ∈ L∞loc
(
R+;L2 (Td`)) ∩ L2

loc
(
R+;H2 (Td`)) .

(ii) Equation (2.4) holds true for any Ψ ∈ D([0,∞)× Td` ).
(iii) Equation (2.5) holds true for any Φ ∈ D([0,∞)× Td` )d.

Remark 2.3. — Thanks to the above remarks, the regularity statement (i)
is sufficient to obtain that all the terms in (2.4)-(2.5) are well-defined.

In this section, we restrict to initial data with smooth and strictly positive
density. This means that we shall assume that (R0, U0) satisfy:

(2.7) R0 ∈ D
(
Td`
)
, U0 ∈ L2 (Td`) , inf

y∈Td
`

R0(y) > θ > 0.
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The first main result of this section is the following proposition:

Proposition 2.4. — Given initial data (R0, U0) satisfying (2.7), there
exists a global solution (R,U) to (1.20) associated to (R0, U0) on the torus
Td` , which satisfies moreover the conservation of mass (2.1) and the energy
estimate, for a.e. T > 0,

(2.8) Ereg(R,U)(T ) +
∫ T

0
Dreg(R,U)(s)ds 6 C0 (Ereg (R0, U0)) ,

for some constant C0 > 0 depending on Ereg(R0, U0).

Remark 2.5. — We note that the energy estimate (2.8) together with
(2.1) entail that the solution we construct enjoys the following regularity
properties, with norms corresponding to these spaces bounded with respect
to Ereg(R0, U0) only:

R
(
1 + |y|2 + | logR|

)
∈ L∞loc

(
R+;L1 (Td`)) ,

√
RU ∈ L∞loc

(
R+;L2 (Td`)) ,

√
ν
√
RDU ∈ L2

loc
(
R+;L2 (Td`)) , ε∇

√
R ∈ L∞loc

(
R+;L2 (Td`)) ,

√
r0 U ∈ L2

loc
(
R+;L2 (Td`)) , √r1R

1
4U ∈ L4

loc
(
R+;L4 (Td`)) ,√

δ2 ∆U ∈ L2
loc
(
R+;L2 (Td`)) , √η2R ∈ L∞loc

(
R+;H2s+1(Td`)),

η
1
α
1 R−1 ∈ L∞loc

(
R+;Lα

(
Td`
))
,√

δ1η1∇R−
α
2 ∈ L2

loc
(
R+;L2(Td`)),

√
νε2∇2

√
R ∈ L2

loc
(
R+;L2(Td`)) , (νε2)1

4 ∇R 1
4 ∈ L4

loc
(
R+;L4(Td`)),√

δ1η2 ∆s+1R ∈ L2
loc
(
R+;L2 (Td`)) .

We refer to (1.13) for the regularity claim on the before-last line. Also,
combining these bounds with Lemma 2.1, we obtain that, for arbitrary
T > 0, there exists a C(Ereg(R0, U0), η1, η2, θ, T ) > 0 so that

(2.9) ‖1/R‖L∞((0, T )×Td
` ) 6 C (Ereg(R0, U0), η1, η2, θ, T ) .

The proof of Proposition 2.4 is the content of the next subsection. Then
in the last subsection, we focus on a further estimate satisfied by the weak
solutions that we construct.

2.1. Proof of Proposition 2.4.

The plan of the proof follows closely the method of [29]. In the whole
section (R0, U0) is a fixed initial data satisfying (2.7).
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2.1.1. Faedo-Galerkin approximation

Let XN = span{e1, . . . , eN} be the finite-dimensional space correspond-
ing to the projection in L2(Td` ) onto the first N Fourier modes. We consider
the system whose unknowns are

(RN , UN ) ∈ C
(
R+;H2s+1 (Td`))× C (R+;XN

)
,

and composed by (1.20a) and the following weak formulation of (1.20b):
for any t ∈ (0, T ) and any vector field φ ∈ (XN )d,

(2.10) d
dt

∫
Td
`

RNUN · φ−
1
τ2

∫
Td
`

RNUN ⊗ UN : ∇φ

+
∫
Td
`

RN (2y · φ− divφ)

+ r0

τ2

∫
Td
`

UN · φdy + r1

τ2

∫
Td
`

RN |UN |2UN · φ

+ δ1
τ2

∫
Td
`

([∇RN · ∇]UN ) · φ

+ ε2

2τ2

∫
Td
`

[
2∆
√
RN∇

√
RNφ+ ∆

√
RN
√
RN divφ

]
+ ν

τ2

∫
Td
`

RNDUN : ∇φ

+ ντ̇

τ

∫
Td
`

RN divφ+ δ2
τ2

∫
Td
`

∆UN ·∆φ+ η1

∫
Td
`

R−αN divφ

− η2

τ2

∫
Td
`

RN∇∆2s+1RN · φ = 0,

where we recall that r0, r1, ε > 0. We complement the system with initial
conditions:

(2.11)

RN |t=0 = R0,[∫
Td
`

RNUN · φ

] ∣∣∣∣∣
t=0

=
∫
Td
`

R0U0 · φ, ∀ φ ∈ (XN )d .

We have the following existence result for this approximate system:

Proposition 2.6. — Given N ∈ N∗, there exists a global solution
(RN , UN ) to (1.20a)-(2.10)-(2.11) that satisfies the conservation of mass
(2.1) and the energy inequality
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(2.12) sup
t∈ (0, T )

Ereg (RN , UN ) +
∫ T

0
Dreg (RN , UN ) dt

6 C (Ereg (RN , UN ) |t=0) ,

for come constant C > 0 depending on Ereg(RN , UN )|t=0.

Proof. — The local existence is obtained following [29] (see also [21]).
The novelties with respect to this previous study are: the linearity of the
pressure term, the time factors τ, τ̇ and the new terms∫

Td
`

R (2y · φ− divφ) , r0

τ2

∫
Td
`

U · φ, ντ̇

τ

∫
Td
`

R divφ.

However, these terms are harmless in the fixed-point approach of [29, Sec-
tion 2], for instance.
The global existence is then a consequence of the energy estimate that

we obtain as follows. Conservation of mass follows by integrating (1.20a).
We may then take φ = UN (t)/τ2(t) in (2.10) since it corresponds to writing
the N equations obtained by setting φ = ej , j = 1, . . . , N , and combining
them with the coefficients defining UN in this basis. This yields

(2.13) d
dtEreg(RN , UN ) +Dreg(RN , UN )

= 2dδ1
τ2

∫
Td
`

RN −
ντ̇

τ3

∫
Td
`

RN divUN .

We deduce the energy inequality by remarking that the right-hand side
of (2.13) can be bounded by(

2dδ1
τ2 + C

ντ̇2

τ2

)∫
Td
`

RN + ν

2τ4

∫
Td
`

RN |DUN |2

6 C

(
1 + τ̇2)
τ2

∫
Td
`

RN + 1
2Dreg (RN , UN ) ,

using the conservation of mass together with∫ ∞
0

1 + τ̇2(t)
τ2(t) dt <∞,

and recalling that Ereg is nonnegative. �
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2.1.2. Convergence of the approximate solutions

We split the proof into three steps: defining limits to the sequence of ap-
proximate solutions (RN , UN ), improving the sense in which this sequence
converges, passing to the limit in the weak formulation (2.10). In all the
convergences mentioned in the proof, we have to extract subsequences that
we do not relabel for conciseness.
Proof of Proposition 2.4. — So, let {(RN , UN )}N be the sequence of

approximate solutions to (1.20a)-(2.10)-(2.11) given by Proposition 2.6.
We note that we have initially RN (0, ·) = R0 and RNUN (0, ·) = PN [R0U0]
where PN stands for the (L2(Td` ))-projection onto XN . In particular, since
by assumption R0U0 ∈ L2(Td` ), we have

(2.14) Ereg(RN , UN )|t=0 6 Ereg(R0, U0).

Step 1. — From (2.14) and the energy inequality derived in Proposi-
tion 2.6, we infer that

sup
t> 0
Ereg(RN , UN ) +

∫ ∞
0
Dreg(RN , UN ) 6 C(Ereg(R0, U0)), ∀ N.

We obtain then uniform bounds on (RN , UN ) in a series of spaces similar
to the ones in Remark 2.5. We first extract from this list that we have
uniform bounds with respect to N for:

1
τ

√
η2RN in L∞

(
R+;H2s+1 (Td`)) ,(

η1

α+ 1

) 1
α 1
RN

in L∞
(
R+;Lα

(
Td`
))
,

1
τ

√
RNUN in L∞

(
R+;L2 (Td`)) .

Using the first bound, we can extract a subsequence so that RN/τ con-
verges to some R/τ in this same space (for the weak-∗ topology). From
the last bound, we obtain that (up to the extraction of a subsequence)√
RNUN/τ converges to some V/τ in L∞(R+;L2(Td` )) − w ∗ . Restricting

to any time interval (0, T ) with T < ∞, the second bound with the first
one and Lemma 2.1 imply that RN is uniformly bounded from below on
(0, T ) by a constant C(Ereg(R0, U0), η1, η2, θ, T ). Hence, we have also

(2.15) R > C (Ereg(R0, U0), η1, η2, θ, T ) in (0, T ),

and we may set U = V/
√
R.We focus now on the restriction of these limits

on (0, T ).
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Step 2. — On (0, T ), we establish convergences of RN and UN in a
stronger sense.
To this end, we now extract from the list given by Remark 2.5 uniform

bounds for
RN in L∞

(
0, T ;H2s+1 (Td`)) ∩ L2 (0, T ;H2s+2 (Td`)) ,

1/RN in L∞
(
(0, T )× Td`

)
,

UN in L2 (0, T ;H2 (Td`)) .
The continuity equation (1.20a) satisfied byRN implies then that ∂tRN is

bounded in L2(0, T ;H1(Td` )). Combining classical weak-convergence results
and Ascoli-Arzelà type arguments entails that:

(2.16)

RN → R in C
(
[0, T ];H2s (Td`)) ,

RN ⇀ R in L2 (0, T ;H2s+2 (Td`))− w,
RN ⇀ R in H1 (0, T ;H1 (Td`))− w.

Given the bound by below on RN (2.15), we also have that 1/RN converges
to 1/R in C([0, T ]× Td` ).
Next, given the uniform bounds for UN and RN , and since (ek)k∈N is

orthogonal for the H2-scalar product, we have that RNUN and PN [RNUN ]
are uniformly bounded in L2(0, T ;H2(Td` )) too. On the other hand, the
weak formulation satisfied by the approximation (RN , UN ) reads:

∂t (PN [RNUN ])

= PN

[
− 1
τ2 div (RNUN ⊗ UN )− 2yRN −∇RN + η1∇R−αN + r0

τ2UN

+ r1

τ2RN |UN |
2UN + δ1

τ2 (∇RN · ∇)UN + ε2

2τ2RN∇
(

∆
√
RN√
RN

)
+ ν

τ2 div (RNDUN ) + ντ̇

τ
∇RN + δ2

τ2 ∆2UN + η2

τ2RN∇∆2s+1RN

]
=: PN [FN ]

Again we note here that PN is orthogonal with respect to the Hs-scalar
product, so that

‖PNFN‖H−s(Td` ) 6 ‖FN‖H−s(Td` ), ∀ s ∈ N.

For s sufficiently large, we may then combine the various uniform estimates
satisfied by (RN , UN ) on (0, T ) to infer that ∂t(PN [RNUN ]) is uniformly
bounded in L2(0, T ;H−(2s+2)(Td` )). To prove this, the main terms to be
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discussed are div(RNUN ⊗ UN ) and RN |UN |2UN which can be handled
(since d 6 3) via the embedding H2(Td` ) ⊂ L∞(Td` ). To summarize, we
know that PN [RNUN ] is bounded in L2(0, T ;H2(Td` )) and ∂t(PN [RNUN ]) is
bounded in L2(0, T ;H−(2s+2)(Td` )). Aubin–Lions like arguments imply then
that PN [RNUN ] converges in L2(0, T ;H1(Td` )). Due to the compactness of
the embedding H2(Td` ) ⊂ H1(Td` ) again, there exists a sequence (εN )N
converging to 0 so that

‖PN [RNUN ]−RNUN‖L2(0,T ;H1(Td` )) 6 εN ‖RNUN‖L2(0,T ;H2(Td` )) .

Consequently, (PN [RNUN ])N and (RNUN )N both converge to the vector-
field RU in L2(0, T ;H1(Td` )). Moreover, since (1/RN )N∈N is uniformly
bounded and RN converges to R in a sufficiently regular space, this also
implies that

(2.17) UN → U in L2 (0, T ;H1 (Td`)) .
To end up this part on the convergence of UN , we note that the uni-
form estimates satisfied by (RN , UN ) also entail that UN is bounded in
L∞(0, T ;L2(Td` ))∩L2(0, T ;H2(Td` )) so that the limit U lies in these spaces.

Step 3. — Given the time-regularity of approximate solutions, RN and
RNUN satisfy (2.4) for arbitrary Ψ ∈ D([0,∞) × Td` ), and (2.5) for ar-
bitrary Φ ∈ D([0,∞);XN ), respectively. The two sets of convergence re-
sults (2.16) and (2.17) are then sufficient to pass to the limit in these
weak formulations. Again, the main difficulty might be here to pass to
the limit in RN |UN |2UN . However, we note that RN converges in the set
of continuous functions while UN is bounded in L∞loc((0,∞);L2(Td` )) and
converges in L2

loc((0,∞);H1(Td` )) so that, by interpolation, it converges
in L4

loc((0,∞);L3(Td` )). At this point, (R,U) satisfies (2.4) for arbitrary
Ψ ∈ D([0,∞)×Td` ) and (2.5) for arbitrary Φ ∈ D([0,∞);

⋃
N XN ).We note

then that for arbitrary Φ ∈ D([0,∞)×Td` ), ∂tPN [Φ] and PN [Φ] converge to
∂tΦ in C([0,∞);L2(Td` )) and Φ in L2(0,∞;H2s+2(Td` )), respectively. This
is sufficient to extend (2.5) to arbitrary Φ ∈ D([0,∞)× Td` ).
As for energy estimate, we note that (RN , UN ) satisfies (2.12) for arbi-

trary N and the initial data verifies (2.14). Since Ereg(RN , UN ) is continu-
ous with respect to topologies for which RN , UN converge strongly, while
Dreg(RN , UN ) is continuous with respect to topologies for which RN , UN
converge weakly, we obtain that (R,U) satisfies (2.8) in the limit N →∞.
This concludes the proof of Proposition 2.4. �
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Remark 2.7. — With arguments similar to the ones in Step 3 of the above
proof, we can extend the weak form (2.5) of the momentum equation to
any test-function Φ ∈ (L2(0, T ;H2s+1(Td` ))d having compact support and
such that ∂tΦ ∈ (L2(0, T ;L2(Td` )))d.

2.2. Further properties of weak solutions to the regularized
problem

Along with the energy estimate (2.8), we only showed that we had a list
of regularity properties satisfied by our weak solutions (R,U). Nevertheless,
most of these estimates rely on the regularization parameters η1, η2, r0, r1,

etc. In order to let these parameters vanish, we need other estimates on
these solutions. This is the motivation of the following lemma:

Lemma 2.8 (BD-entropy). — Assume the initial data satisfies (2.7).
Then there exist constants C1, C2, C3 with dependencies mentioned in par-
entheses, such that, for arbitrary T > 0, the global solution (R,U) to (1.20)
constructed in Proposition 2.4 satisfies

(2.18) sup
t∈ (0, T )

E+
BD, reg(R,U)(t) +

∫ T

0
DBD, reg(R,U)(t) dt

6 C1

(
Ereg | t=0, E+

BD, reg|t=0

)
+ (δ1 + δ2)C2

(
r0, r1, η1, η2, Ereg | t=0, T

)
+ C3(r0),

where E+
BD, reg is the positive part of the BD-entropy defined by

E+
BD, reg(R,U) =

1
2τ2

∫
Td
`

(
R |U + ν∇ logR|2 + ε2

∣∣∣∇√R∣∣∣2 − 2r0(logR)1R6 1

)
+
∫
Td
`

(
R|y|2 +R logR+ η1

α+ 1R
−α
)

+ η2

2τ2

∫
Td
`

|∇∆sR|2 ,

and its associated nonnegative dissipation is given by
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DBD, reg(R,U)

= τ̇

τ3

∫
Td
`

(
R|U |2 + ε2

∣∣∣∇√R∣∣∣2+ η2 |∇∆sRN |2
)

+ 2r0ντ̇

τ3

∫
Td
`

| logR|1R< 1

+
(
δ1ν

2

τ4 + νε2

τ4 + δ1ε
2

2τ4

)∫
Td
`

R
∣∣∇2 logR

∣∣2 +
(

4ν
τ2 + 4δ1

τ2

)∫
Td
`

∣∣∣∇√R∣∣∣2
+
(
η1να

4τ2 + 4δ1η1

10τ2

)∫
Td
`

∣∣∇R−α2 ∣∣2 + ν

τ4

∫
Td
`

R|AU |2

+ (η2ν + δ1η2)
τ4

∫
Td
`

∣∣∆s+1R
∣∣2 + δ2

τ4

∫
Td
`

|∆U |2

+ r0

τ4

∫
Td
`

|U |2 + r1

τ4

∫
Td
`

R|U |4.

Remark 2.9. — Below, we see the positive BD-entropy as the positive
part of the complete BD-entropy:
EBD, reg(R,U)

= 1
2τ2

∫
Td
`

(
R |U + ν∇ logR|2 + ε2

∣∣∣∇√R∣∣∣2 − 2r0 logR
)

+
∫
Td
`

(
R|y|2 +R logR+ η1

α+ 1R
−α
)

+ η2

2τ2

∫
Td
`

|∇∆sR|2 ,

and we note that we have then

E+
BD, reg = EBD, reg − E−BD, reg, E−BD, reg = − r0

τ2

∫
Td
`

logR 1R> 1.

Proof. — We consider in this proof (R,U) a weak solution to (1.20)
constructed in Proposition 2.4. We have

∇R ∈ H1
loc
(
R+;L2 (Td`)) ∩ L∞loc

(
R+;H2s−1 (Td`))

∩ L2
loc
(
R+;H2s+1 (Td`)) ,

1/R ∈ H1
loc
(
R+;L2 (Td`)) ∩ L∞loc

(
R+;H2s (Td`))

∩ L2
loc
(
R+;H2s+2 (Td`)) .

For s sufficiently large, we obtain that Φ = (ν∇ logR)/τ2 satisfies:

Φ ∈
(
L2

loc
(
R+;H2s+1 (Td`))d , ∂tΦ ∈ L2

loc
(
R+;L2 (Td`)))d .

Hence, for arbitrary χ ∈ D(0,∞), we can take Φ = (ν∇ logR)χ/τ2 as a
test function in the weak formulation of the momentum equation (2.5).
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Combining with a standard regularity estimate for (1.20a), we obtain that,
in D′((0, T )), there holds:

(2.19) d
dt

[
ν

τ2

∫
Td
`

RU · ∇ logR
]

+ 2ντ̇
τ3

∫
Td
`

RU · ∇ logR

+ ε2ν

τ4

∫
Td
`

R
∣∣∇2 log(R)

∣∣2 +
(
ν

τ2 −
ν2τ̇

τ3

)∫
Td
`

4
∣∣∣∇√R∣∣∣2

+ 4η1ν

α

∫
Td
`

∣∣∣∇√R−α∣∣∣2 + η2ν

τ4

∫
Td
`

∣∣∆s+1R
∣∣2

= 2dν
τ2

∫
Td
`

R− r0ν

τ4

∫
Td
`

U · ∇ logR− r1ν

τ4

∫
Td
`

|U |2U · ∇R

− ν2

τ4

∫
Td
`

RDU : ∇2 logR

− δ1ν

τ4

∫
Td
`

∇U : ∇R⊗∇ logR− δ2ν

τ4

∫
Td
`

∆U · ∇∆ logR

− δ1ν

τ4

∫
Td
`

∆R
R

div(RU) + ν

τ4

∫
Td
`

R∇U : ∇>U.

The proof of this identity is mostly technical. More details are provided
in Appendix A. On the other hand, differentiating the continuity equa-
tion (1.20a) we obtain:

∂t (R∇ logR) + 1
τ2 div (R∇ logR⊗ U) + 1

τ2 div
(
R∇>U

)
= δ1
τ2 ∆∇R.

This identity holds in L2
loc(R+;L2(Td` )) so, we can multiply it with a trun-

cation of ∇ logR/τ2. This leads to the energy estimate:

(2.20) d
dt

[
1

2τ2R |∇ logR|2
]

+ τ̇

τ3

∫
Td
`

R |∇ logR|2 + δ1
2τ4

∫
Td
`

∆R |∇ logR|2

= 1
τ4

∫
Td
`

R∇U : ∇2 logR+ δ1
τ4

∫
Td
`

∆∇R · ∇ logR.
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In this last identity, we note that:∫
Td
`

∆∇R · ∇ logR = −
∫
Td
`

∇2R : ∇2 logR

= −
∫
Td
`

∇ (R∇ logR) : ∇ logR

= −1
2

∫
Td
`

∇R · ∇ |∇ logR|2 −
∫
Td
`

R
∣∣∇2 logR

∣∣2
= 1

2

∫
Td
`

∆R |∇ logR|2 −
∫
Td
`

R
∣∣∇2 logR

∣∣2 .
Consequently, we rewrite the previous energy identity (2.20) as:

(2.21) d
dt

[
1

2τ2R |∇ logR|2
]

+ τ̇

τ3

∫
Td
`

4
∣∣∣∇√R∣∣∣2 + δ1

τ4

∫
Td
`

R
∣∣∇2 logR

∣∣2
= 1
τ4

∫
Td
`

R∇U : ∇2 logR.

At this point, we combine (2.19)+ν2(2.21), which yields

d
dt

{
1
τ2

∫
Td
`

(
νRU · ∇ logR+ ν2

2 R |∇ logR|2
)}

+ 2ντ̇
τ3

∫
Td
`

RU · ∇ logR

+ 4ν
τ2

∫
Td
`

∣∣∣∇√R∣∣∣2 +
(
δ1ν

2

τ4 + ε2ν

τ4

)∫
Td
`

R
∣∣∇2 logR

∣∣2
+ 4η1ν

ατ2

∫
Td
`

∣∣∇R−α2 ∣∣2 + η2ν

τ4

∫
Td
`

∣∣∆s+1R
∣∣2

= 2dν
τ2

∫
Td
`

R− r0ν

τ4

∫
Td
`

U · ∇ logR− r1ν

τ4

∫
Td
`

|U |2U · ∇R

− ν2

τ4

∫
Td
`

RDU : ∇2 logR+ ν2

τ4

∫
Td
`

R∇U · ∇2 logR

− δ1ν

τ4

∫
Td
`

∇U : ∇R⊗∇ logR− δ2ν

τ4

∫
Td
`

∆U · ∇∆ logR

− δ1ν

τ4

∫
Td
`

∆R
R

div(RU) + ν

τ4

∫
Td
`

R∇U : ∇>U.
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Introducing AU = 1
2 (∇U − ∇>U) the skew-symmetric part of ∇U, the

second line of the right-hand side also reads

− ν2

τ4

∫
Td
`

RDU : ∇2 logR+ ν2

τ4

∫
Td
`

R∇U · ∇2 logR

= ν2

τ4

∫
Td
`

RAU : ∇2 logR = 0,

since skew-symmetric and symmetric matrices are orthogonal for the matrix
contraction. Remark also that from the continuity equation (1.20a) we get

∂t(logR) + 1
τ2∇ logR · U + 1

τ2 divU = δ1
τ2

∆R
R

,

whence

− r0ν

τ4

∫
Td
`

U · ∇ logR

= d
dt

[
r0ν

τ2

∫
Td
`

logR
]

+ 2r0ντ̇

τ3

∫
Td
`

logR− r0νδ1
τ4

∫
Td
`

∆R
R

.

We finally obtain the identity:

(2.22) d
dt

{
1
τ2

∫
Td
`

(
νRU · ∇ logR+ ν2

2 R|∇ logR|2 − 2r0ν logR
)}

+ 2ντ̇
τ3

∫
Td
`

(RU · ∇ logR− r0 logR)

+ 4ν
τ2

∫
Td
`

∣∣∣∇√R∣∣∣2 +
(
δ1ν

2

τ4 + ε2ν

τ4

)∫
Td
`

R
∣∣∇2 logR

∣∣2
+ 4η1ν

ατ2

∫
Td
`

∣∣∇R−α2 ∣∣2 + η2ν

τ4

∫
Td
`

∣∣∆s+1R
∣∣2

= 2dν
τ2

∫
Td
`

R− r0νδ1
τ4

∫
Td
`

∆R
R
− r1ν

τ4

∫
Td
`

|U |2U · ∇R

− δ1ν

τ4

∫
Td
`

∇U : ∇R⊗∇ logR− δ2ν

τ4

∫
Td
`

∆U · ∇∆ logR

− δ1ν

τ4

∫
Td
`

∆R
R

div(RU) + ν

τ4

∫
Td
`

R∇U : ∇>U.

We now integrate this identity with respect to time and combine with (2.2),
observing that∫

Td
`

R|DU |2 −
∫
Td
`

R∇U : ∇>U =
∫
Td
`

R|AU |2.
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Thus, we obtain (with the notations of Remark 2.9) that, for almost all
T > 0,

EBD, reg(R,U)(T ) +
∫ T

0

τ̇

τ3

∫
Td
`

(
R|U |2 + ε2

∣∣∣∇√R∣∣∣2 + η2 |∇∆sR|2
)

+ 2r0ν

∫ T

0

τ̇

τ3

∫
Td
`

| logR|1R< 1

+
(
δ1ν

2 + νε2 + δ1ε
2

2

)∫ T

0

1
τ4

∫
Td
`

R
∣∣∇2 logR

∣∣2
+ (ν + δ1)

∫ T

0

4
τ2

∫
Td
`

∣∣∣∇√R∣∣∣2 + (ν + δ1)
∫ T

0

4η1

τ2α

∫
Td
`

∣∣∇R−α2 ∣∣2
+
∫ T

0

ν

τ4

∫
Td
`

R|AU |2 +
∫ T

0

(η2ν + δ1η2)
τ4

∫
Td
`

∣∣∆s+1R
∣∣2

+
∫ T

0

δ2
τ4

∫
Td
`

|∆U |2 +
∫ T

0

r0

τ4

∫
Td
`

|U |2 +
∫ T

0

r1

τ4

∫
Td
`

R|U |4

6 −r1ν

∫ T

0

1
τ4

∫
Td
`

|U |2U · ∇R− r0νδ1

∫ T

0

1
τ4

∫
Td
`

∆R
R

+ 2r0ν

∫ T

0

τ̇

τ3

∫
Td
`

logR 1R> 1

− δ1ν
∫ T

0

1
τ4

∫
Td
`

∇U : ∇R⊗∇ logR

− δ1ν
∫ T

0

1
τ4

∫
Td
`

∆R
R

div(RU)

− δ2ν
∫ T

0

1
τ4

∫
Td
`

∆U · ∇∆ logR+ 2d(δ1 + ν)
∫ T

0

1
τ2

∫
Td
`

R

+ ν

∫ T

0

τ̇

τ3

∫
Td
`

R divU + EBD, reg(R0, U0).

We denote by I1, . . . , I8 the integrals on the right-hand side of this
inequality so that we have

EBD, reg(R,U)(T ) +
∫ T

0
DBD, reg(R,U)(t) dt 6 EBD, reg(R0, U0) +

8∑
k=1

Ik,

and we estimate each of them separately. In the sequel, we denote by K
and C constants (that may change from line to line). The constant K
depends only on the parameters of the target system (namely ν, ε) and the
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initial energy Ereg(R0, U0), while the constant C may depend also on T, the
parameters ε, ν, r0, r1, η1, η2, and the initial energy Ereg(R0, U0). But none
of them depends on (δ1, δ2). We remark that the functions 1

τ2 , τ̇
2

τ2 , 1
τ3 and

τ̇
τ3 are integrable in time over R+, which we shall use below.
For the term I1, integrating by parts, applying Young inequality – and

referring again to (2.8) – yields:

|I1| 6 r1ν

∫ T

0

1
τ4

∫
Td
`

R|U |2|∇U |,

6 K

[∫ T

0

r1

τ4

∫
Td
`

R|U |4 +
∫ T

0

ν

τ4

∫
Td
`

R|DU |2
]

+ 1
2

∫ T

0

ν

τ4

∫
Td
`

R|AU |2,

6
1
2

∫ T

0

ν

τ4

∫
Td
`

R|AU |2 +K,

and we observe that the first term can be absorbed by the dissipation
DBD, reg.
For the term I2, since α > 2 and s > 2, there holds thanks to (2.8):

|I2| 6 r0νδ1

∫ T

0

1
τ4 ‖∆R‖L2

∥∥R−1∥∥
L2

6 δ1K sup
(0, T )

‖∆R/τ‖L2 sup
(0, T )

∥∥R−α∥∥1/2
L1

∫ T

0

1
τ3

6 δ1C.

For the term I3, we have:

I3 6 2r0ν

∫ T

0

τ̇

τ3

∫
Td
`

logR1R>1 6 r0K

∫ T

0

τ̇

τ3

∫
Td
`

R 6 r0K.

For the term I4, Hölder inequality in space and Cauchy–Schwarz inequal-
ity in time yield

|I4| = δ1ν

∣∣∣∣∣
∫ T

0

1
τ4

∫
Td
`

√
RDU : ∇R⊗∇R

R3/2

∣∣∣∣∣
6 δ1
√
νT

[∫ T

0

ν

τ4

∫
Td
`

R|DU |2
] 1

2

sup
(0, T )

‖∇R/τ‖2L∞ sup
(0, T )

[∫
Td
`

1
R3

] 1
2

.

Using Sobolev embedding and (2.8), we obtain that, since s > d/2:

sup
(0, T )

‖∇R/τ‖2L∞ 6 K sup
(0, T )

‖∇∆sR/τ‖2L2 6 C,

and then |I4| 6 δ1C.
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For the term I5, we split I5 = Ia5 + Ib5 where:

Ia5 = δ1ν

∫ T

0

1
τ4

∫
Td
`

∆R√
R

√
R divU,

Ib5 = 2δ1ν
∫ T

0

1
τ4

∫
Td
`

√
RU · ∇

√
R∆R.

As previously, we note in these inequalities that thanks to Sobolev embed-
dings and (2.8), there holds:

sup
(0, T )

‖∆R/τ‖L∞ + sup
(0, T )

‖∇R/τ‖L∞ + sup
(0, T )

∫
Td
`

1
R
6 C.

Consequently, we have the following controls

|Ia5 | 6 δ1

(∫ T

0

ν

τ4

∫
Td
`

R|DU |2
) 1

2
(∫ T

0

ν

τ2

) 1
2

× sup
(0,T )

‖∆R/τ‖L∞ sup
(0,T )

(∫
Td
`

1
R

) 1
2

6 δ1C,

and∣∣Ib5∣∣ 6 δ1
[∫ T

0

ν

τ2

]
sup

(0, T )

∥∥∥√RU/τ∥∥∥
L2

sup
(0, T )

∥∥∥∇√R/τ∥∥∥
L2

sup
(0, T )

‖∆R/τ‖L∞

6 δ1C.

For the term I6 we have:

|I6| 6 δ2
∫ T

0

1
2τ4

∫
Td
`

|∆U |2 + δ2ν
2
∫ T

0

1
2τ4

∫
Td
`

|∇∆ logR|2 ,

and we remark that

∇∆ logR = ∇∆R
R
− ∆R∇R

R2 − 2∇
2R∇R
R2 + 2 |∇R|

2∇R
R3 ,

so that, using Sobolev embedding and (2.8) we obtain:

sup
(0, T )

‖∇∆ logR‖L2 6 K sup
(0, T )

(1 + ‖∇∆sR‖L2)3 sup
(0, T )

(
1 +

∫
Td
`

1
R3

)
6 C,

which implies

|I6| 6
∫ T

0

δ2
2τ4

∫
Td
`

|∆U |2 + δ2C,
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and we observe that the first term can be absorbed by the dissipation
DBD, reg.
For the last two terms, we have:

I7 + I8 6 (2d(1 + ν) + ν)
∫ ∞

0

1 + τ̇2

τ2

∫
Td
`

R+
∫ ∞

0

ν

τ4

∫
Td
`

R|DU |2,

where we have used Cauchy–Schwarz and Young inequalities for I8. Then,
thanks to (2.8), we get

I7 + I8 6 K.

Gathering the previous estimates yields

EBD, reg(R,U)(T ) + 1
2

∫ T

0
DBD, reg(R,U) dt

6 K + r0K + (δ1 + δ2)C + E+
BD, reg(R0, U0).

To conclude, we only need to control the negative part of the BD-entropy,
which is done by

E−BD(R,U)(T ) := r0

τ2(T )

∫
| logR(T )|1R(T )> 1 6 Kr0

∫
Td
`

R 6 r0K.

This concludes the proof of Lemma 2.8. �

3. Global weak solutions to isothermal fluids with drag
forces

In this section we construct global weak solutions to the isothermal fluid
system with drag forces, that is system (1.19) with r0, r1 > 0. We consider
solutions on the torus Td` by passing to the limit in the regularizing param-
eters δ1, δ2, η1, η2 → 0 from solutions to the regularized system (1.20). Let
r0, r1 > 0, we define the energy and its corresponding dissipation for the
system (1.19):

Edrag(R,U) = 1
2τ2

∫
Td
`

(
R|U |2 + ε2

∣∣∣∇√R∣∣∣2)+
∫
Td
`

(
R|y|2 +R logR

)
,

Ddrag(R,U) = τ̇

τ3

∫
Td
`

(
R|U |2 + ε2

∣∣∣∇√R∣∣∣2)+ ν

τ4

∫
Td
`

R|DU |2

+ r0

τ4

∫
Td
`

|U |2 + r1

τ4

∫
Td
`

R|U |4,
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as well as the BD-entropy and its corresponding flux

E+
BD, drag(R,U) =

1
2τ2

∫
Td
`

(
R |U + ν∇ logR|2 + ε2

∣∣∣∇√R∣∣∣2 − 2r0 logR1R< 1

)
+
∫
Td
`

(
R|y|2 +R logR

)
,

DBD, drag(R,U) =
τ̇

τ3

∫
Td
`

(
R|U |2 + ε2

∣∣∣∇√R∣∣∣2)+ 2r0ντ̇

τ3

∫
Td
`

| logR|1R< 1

+ νε2

τ4

∫
Td
`

R
∣∣∇2 logR

∣∣2 + 4ν
τ2

∫
Td
`

∣∣∣∇√R∣∣∣2 + ν

τ4

∫
Td
`

R|AU |2

+ r0

τ4

∫
Td
`

|U |2 + r1

τ4

∫
Td
`

R|U |4.

We note that these quantities correspond to what remains of the energy
and entropy defined in Section 2 when the regularizing parameters δ1, δ2
and η1, η2 are sent to 0.
It is then natural to build-up a definition of global solution to the isother-

mal system with drag forces (1.19) with r0, r1 > 0 based on the only in-
formation that Edrag and E+

BD, drag are L∞(R+) while Ddrag and DBD, drag
are L1(R+). For this, it turns out that it is more suitable to interpret the
density R as the square of

√
R. Indeed, combining Edrag and E+

BD, drag yields
a bound on R|∇ log(R)|2 = 4|∇

√
R|2. Correspondingly, we write (1.19a) in

terms of
√
R:

(3.1) ∂t
√
R+ 1

τ2 div
(√

RU
)

= 1
τ2

√
R divU,

while in (1.19b) we only rewrite the Korteweg term applying the identity
(see [22]):

R∇

(
∆
√
R√
R

)
= div

(√
R∇2

√
R−∇

√
R⊗∇

√
R
)
,

so that we obtain:
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(3.2) ∂t(RU)

+ 1
τ2 div

(√
RU ⊗

√
RU
)

+ 2yR+∇R+ r0

τ2U + r1

τ2R|U |
2U

= ε2

2τ2 div
(√

R∇2
√
R−∇

√
R⊗∇

√
R
)

+ ν

τ2 div(RDU)

+ ντ̇

τ
∇R.

This remark motivates the following definition.

Definition 3.1. — Given positive parameters r0, r1 > 0 and initial
data (

√
R0,Λ0 = (

√
RU)0) ∈ L2(Td` )×L2(Td` ), we call global weak solution

to the isothermal system with drag forces (1.19) in Td` any pair(√
R,U

)
∈ C

(
[0,∞);H1 (Td`)− w)× L2

loc
(
R+;L2 (Td`)) ,

satisfying
(i) Further regularity properties:
√
RU ∈ C

(
[0,∞);L2 (Td`)− w) , ∇2

√
R ∈ L2

loc
(
0,∞;L2 (Td`)) .

(ii) Equations (3.1) and (3.2) in the sense of distributions.
(iii) Initial data

√
R|t=0 =

√
R0 and

√
R(
√
RU)|t=0 =

√
R0Λ0.

Remark 3.2. — We note that, since
√
R and

√
RU are continuous with

respect to time, we may give sense to the initial conditions required in
item (iii) of the above definition.

Remark 3.3. — We observe the difference between the definition of weak
solutions for the system without and with drag forces. When the latter are
present (r0, r1 > 0), U is well defined as a function, ∇U as a distribution
and
√
RDU is well defined. However, in the original system without drag

forces, U is not well defined and
√
RDU has to be understood as SN .

Theorem 3.4. — Assume r0, r1, ν, ε > 0. Let (
√
R0,Λ0 = (

√
RU)0)

be an initial data satisfying (2.7) and such that Edrag | t=0, EBD, drag | t=0 <

+∞. Then there exists a global weak solution (R,U) to the isothermal
fluid system with drag forces (1.19) in Td` , in the sense of Definition 3.1,
associated to the initial data (

√
R0,Λ0). Furthermore, there exist constants

C1 and C2 (whose dependencies are mentioned in parenthesis) such that
this solution satisfies the energy inequality

sup
t> 0
Edrag(R,U) +

∫ ∞
0
Ddrag(R,U) dt 6 C1

(
Edrag | t=0

)
,
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and also the BD-entropy inequality

sup
t> 0
EBD, drag(R,U) +

∫ ∞
0
DBD, drag(R,U) dt

6 C2
(
Edrag | t=0, EBD, drag | t=0

)
.

Proof of Theorem 3.4. — The proof consists of three parts: starting
with the regularized system (1.20), in the first one we pass to the limit
in the parameters δ1, δ2 → 0, which shall give us the existence of global
weak solutions to an intermediate system given by (1.20) with δ1 = δ2 = 0;
then we pass to the limit η1, η2 → 0 to obtain a weak solution to (1.19) on
the torus. In the whole proof (

√
R0,Λ0 = (

√
RU)0) is a fixed initial data

satisfying (2.7) and the drag parameters (r0, r1) ∈ (0,∞)2 are fixed.

Step 1. Limits δ1, δ2 → 0. — In this part, we fix η1 > 0 and η2 > 0
and we consider sequence of parameters δ1, δ2 converging to 0. To simplify
notations we shall denote δ = (δ1, δ2) and drop the η1, η2 dependencies.
We consider the sequence of global weak solutions {(Rδ, Uδ)}δ to the reg-
ularized problem (1.20) associated to (R0, U0), as constructed in Proposi-
tion 2.4. First, we construct limits R and U of this sequence as in Step 1
of Section 2.1.2.
We proceed with improving the sense of the convergence of {(Rδ, Uδ)}δ to

these limits. For this, we fix an arbitrary finite T > 0. Thanks to the energy
and BD-entropy inequalities, this sequence verifies uniform estimates in the
following spaces:

(3.3)

Rδ
(
1 + |y|2 + |logRδ|

)
in L∞

(
0, T ;L1 (Td`)) ,

∇
√
Rδ in L∞

(
0, T ;L2 (Td`)) ,

√
η2Rδ in L∞

(
0, T ;H2s+1 (Td`)) ,√

RδUδ in L∞
(
0, T ;L2 (Td`)) ,

√
ν
√
Rδ∇Uδ in L2 (0, T ;L2 (Td`)) .

Recalling (2.9), this entails that {Rδ}δ is bounded in L∞(0, T ;H1(Td` )).
Writing the weak form (2.4) with a test function Ψ ∈ D((0, T ) × Td` ), we
obtain that:

∂tRδ = −
√
Rδ
√
Rδ div(Uδ)− 2

√
RδUδ · ∇

√
Rδ + δ1

τ2 ∆R

in D′
(
(0, T )× Td`

)
.
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This implies that {∂tRδ}δ is also bounded in L2(0, T ;L1(Td` )). Applying
again Ascoli-Arzelà arguments yields Rδ → R in C([0, T ];H2s(Td` )) and,
moreover, with the uniform bound from below on Rδ in (2.9), we get

R−1
δ → R−1 in C

(
[0, T ]× Td`

)
.

On the other hand, we note that the above bound (3.3) also entails that
{RδUδ}δ is bounded in L2(0, T ;H1(Td` )). Taking then Φ ∈ D((0, T ) × Td` )
in (2.5), and recalling (1.12) which is satisfied by Rδ > 0, we obtain (in
D′((0, T )× Td` )):

∂t (RδUδ) = − 1
τ2 div

(√
RδUδ ⊗

√
RδUδ

)
− 2yRδ −∇Rδ + η1∇R−αδ

− r0

τ2Uδ −
r1

τ2Rδ |Uδ|
2
Uδ −

δ1
τ2 (∇Rδ · ∇)Uδ

+ ε2

2τ2

(√
Rδ∇2

√
Rδ −∇

√
Rδ ⊗∇

√
Rδ

)
+ ν

τ2 div (RδDUδ)

+ ντ̇

τ
∇Rδ + δ2

τ2 ∆2Uδ + η2

τ2Rδ∇∆2s+1Rδ.

Consequently, combining the uniform bounds in (3.3) with the uniform
bounds in the following spaces (again due to the energy and BD-entropy
inequalities):

(3.4)

√
r0 Uδ in L2 (0, T ;L2 (Td`)) ,

√
r1R

1
4
δ Uδ in L4 (0, T ;L4 (Td`)) ,√

δ2 ∆Uδ in L2 (0, T ;L2 (Td`)) ,
Rδ in L2 (0, T ;H2s+2 (Td`)) ,

η
1
α
1 R−1

δ in L∞
(
0, T ;Lα

(
Td`
))
,

√
νε2∇2

√
Rδ in L2 (0, T ;L2 (Td`)) ,

we conclude that {∂t(RδUδ)}δ is bounded in L2(0, T ;H−(2s+1)(Td` )). This
entails that RδUδ → RU in L2(0, T ;L2(Td` )).
Thanks to the previous estimates and Aubin-Lions/Ascoli-Arzelà argu-

ments, we obtain the following convergences:
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(3.5)

Rδ → R in L2 (0, T ;H2s+2 (Td`)− w) ,
Rδ → R in C

(
[0, T ];H2s (Td`)) ,

RδUδ → RU in L2 (0, T ;Lp
(
Td`
))
, ∀ p < 6

Uδ → U in L2 (0, T ;L2 (Td`)) ,√
RδUδ →

√
RU in Lp

(
0, T ;L2 (Td`)) , ∀ p <∞,√

RδUδ →
√
RU in C

(
[0, T ];L2 (Td`)− w) ,

R
1
4
δ Uδ → R

1
4U in Lp

(
0, T ;Lp

(
Td`
))
, ∀ p < 4.

The above list of convergences shows that we can pass to the limit in the
initial condition. It also readily implies that:

(3.6)

(3.7)

(3.8)

RδUδ ⊗ Uδ → RU ⊗ U in L1 (0, T ;L1 (Td`)) ,
Rδ|Uδ|2Uδ → R|U |2U in L1 (0, T ;L1 (Td`)) ,√

RδUδ →
√
RU in L2 (0, T ;L2 (Td`)) .

We can now pass to the limit in the equations (2.4)-(2.5) when δ → 0,
by remarking that, using the above estimates, we have

δ1

∫ T

0

∫ 1
τ2Rδ∆Ψ→ 0,

δ1

∫ T

0

∫ 1
τ2∇Uδ : ∇Rδ ⊗ Φ→ 0,

δ2

∫ T

0

∫ 1
τ2 ∆Uδ∆Φ→ 0,

where Ψ and Φ are smooth test functions with compact support in (0, T )
× Td` . We have hence constructed (R,U) which is a global weak solution
to the intermediate system corresponding to (1.20) with δ1 = δ2 = 0, and,
passing to the limit δ → 0 in the energy (2.8) and BD-entropy (2.18) in-
equalities, the solution (R,U) satisfies moreover the energy inequality (2.8)
with δ1 = δ2 = 0 as well as the BD-entropy inequality (2.18) with δ1 =
δ2 = 0.

Before going further, we remark that the continuity equation (1.20a)
holds almost everywhere. Since R > 0 on any compact interval of time,
this entails that

√
R satisfies (3.1) in D′((0,∞)× Td` ).

Step 2. Limits η1, η2 → 0. — With similar conventions as in the previ-
ous step, we introduce now η = (η1, η2) and we consider {(Rη, Uη)}η the
sequence of global weak solutions associated with initial data (

√
R0,Λ0)
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constructed in the Step 1. Thanks to the energy and BD-entropy inequali-
ties, we obtain again the following uniform bounds:

(3.9)

Rη
(
1 + |y|2 + |logRη|

)
in L∞

(
0, T ;L1 (Td`)) ,

∇
√
Rη in L∞

(
0, T ;L2 (Td`)) ,√

RηUη in L∞
(
0, T ;L2 (Td`)) ,√

Rη∇Uη in L2 (0, T ;L2 (Td`)) .
Introducing this bound in (3.1) – so that we prove ∂t

√
Rη is bounded

in L2(0, T ;H−1(Td` )) – and remarking that
√
Rη is bounded in the space

L∞(0, T ;H1(Td` )), Aubin-Lions argument entails that

√
Rη →

√
R in C

(
[0, T ];L2 (Td`)) and L2 (0, T ;L2 (Td`)) .

Furthermore, thanks to the energy and BD-entropy inequalities, we have
the uniform bounds:

(3.10)

√
r0 Uη in L2 (0, T ;L2 (Td`)) ,

√
r1R

1
4
η Uη in L4 (0, T ;L4 (Td`)) ,

r0 log
(

1
Rη

)
+
in L∞

(
0, T ;L1 (Td`)) ,

ε∇2√Rη in L2 (0, T ;L2 (Td`)) ,
√
ε∇R

1
4
η in L4 (0, T ;L4 (Td`)) .

From these bounds, and arguing similarly as in Step 1, we get the conver-
gences

(3.11)

Uη → U in L2 (0, T ;L2 (Td`))− w,√
RηUη →

√
RU in C

(
[0, T ];L2 (Td`)− w) ,

R
1
4
η Uη → R

1
4U in L4 (0, T ;L4 (Td`))− w,

RηUη → RU in L2 (0, T ;L2 (Td`)) .
Furthermore, we remark that we have

Rη |Uη|2 Uη → R|U |2U a.e.

so that we can apply the uniform bound on {R1/4
η Uη}η to reproduce the

arguments of [29, Lemma 2.3] to yield:

RηUη ⊗ Uη → RU ⊗ U in L1 (0, T ;L1 (Td`)) .
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With these convergences at-hand, we can already pass to the limit in the
weak formulation of the continuity equation (2.4). For the weak formu-
lation (2.5), we only need to prove the convergence to zero of the cold
pressure term η1∇R−αη and the regularization term η2

τ2Rη∇∆2s+1Rη, since
the other terms can be treated with the above convergences.
We recall that we have the estimates

(3.12)

√
η2Rη ∈ L∞

(
0, T ;H2s+1 (Td`)) ,

√
η2 ∆s+1Rη ∈ L2 (0, T ;L2 (Td`)) ,

η
1
α
1 R−1

η ∈ L∞
(
0, T ;Lα

(
Td`
))
,

√
η1∇R

−α2
η ∈ L2 (0, T ;L2 (Td`)) .

On the one hand, from (3.12) and Fatou’s lemma we obtain∫
log
(

1
R

)
+

dy =
∫

lim inf
η→ 0

log
(

1
Rη

)
+

dy < +∞,

which implies that meas({y ∈ Td` | R(t, y) = 0}) = 0 for a.e. t ∈ (0, T ).
Since we already know that Rη → R a.e. in (t, y), we deduce

η1R
−α
η → 0 a.e. in (t, y) when η1 → 0.

We now claim that the uniform estimate η1R
−α
η ∈ L 5

3 ((0, T ) × Td` ) holds,
from which we deduce the convergence

η1R
−α
η → 0 in L1 (0, T ;L1 (Td`)) when η1 → 0.

Let us prove this claim: since √η1∇R
−α2
η ∈ L2(0, T ;L2(Td` )) and

√
η1R

−α2
η

∈ L∞(0, T ;L2(Td` )), we get
√
η1R

−α2
η ∈ L2 (0, T ;H1 (Td`)) ↪→ L2 (0, T ;L6 (Td`)) ,

whence η1R
−α
η ∈ L1(0, T ;L3(Td` )). We finally obtain the claim by using the

interpolation inequality

‖f‖
L

5
3 ((0,T )×Td

` )
6 ‖f‖

2
5
L∞(0,T ;L1(Td` ))

‖f‖
3
5
L1 (0,T ;L3(Td` ))

.

On the other hand, we now want to show that, for any test function
Φ ∈ D([0, T )× Td` )d,

(3.13) η2

∫ T

0

∫ 1
τ2 ∆s+1Rη∆s [∇Rη · Φ +Rη div Φ]→ 0 as η2 → 0,

and we only concentrate in the sequel on the most difficult term, that
is corresponding to the ∆s(∇Rη) · Φ term, the other ones being treated
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similarly. Recall that Rη ∈ L∞(0, T ;L1 ∩ L3(Td` )) uniformly in η thanks
to (3.9), and also the interpolation inequality

‖f‖Ḣ2s+1(Td` ) . ‖f‖
2s+1
2s+2

Ḣ2s+2(Td` )
‖f‖

1
2s+2

L2(Td` )
.

Therefore, denoting 0 < a = 2s+1
2s+2 < 1, we have∣∣∣∣∣η2

∫ T

0

∫ 1
τ2 ∆s+1Rη∆s(∇Rη) · Φ

∣∣∣∣∣
6 CΦ η2

∥∥∇2s+2Rη
∥∥
L2(0,T ;L2(Td` ))

∥∥∇2s+1Rη
∥∥
L2(0, T ;L2(Td` ))

6 CΦ η
1
2−

a
2

2

(√
η2
∥∥∇2s+2Rη

∥∥
L2(0, T ;L2(Td` ))

)1+ 2s+1
(2s+2)

∥∥∇2s+1Rη
∥∥ 1

2s+2

L2(0, T ;L2(Td` ))
→ 0 as η2 → 0.

This ends the proof that (
√
R,U) satisfies (3.2).

�

At this stage we have constructed a global weak solution (
√
R,U) to the

isothermal fluid system (1.19) with drag forces (r0, r1 > 0) on the torus
Td` , in the sense of Definition 3.1, for smooth initial data satisfying (2.7).
Furthermore this solution verifies the energy and BD-entropy inequalities
of the statement of the theorem, which are obtained straightforwardly in
the limit η → 0 from the associated inequalities for (Rη, Uη).

4. Global weak solutions in the whole space Rd

The next steps consist in passing to the limit r0, r1 → 0, ` → ∞, and
possibly ε→ 0. To do so, we adapt the approach of [22], based on a suitable
notion of renormalized solution. We emphasize the main steps of the proof
and the technical modifications, and refer to [22] for other details.

4.1. Outline of the proof

The method introduced in [22] is based on the introduction of a new
family of solutions to the Navier-Stokes system: the renormalized weak
solutions. In our framework these solutions are defined as follows:
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Definition 4.1 (Renormalized weak solution). — Let Ω = Td` or Ω =
Rd. Let r0, r1 > 0, ε > 0 and ν > 0. Let (

√
R0,Λ0 = (

√
RU)0) ∈ H1 ∩

F(H1)(Ω)× L2(Ω) verify√
R0 > 0 a.e. on Ω,

(√
RU
)

0
= 0 a.e. on

{√
R0 = 0

}
.

We say that (R,U) is a global renormalized weak solution to (1.19) in Ω,
and associated to the initial data (

√
R0,Λ0), if there exists a collection

(
√
R,
√
RU,SK ,TN ) satisfying

(i) The following regularities:

(〈y〉+ |U |)
√
R ∈ L∞loc

(
0,∞;L2(Ω)

)
, ∇

√
R ∈ L∞loc

(
0,∞;L2(Ω)

)
,

ε∇2
√
R ∈ L2

loc
(
0,∞;L2(Ω)

)
, TN ∈ L2

loc
(
0,∞;L2(Ω)

)
,

√
ε∇R1/4 ∈ L4

loc
(
0,∞;L4(Ω)

)
, r

1/4
1 R1/4U ∈ L4

loc
(
0,∞;L4(Ω)

)
,

r
1/2
0 U ∈ L2

loc
(
0,∞;L2(Ω)

)
, r0 logR ∈ L∞loc

(
0,∞;L1(Ω)

)
,

with the compatibility conditions
√
R > 0 a.e. on (0,∞)× Ω,

√
RU = 0 a.e. on

{√
R = 0

}
.

(ii) For any function ϕ ∈W 2,∞(Rd), there exist two measures fϕ, gϕ ∈
M((0,∞)× Ω) with

‖fϕ‖M((0,∞)×Ω) + ‖gϕ‖M((0,∞)×Ω) 6 C
∥∥∇2ϕ

∥∥
L∞(Rd) ,

where the constant C depends only on the solution (
√
R,
√
RU),

such that in D′((0,∞)× Rd),

(4.1a)

(4.1b)



∂t
√
R+ 1

τ2 div
(√

RU
)

= 1
2τ2 Trace (TN ) ,

∂t (Rϕ(U)) + 1
τ2 div (Rϕ(U)⊗ U)

+ 2yRϕ′(U) + ϕ′(U)∇R+ r0

τ2Uϕ
′(U) + r1

τ2R|U |
2Uϕ′(U)

= div
(
ν

τ2

√
Rϕ′(U)SN + ε2

2τ2ϕ
′(U)SK

)
+ ντ̇

τ
ϕ′(U)∇R+ fϕ,

with SN the symmetric part of TN and the compatibility condi-
tions:√

Rϕ′i(U) [TN ]jk = ∂j (Rϕ′i(U)Uk)− 2
√
RUk∂j

√
R+ gϕ ,

SK =
√
R∇2

√
R−∇

√
R⊗∇

√
R ,
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for any i, j, k ∈ {1, · · · , d}.
(iii) For any ψ ∈ C∞(Ω),

lim
t→ 0

∫
Ω

√
R(t, y)ψ(y) dy =

∫
Ω

√
R0(y)ψ(y) dy,

lim
t→ 0

∫
Ω

√
R(t, y)

(√
RU
)

(t, y)ψ(y) dy =
∫

Ω
Λ0(y)ψ(y) dy.

Recall the definition of global weak solutions for (1.19) on the torus in
Definition 3.1 for the case r0, r1 > 0, or in Definition 1.1 for solutions
in Rd with r0 = r1 = 0. The main interest of the notion of renormalized
solutions lies in the fact that it is easier to construct solutions to (4.1). More
precisely, it is easier to prove the weak stability of renormalized solutions,
and to prove the following properties:

• For r0, r1 > 0, any renormalized weak solution is also a weak solu-
tion,

• In the case r0, r1, ε > 0, the two notions are equivalent: any weak
solution is a renormalized solution.

The proof of existence of weak solution to the quantum Navier Stokes
system then reduces to three steps:

• Proving that the weak solutions with drag forces that we con-
structed previously are indeed renormalized solutions.

• Proving compactness of renormalized solutions in terms of the pa-
rameters r0, r1, ε and `.

• Proving that renormalized solutions in the whole space provide
weak solutions in Rd.

4.2. Proof of the main theorem

Consider initial data (
√
R0,Λ0 = (

√
RU)0) ∈ H1 ∩F(H1)(Rd)×L2(Rd)

as in the assumption of Theorem 1.3. We first construct a sequence of initial
data √

R0, `,Λ0, ` ∈ H1 (Td`)× L2 (Td`) , ∀ ` ∈ N∗,
which enter the framework of Theorem 3.4. This shall yield an associated se-
quence {(

√
R`, U`)}`∈N∗ of weak solutions to the isothermal system (1.19)

with drag forces (r0, r1 > 0) on the torus Td` . We design our sequence of
truncated initial data so that, for well-chosen drag parameters, the energy
and BD-entropy estimates of Theorem 3.4 yield uniform bounds for these
solutions.
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So, we consider a plateau function χ ∈ C∞c (Rd) and smoothing kernel
ζ ∈ C∞c (Rd) such that

1|y|6 1/2 6 χ 6 1|y|< 1, supp(ζ) ⊂ B(0, 1),
∫
Rd
ζ(y)dy = 1,

and, for `, ι > 0, we set

χ`(y) = χ
(y
`

)
, ζι(y) = 1

ιd
ζ
(y
ι

)
.

Given ` ∈ N∗, ι > 0 and θ > 0 we define now S0
`,θ,ι and Λ0,` as

S0
`,θ,ι(y) =

(√
R0(y)χ`(y) + θ

)
∗ ζι, Λ0,`(y) = Λ0(y), for y ∈ [−`, `]d.

Since χ` is zero on the boundary of the box, the above formula for S0
`, θ, ι

defines an initial data that is smooth, strictly positive, and periodic. The
above candidate (S0

`, θ, ι,Λ0, `) satisfies then the assumptions of Theorem 3.4
whichever the value of θ, ι > 0. The main property of this construction is
the following proposition.

Proposition 4.2. — There exist sequences (θ`)`∈N∗ and (ι`)`∈N∗ such
that, denoting √

R0, ` := S0
`, θ`, ι`

, ∀ ` ∈ N∗,
we have:

lim sup
`→∞

∫
Td
`

R0, `(x)dx 6
∫
Rd
R0,

lim sup
`→∞

∫
Td
`

∣∣∣∇√R0, `

∣∣∣2 6 ∫
Rd

∣∣∣∇√R0

∣∣∣2 ,
lim sup
`→∞

∫
Td
`

R0, `|y|2 6
∫
Rd
R0|y|2.

Proof. — We note that

S0
`, θ, ι −→

θ→ 0

(√
R0χ`

)
∗ ζι =: S0

`, ι in C1(Td` ).

Since all the integrals involved in our proposition are continuous in S0
`, θ, ι for

the C1-topology, we may only prove the claimed inequalities by replacing
S0
`, θ, ι with S0

`, ι.

Standard arguments with the convolution – combined with explicit com-
putations of the truncation – entail that, for arbitrary ι > 0:

lim sup
`→∞

∫
Td
`

∣∣S0
`, ι

∣∣2 dx 6
∫
Rd
R0,

lim sup
`→∞

∫
Td
`

∣∣∇S0
`, ι

∣∣2 6 ∫
Rd

∣∣∣∇√R0

∣∣∣2 .
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Then, by a convexity argument and duality formulas for the convolution,
we obtain that∫

Td
`

S0
`, ι|y|2 =

∫
Td
`

∣∣∣[√R0χ`

]
∗ ζι
∣∣∣2 |y|2 6 ∫

Td
`

[∣∣∣√R0χ`

∣∣∣2 ∗ ζι] |y|2
6
∫
Td
`

∣∣∣√R0χ`

∣∣∣2 ((1 + ι)|y|2 + Cι
)
,

for an absolute constant C. Consequently, we obtain again that, for arbi-
trary ι > 0,

lim sup
`→∞

∫
Td
`

∣∣S0
`, ι

∣∣2 |y|2 6 ∫
Rd
R0(1 + ι)|y|2 + Cι2

∫
Rd
R0.

It thus suffices to consider a sequence ι` → 0. �

Note that applying Lemma 1.2 to

1[−`,`]d
√
R0, `,

viewed as a function on Rd, we infer from the above proposition that∫
Td
`
R0, `| logR0, `| is bounded uniformly in `.

In what follows, we consider that (
√
R0,`,Λ0, `)`∈N∗ is the sequence of

initial data constructed in the previous proposition. Invoking Theorem 3.4
with these data for arbitrary ` ∈ N∗, we obtain a sequence (

√
R`, U`)`∈N∗

such that for arbitrary ` ∈ N∗, the pair (
√
R`, U`) is a global weak solution

to (1.19) on the torus Td` . We denote also

r0, ` := 1

`+
(∫

Td
`

log(R0, `)1R0, `<1

)2 , r1, ` := 1
`
, ε` = ε+ 1

`
,

and of course, these values affect the above mentioned sequence of solutions
(
√
R`, U`)`. These choices ensure that the associated sequence of initial

energies Edrag (resp. entropies EBD, drag) converge to the energy E (resp.
entropy EBD) of (

√
R0,Λ0). As a matter of fact, the somehow intricate

choice for r0,` is motivated by this property, to obtain

r0, `

∫
Td
`

log (R0, `) 1R0, `< 1 −→
`→∞

0.

4.2.1. Weak solutions with drag forces are renormalized solutions

Given ` ∈ N∗, we first obtain that the weak solution we constructed in the
previous step is a renormalized solution as stated in Definition 4.1. To start
with, we note that, in the case with drag and when Ω is a torus, item (i) in

TOME 72 (2022), FASCICULE 6



2286 Rémi CARLES, Kleber CARRAPATOSO & Matthieu HILLAIRET

Definition 4.1 gathers all the regularity properties inherited from the energy
and entropy estimates in Theorem 3.4. The only point that deserves more
details is the construction of the tensor TN, `. We set:

TN, ` =
√
R`∇U`.

This tensor is well defined (at least in D′((0,∞) × Td` )) since, thanks to
the energy/entropy estimates, we have U` ∈ L2

loc((0,∞)× Td` ) and
√
R` ∈

L2
loc((0,∞);H1(Td` )). Furthermore, we control the symmetric part (resp.

the skew-symmetric part) of TN, ` with the energy dissipation (resp. the
BD-entropy dissipation) so that we obtain the expected L2

loc((0,∞);L2

(Td` )) regularity.
We proceed with item (ii) of the Definition 4.1, the last one being an obvi-

ous corollary to the time regularity of (
√
R`, U`) as stated in Definition 3.1.

By definition, the pair (
√
R`,
√
R`U`) solves the continuity equation (4.1a),

identifying the right-hand side of (3.1) as div TN, `. The compatibility con-
ditions for the tensor SK, ` can be seen as a definition.
The main point of the construction is to obtain the momentum equation

in terms of renormalized solution (4.1b). We give here only the main ideas
of the computation and refer the reader to [22, Section 3] for more details.
In order to multiply the equation with ϕ′(U`), the first step is to regularize
the momentum equation by truncating large and small values of

√
R` in

order to take advantage of the good integrability properties of R1/4
` U`.

To this end, we first remark that the continuity equation reads:

∂t
√
R` + 2

τ2R
1/4
` U` · ∇R1/4

` + 1
2τ2

√
R` divU` = 0.

Applying the bounds on ∇R1/4
` stemming from (1.13) we obtain ∂t

√
R` ∈

L2
loc((0,∞) × Td` ). Moreover, we also know that ∇

√
R` ∈ L∞loc((0,∞);L2

(Td` )). Consequently, for arbitrary φ ∈ C1
c (0,∞), φ(R`) = φ(

√
R`

2) enjoys
the same time and space integrability. On the other hand, we remark that
the momentum equation satisfied by R`U` reads:

∂t (R`U`) + 1
τ2 div (R`U` ⊗ U`) = div

(√
R`S`

)
− F`,

where

S` = ν

τ2

√
R`D(U`) + ε`

2τ2

(
∇2
√
R` − 4∇R1/4

` ⊗∇R1/4
`

)
+
(
ντ̇

τ
− 1
)√

R`Id,

and
F` = r0, `

τ2 U + r1, `

τ2 R` |U`|2 U` + 2yR`.
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Here we denoted by Id the identity matrix. Since
√
R` ∈ L2

loc
(
(0,∞);H2 (Td`)) ⊂ L2

loc
(
(0,∞);L∞

(
Td`
))

(d 6 3),

we have F` ∈ L4/3
loc ((0,∞) × Td` ) and

√
R`S` ∈ L1

loc((0,∞) × Td` ). On the
left-hand side of the equation, we have:

R`U` =
√
R`

(√
R`U`

)
∈ L2

loc
(
(0,∞)× Td`

)
,

R`U` ⊗ U` =
√
R`R

1/4
` U` ⊗R1/4

` U` ∈ L1
loc
(
(0,∞);L2 (Td`)) .

We thus have sufficient regularity to multiply the momentum equation with
φ(R`). We obtain:

∂t (φ(R`)R`U`) + 1
τ2 div (R`U` ⊗ φ(R`)U`)

= div
(
φ(R`)

√
R`S`

)
+ φ(R`)F` −

√
R`S` · ∇φ(R`)

+ (∂tφ(R`) + U` · ∇φ(R`))R`U`.

At this point, we remark that we may also multiply the continuity equa-
tion (4.1a) with a suitable function of

√
R` in order to replace it with

∂tφ(R`) + U` · ∇φ(R`) = − 1
τ2φ

′(R`)
√
R` Trace TN, `.

Introducing V` = φ(R`)U`, we have finally,

∂t (R`V`) + 1
τ2 div (R`U` ⊗ V`)

= div
(
φ (R`)

√
R`S`

)
+ φ (R`)F` −

√
R`S` · ∇φ (R`)

− 1
τ2R`U`φ

′ (R`)
√
R` Trace TN, `.

Since φ truncates the small and large values of R` we may rewrite

V` = R
1/4
` U`

φ (R`)
R

1/4
`

∈ L4
loc
(
(0,∞)× Td`

)
.

We are then in position to multiply the ith equation of the momentum
equation by ϕ′(V`). With the help of Friedrich’s lemma we obtain, on the
left-hand side(

∂t (R`V`) + 1
τ2 div (R`U` ⊗ V`)

)
· ϕ′(V`)

= ∂t (φ (R`)R`ϕ (V`)) + 1
τ2 div (R`U` ⊗ ϕ(V`))),
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and, on the right-hand side:(
div
(
φ(R`)

√
R`S`

)
+ φ(R`)F` −

√
R`S` · ∇φ(R`)

− 1
τ2R`U`φ

′(R`)
√
R` Trace TN, `

)
· ϕ′(V`)

= div
(
φ(R`)

√
R`S` · ϕ′(V`)

)
+ φ(R`)ϕ′(V`) · F` − [S` · ∇φ(R`)] · ϕ′(V`)

− 1
τ2φ

′(R`)
√
R`R`U` · ϕ′(V`) Trace TN, ` − φ(R`)

√
R`S` : ϕ′′(V`)∇V`.

To obtain (4.1b), it remains to approximate the constant 1 with a suitable
sequence of functions (φm)m∈N. This construction is performed in [22]
and [29]. We emphasize that, in this case with drag forces:

fϕ = ϕ′′(U`)S` :
√
R`∇U` ∈ L1

loc
(
(0,∞)× Td`

)
,

‖fϕ‖L1
loc((0,∞)×Td

` ) 6 ‖ϕ
′′‖L∞([0,∞))

(
Edrag

(
R0
` , U

0
`

)
+ EBD, drag

(
R0
` , U

0
`

))
.

Finally, the compatibility condition concerning TN, ` is obtained by noting
that for arbitrary ϕ ∈W 2,∞(Rd) and j, k ∈ {1, . . . , d}, we have:

ϕ′(U`)R`∂jU`, k
= ∂j (R`ϕ′(U`)U`, k)− 2

√
R`U`, kϕ

′(U`)∂j
√
R` −R`U`, kϕ′′(U`)∂jU`,

which is obtained standardly by first regularizing
√
R` and U`. So, we have:√

R`ϕ
′(U`)TN, `, j, k = ∂j

(
R`U`ϕ

′(U`)U`, k
)
− 2
√
R`U`∂j

√
R` + gj, k, ϕ,

with gj, k, ϕ ∈ L2
loc((0,∞);L1(Td` )) satisfying

‖gj, k, ϕ‖L1
loc((0,∞)×Td

` )
6 ‖ϕ′′‖L∞([0,∞))

(
Edrag

(
R0
` , U

0
`

)
+ EBD, drag

(
R0
` , U

0
`

) )
.

4.2.2. Compactness of renormalized solutions and conclusion

We are now able to prove our main result Theorem 1.3. Since, in any
case (i.e. with or without drag) renormalized solutions to (1.5) are weak
solutions as defined in Definition 1.1 (see [22, Section 4]), we only show
that, when we let the parameter ` → ∞, we can extract a subsequence
from (

√
R`,
√
R`U`)`∈N∗ that converges to a renormalized solution to (1.5)

on the whole space Rd.
Proof of Theorem 1.3. — First, thanks to the energy and entropy esti-

mates on the one hand, and the choice of initial data on the other hand,
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the sequences of renormalized solutions {(
√
R`,
√
R`U`,TN, `)}` are uni-

formly bounded in the following spaces, respectively:√
R` in L∞loc

(
0,∞;H1

loc
(
Rd
))
,

√
R`U` in L∞loc

(
0,∞;L2

loc
(
Rd
))
,

TN,` in L2
loc
(
0,∞;L2

loc
(
Rd
))
.

Furthermore, by the choice of our initial data, we have:

lim sup
`→∞

(∥∥∥√R`∥∥∥
L∞loc(0,∞ ;H1(Td` ))

+
∥∥∥√R`U`∥∥∥

L∞loc(0,∞ ;L2(Td` ))

+ ‖TN, `‖L2
loc(0,∞ ;L2(Td` ))

)
6 C

(√
R0,Λ0

)
.

Consequently, by a standard Cantor extraction argument, we can construct
√
R in L∞loc

(
0,∞;H1 (Rd)) ,

√
RU in L∞loc

(
0,∞;L2 (Rd)) ,

TN in L2
loc
(
0,∞;L2 (Rd)) ,

so that, without relabelling the subsequences:√
R` ⇀

√
R in L∞loc

(
0,∞;H1

loc
(
Rd
))
− w∗,

√
R`U` ⇀

√
RU in L∞loc

(
0,∞;L2

loc
(
Rd
))
− w∗,

TN,` ⇀ TN in L2
loc
(
0,∞;L2

loc
(
Rd
))
− w.

In addition, we have also momentum and (if ε > 0) second order bounds
for
√
R` uniformly in ` so that

√
R enjoys the further estimates:

ε∇2
√
R ∈ L2

loc
(
0,∞;L2 (Rd)) ,

√
ε∇R1/4 ∈ L4

loc
(
0,∞;L4 (Rd)) ,

〈y〉
√
R ∈ L∞loc

(
0,∞;L2 (Rd)) .

We have now a candidate satisfying item (i) of the Definition 1.1 of renor-
malized solutions without drag forces on the torus. Furthermore, we can
pass to the weak limit in the energy and entropy estimates on the torus so
that these solutions satisfy (1.17) and (1.18).
We note that the above weak convergences of

√
R`,
√
R`U` and TN, ` are

sufficient to pass to the limit in the continuity equation (4.1a). Reproducing
the arguments for the limits η1, η2 → 0 in the previous section (see also the
proof of [22, Lemma 5.1]), we obtain that

√
R` →

√
R in C

(
[0,∞);L2

loc
(
Rd
))
.
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We note that, since we control the second momentum of
√
R`, the conver-

gence actually holds in C([0, T ];L2(Rd)). When ε > 0, by interpolation, we
have also that

√
R` →

√
R in L4

loc
(
(0,∞);H1

loc
(
Rd
))
.

We can then combine the strong convergence of
√
R` and the weak conver-

gence of ∇2√R` to pass to the limit in the compatibility condition for SK .
It remains to pass to the limit in the renormalized momentum equation

and the compatibility condition for TN . For this, we can again reproduce
the arguments of [22] with the only integrability of

√
R`. We obtain that

R`U` → RU in L2
loc((0,∞);Lploc(Rd)) for arbitrary p < 3/2. Introducing

U = RU/R1R> 0, we conclude that R` → R and U` → U a.e., and con-
sequently that Rα` φ(U`) → Rαφ(U) in Lploc((0,∞) × Rd) for any bounded
φ : Rd → Rd, α < 6 and p < 6/α. Given ϕ ∈ W 2,∞(Rd), we remark
that the remainder f`, ϕ is a bounded sequence of measures, so that we can
extract a weakly converging sequence. The above convergences are then suf-
ficient to pass to the limit in the renormalized momentum equations with
ϕ satisfied by (

√
R`, U`) and obtain (4.1b). We proceed similarly to pass to

the limit in the renormalized compatibility condition for TN, ` and obtain
the renormalized compatibility condition for TN . This ends the proof of
Theorem 1.3. �

5. Global weak solutions to isothermal Korteweg equation

In this section, we explain how to prove Proposition 1.7. The idea is the
same as in [2, Proposition 15] in the barotropic case, and we present the
specificities of the isothermal case.

Formally, Proposition 1.7 stems from Madelung transform: consider the
solution ψ ∈ L∞loc(R;H1(Rd)) to the logarithmic Schrödinger equation

(5.1) iε∂tψ + ε2

2 ∆ψ = ψ log |ψ|2; ψ|t=0 = ψ0.

Then (%, j) =
(
|ψ|2, ε Im(ψ̄∇ψ)

)
is a natural candidate for the conclusions

of Proposition 1.7. Indeed, we compute

∂t% = 2 Re ψ̄∂tψ = −ε Im
(
ψ̄∆ψ

)
= −div

(
ε Im

(
ψ̄∇ψ

))
,
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and, in view of the identity

∂t∇ψ = iε

2 ∆∇ψ − i

ε
∇
(
ψ log |ψ|2

)
,

∂tj = ε Im
(
∇ψ

(
− iε2 ∆ψ̄ + i

ε
ψ̄ log |ψ|2

))
+ ε Im

(
ψ̄

(
iε

2 ∆∇ψ̄ − i

ε
∇
(
ψ log |ψ|2

)))
= ε2

4 ∇∆|ψ|2 − ε2 div
(
Re
(
∇ψ̄ ⊗∇ψ

))
−∇|ψ|2.

The above identities are true in the sense of distributions, provided (at
least) that ψ ∈ H1(Rd). Therefore, to show that (%, j) is a solution to (1.1)
with ν = 0, we have to rewrite the term div(Re(∇ψ̄ ⊗ ∇ψ)). In view
of [2, Lemma 3], for ψ ∈ H1(Rd), there exists φ ∈ L∞(Rd) such that
ψ = √%φ a.e. in Rd, √% ∈ H1(Rd), ∇√% = Re(φ̄∇ψ), so that if we set
√
%u := ε Im(φ̄∇ψ), then √%u ∈ L2(Rd), j = √%×√%u and

ε2 Re
(
∇ψ̄ ⊗∇ψ

)
= ε2∇√%⊗∇√%+ (√%u)⊗ (√%u) .

In this case,

φ(x) =
{

ψ(x)
|ψ(x)| if ψ(x) 6= 0,
0 if ψ(x) = 0,

so the compatibility condition √%u = 0 a.e. on {√% = 0} is satisfied.
Finally, by the definition of j,

∇∧ j = ε Im
(
∇ψ̄ ∧∇ψ

)
,

and [2, Corollary 13] yields, for ψ ∈ H1(Rd),

∇∧ j = 2∇√% ∧ (√%u) .

Note that in the barotropic case considered in [2, Proposition 15], p(%) = %γ ,
γ > 1, instead of the logarithmic Schrödinger equation (5.1), one faces
the more standard nonlinear Schrödinger equation with a power-like nonli-
nearity,

(5.2) iε∂tψ + ε2

2 ∆ψ = cγ |ψ|γ−1ψ ; ψ|t=0 = ψ0,

for some constant cγ > 0 whose exact value is irrelevant for the present
discussion.
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The Cauchy problem for (5.1) was solved initially in [15] locally in time
for ψ0 ∈ L2(Rd), using the theory of monotone operators. To obtain a
solution with an H1 regularity, as well as the uniqueness of this solution,
in [15, 16] (see also [14]) the authors have to change the sign in front of the
nonlinearity in (5.1), so the Hamiltonian structure of the equation directly
provides a priori estimates. In the case of (5.1), the formally conserved
energy

(5.3) ElogNLS = ε2

2

∫
Rd
|∇ψ|2 +

∫
Rd
|ψ|2 log |ψ|2,

is not helpful because the region {|ψ| < 1} yields a negative contribution,
and cannot be controlled in terms of the H1-norm. This is why in the
present case, working in H1 is not enough, and a (fractional) momentum
is considered to, ψ0 ∈ F(Hα), that is,∫

Rd
〈x〉2α |ψ0(x)|2 dx <∞,

for some 0 < α 6 1. Then (5.1) has a unique, global solution ψ ∈ L∞loc(R;H1

∩ F(Hα)). We refer to [13] for details. The first part of Proposition 1.7
follows.

To conclude and prove the second point of Proposition 1.7, introduce Ψ
given by

ψ(t, x) = 1
τ(t)d/2

Ψ
(
t,

x

τ(t)

)(‖%0‖L1(Rd)

‖Γ‖L1(Rd)

)1/2

exp
(
i
τ̇(t)
τ(t)
|x|2

2ε − i
θ(t)
ε

)
,

where

θ(t) = d

∫ t

0
log τ(s)ds− t log

(‖%0‖L1(Rd)

‖Γ‖L1(Rd)

)
.

It solves (see [13])

(5.4)
iε∂tΨ + ε2

2τ(t)2 ∆Ψ = Ψ log |Ψ|2 + |y|2Ψ,

Ψ(0, y) = ψ0(y)
(‖%0‖L1(Rd)

‖Γ‖L1(Rd)

)1/2

.

We check

%(t, x) = |ψ(t, x)|2 = 1
τ(t)d

∣∣∣∣Ψ(t, x

τ(t)

)∣∣∣∣2 ‖%0‖L1(Rd)

‖Γ‖L1(Rd)
,
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so in view of (1.24), R = |Ψ|2, and

√
%u(t, x) = j(t, x)√

%(t, x)
=
ε Im

(
ψ̄∇ψ

)
(t, x)

|ψ(t, x)|

= ε

τ(t)1+d/2 Im
(

Ψ
|Ψ|∇Ψ

)(
t,

x

τ(t)

)(‖%0‖L1(Rd)

‖Γ‖L1(Rd)

)1/2

+ τ̇(t)
τ(t)

x

τ(t)d/2

∣∣∣∣Ψ(t, x

τ(t)

)∣∣∣∣ (‖%0‖L1(Rd)

‖Γ‖L1(Rd)

)1/2

= ε

τ(t)1+d/2 Im
(

Ψ
|Ψ|∇Ψ

)(
t,

x

τ(t)

)(‖%0‖L1(Rd)

‖Γ‖L1(Rd)

)1/2

+ τ̇(t)
τ(t)x

√
%(t, x),

hence, in view of (1.24),

√
RU = ε Im

(
Ψ̄
|Ψ|∇Ψ

)
.

In view of [13], for ψ0 ∈ H1 ∩ F(H1), (5.4) has a global solution Ψ ∈
L∞loc(R;H1 ∩ F(H1), which satisfies

d
dt

(
ε2

2τ(t)2 ‖∇Ψ(t)‖2L2 +
∫
Rd
|Ψ(t, y)|2 log |Ψ(t, y)|2dy

+
∫
Rd
|y|2 |Ψ(t, y)|2 dy

)
= −ε

2τ̇(t)
τ(t)3 ‖∇Ψ(t)‖2L2 .

Integrating in time and rewriting the quantities involved in this relation in
terms of (

√
R,
√
RU), we recover (1.7).

Appendix A. Proof of identity (2.19)

Proof. — We recall that, the first step in the computation of (2.19) is to
set Φ = χν∇ logR/τ2 in (2.5). This yields:
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∫ ∞
0

∫
Td
`

RU · ∂tΦ +
∫ ∞

0

∫
Td
`

1
τ2RU ⊗ U : ∇Φ

=
∫ ∞

0

∫
Td
`

R (2y · Φ− div Φ) + r0

∫ ∞
0

∫
Td
`

1
τ2U · Φ

+ r1

∫ ∞
0

∫
Td
`

1
τ2R|U |

2U · Φ

+ ε2
∫ ∞

0

∫
Td
`

1
τ2

[
∆
√
R√
R

div(RΦ)
]

+ ν

∫ ∞
0

∫
Td
`

1
τ2RDU : ∇Φ + ν

∫ ∞
0

∫
Td
`

τ̇

τ
R div Φ

+ δ1

∫ ∞
0

∫
Td
`

1
τ2∇U : ∇R⊗ Φ + δ2

∫ ∞
0

∫
Td
`

1
τ2 ∆U ·∆Φ

+ η1

∫ ∞
0

∫
Td
`

R−α div Φ + η2

∫ ∞
0

∫
Td
`

1
τ2 ∆s+1R∆s [∇R · Φ +R div Φ] .

We number the integrals on the right-hand side I1 to I10 successively:

I1 =
∫ ∞

0

χν

τ2

∫
Td
`

(
4|∇
√
R|2 − 2dR

)
, I2 = r0

∫ ∞
0

χν

τ4

∫
Td
`

U · ∇ logR,

I3 = r1

∫ ∞
0

χν

τ4

∫
Td
`

|U |2U · ∇R, I4 = ε2
∫ ∞

0

χν

τ4

∫
Td
`

R
∣∣∇2 logR

∣∣2 ,
I5 =

∫ ∞
0

χν2

τ4

∫
Td
`

RDU : ∇2 logR, I6 = −
∫ ∞

0

χν2τ̇

τ3

∫
Td
`

4|∇
√
R|2,

I7 = δ1

∫ ∞
0

χν

τ4

∫
Td
`

∇U : ∇R⊗∇ logR,

I8 = δ2

∫ ∞
0

χν

τ4

∫
Td
`

∆U · ∇∆ logR,

I9 = η1

∫ ∞
0

4χν
ατ2

∫
Td
`

∣∣∣∇√R−α∣∣∣2 , I10 = η2

∫ ∞
0

χν

τ4

∫
Td
`

∣∣∆s+1R
∣∣2 .

While, we rewrite the left-hand side:

LHS = −
〈

d
dt

[
ν

τ2

∫
Td
`

RU · ∇ logR
]
, χ

〉
−
∫ ∞

0

2χντ̇
τ3

∫
Td
`

RU · ∇ logR

+
∫ ∞

0

χν

τ2

∫
Td
`

RU · ∇∂t logR+
∫ ∞

0

χν

τ4

∫
Td
`

RU ⊗ U : ∇2 logR,
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where we denote with brackets the duality in the sense of distributions.
We proceed by computing the third term (denoted L1) in the right-hand
side of this identity. For this, we remark that differentiating the continuity
equation (1.20a), we obtain (in L2

loc(R+;L2(Td` ))):

∂t (R∇ logR) = − 1
τ2 div (R∇ logR⊗ U)− 1

τ2 div (R∇U) + δ1
τ2 ∆∇R,

splitting the left-hand side of this identity and calling again the continuity
equation, we conclude that:

R∂t∇ logR = 1
τ2 div(RU)∇ logR− δ1

τ2 ∆R∇ logR

− 1
τ2 div(R∇ logR⊗ U)− 1

τ2 div
(
R∇>U

)
+ δ1
τ2 ∆∇R.

We infer then that, a.e. (in (0,∞)), we have:

∫
Td
`

RU · ∂t∇ logR = − 1
τ2

∫
Td
`

RU ⊗ U : ∇2 logR+ 1
τ2

∫
Td
`

R∇U> : ∇U

− δ1
τ2

∫
Td
`

∆R
R

div(RU).

Plugging this identity into LHS, we obtain:

LHS = −
〈

d
dt

[
ν

τ2

∫
Td
`

RU · ∇ logR
]
, χ

〉
−
∫ ∞

0

2χντ̇
τ3

∫
Td
`

RU · ∇ logR

+
∫ ∞

0

χν

τ4

∫
Td
`

R∇U : ∇>U − δ1
∫ ∞

0

χν

τ4

∫
Td
`

∆R
R

div(RU).

Finally, combining the computations of the right-hand side and left-hand
side, we re-interpret our identity as:
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d
dt

[
ν

τ2

∫
Td
`

RU · ∇ logR
]

+ 2ντ̇
τ3

∫
Td
`

RU · ∇ logR

+ ε2ν

τ4

∫
Td
`

R
∣∣∇2 log(R)

∣∣2 +
(
ν

τ2 −
ν2τ̇

τ3

)∫
Td
`

4|∇
√
R|2

+ 4η1ν

α

∫
Td
`

∣∣∣∇√R−α∣∣∣2 + η2ν

τ4

∫
Td
`

∣∣∆s+1R
∣∣2

= 2dν
τ2

∫
Td
`

R− r0ν

τ4

∫
Td
`

U · ∇ logR− r1ν

τ4

∫
Td
`

|U |2U · ∇R

− ν2

τ4

∫
Td
`

RDU : ∇2 logR

− δ1ν

τ4

∫
Td
`

∇U : ∇R⊗∇ logR− δ2ν

τ4

∫
Td
`

∆U · ∇∆ logR

− δ1ν

τ4

∫
Td
`

∆R
R

div(RU) + ν

τ4

∫
Td
`

∇U : ∇>U.

This completes the proof of identity (2.19). �
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