Monodromy of the family of Cubic Surfaces branching over Smooth Cubic Curves
Annales de l'Institut Fourier, Volume 72 (2022) no. 3, pp. 963-987.

Consider the family of smooth cubic surfaces which can be realized as threefold-branched covers of 2 , with branch locus equal to a smooth cubic curve. This family is parametrized by the space 𝒰 3 of smooth cubic curves in 2 and each surface is equipped with a /3 deck group action.

We compute the image of the monodromy map ρ induced by the action of π 1 (𝒰 3 ) on the 27 lines contained on the cubic surfaces of this family. Due to a classical result, this image is contained in the Weyl group WE 6 . Our main result is that ρ is surjective onto the centralizer of the image a of a generator of the deck group. Our proof is mainly computational, and relies on the relation between the 9 inflection points in a cubic curve and the 27 lines contained in the cubic surface branching over it.

On considère la famille des surfaces cubiques lisses qui sont réalisées comme recouvrements ramifieés triples de 2 , avec une courbe cubique lisse comme locus de ramification. Cette famille est paramétrée par l’espace 𝒰 3 des courbes cubiques lisses sur 2 et chaque surface est munie d’une action de groupe /3.

On calcule l’image de l’homomorphisme de monodromie ρ induit par l’action du π 1 (𝒰 3 ) sur les 27 droites contenues dans chaque surface cubique de cette famille. Grâce à un résultat classique, cette image est contenue dans le groupe de Weyl W(E 6 ). Notre résultat principal est que ρ est surjective sur le centralisateur de l’image d’un générateur du groupe. Notre démonstration est principalement calculatoire, et repose sur la relation entre les 9 points d’inflexion dans une courbe cubique et les 27 droites contenues dans la surface cubique se ramifiant dessus.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3481
Classification: 14D05
Keywords: Monodromy, Cubic Surface, Cubic Curve
Mot clés : Monodromie, Surface Cubique, Courbe Cubique

Medrano Martín del Campo, Adán 1

1 Department of Mathematics The University of Chicago 5734 S. University Ave, Chicago, IL 60637 (USA)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2022__72_3_963_0,
     author = {Medrano Mart{\'\i}n del Campo, Ad\'an},
     title = {Monodromy of the family of {Cubic} {Surfaces} branching over {Smooth} {Cubic} {Curves}},
     journal = {Annales de l'Institut Fourier},
     pages = {963--987},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {72},
     number = {3},
     year = {2022},
     doi = {10.5802/aif.3481},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3481/}
}
TY  - JOUR
AU  - Medrano Martín del Campo, Adán
TI  - Monodromy of the family of Cubic Surfaces branching over Smooth Cubic Curves
JO  - Annales de l'Institut Fourier
PY  - 2022
SP  - 963
EP  - 987
VL  - 72
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3481/
DO  - 10.5802/aif.3481
LA  - en
ID  - AIF_2022__72_3_963_0
ER  - 
%0 Journal Article
%A Medrano Martín del Campo, Adán
%T Monodromy of the family of Cubic Surfaces branching over Smooth Cubic Curves
%J Annales de l'Institut Fourier
%D 2022
%P 963-987
%V 72
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3481/
%R 10.5802/aif.3481
%G en
%F AIF_2022__72_3_963_0
Medrano Martín del Campo, Adán. Monodromy of the family of Cubic Surfaces branching over Smooth Cubic Curves. Annales de l'Institut Fourier, Volume 72 (2022) no. 3, pp. 963-987. doi : 10.5802/aif.3481. https://aif.centre-mersenne.org/articles/10.5802/aif.3481/

[1] Dolgachev, Igor; Libgober, Anatoly S. On the fundamental group of the complement to a discriminant variety, Algebraic Geometry, Proc. Conf., Chicago Circle 1980 (Lecture Notes in Mathematics), Volume 862, Springer, 1981, pp. 1-25 | MR | Zbl

[2] Frame, J. Sutherland The classes and representations of the groups of 27 lines and 28 bitangents, Ann. Mat. Pura Appl., Volume 32 (1951) no. 83, pp. 83-119 | DOI | MR | Zbl

[3] Harris, Joe Galois Groups of Enumerative Problems, Duke Math. J., Volume 46 (1979) no. 4, pp. 715-719 | MR | Zbl

[4] Hartshorne, Robin Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977, pp. 395-409 (Chapter V) | Zbl

[5] McMullen, Curtis T. Braid groups and Hodge theory, Math. Ann., Volume 355 (2013) no. 3, pp. 893-946 | DOI | MR | Zbl

[6] Morita, Shigeyuki Geometry of Characteristic Classes, Translations of Mathematical Monographs; Iwanami Series in Modern Mathematics, 199, American Mathematical Society, 2001 (Chapter 4) | DOI | Zbl

[7] Naik, Vipul Classification of groups of order 24, 2011 (https://groupprops.subwiki.org/wiki/classification_of_groups_of_order_24)

[8] The Sage Developers SageMath, the Sage Mathematics Software System (Version 9.2), 2021 (https://www.sagemath.org)

[9] Wolfram Research, Inc. Mathematica, Version 12.2 (Champaign, IL, 2020, https://www.wolfram.com/mathematica)

[10] Zariski, Oscar On the problem of existence of algebraic functions of two variables possessing a given branch curve, Am. J. Math., Volume 51 (1929), pp. 305-328 | DOI | MR | Zbl

Cited by Sources: