Consider the family of smooth cubic surfaces which can be realized as threefold-branched covers of , with branch locus equal to a smooth cubic curve. This family is parametrized by the space of smooth cubic curves in and each surface is equipped with a deck group action.
We compute the image of the monodromy map induced by the action of on the lines contained on the cubic surfaces of this family. Due to a classical result, this image is contained in the Weyl group . Our main result is that is surjective onto the centralizer of the image a of a generator of the deck group. Our proof is mainly computational, and relies on the relation between the inflection points in a cubic curve and the lines contained in the cubic surface branching over it.
On considère la famille des surfaces cubiques lisses qui sont réalisées comme recouvrements ramifieés triples de , avec une courbe cubique lisse comme locus de ramification. Cette famille est paramétrée par l’espace des courbes cubiques lisses sur et chaque surface est munie d’une action de groupe .
On calcule l’image de l’homomorphisme de monodromie induit par l’action du sur les droites contenues dans chaque surface cubique de cette famille. Grâce à un résultat classique, cette image est contenue dans le groupe de Weyl . Notre résultat principal est que est surjective sur le centralisateur de l’image d’un générateur du groupe. Notre démonstration est principalement calculatoire, et repose sur la relation entre les points d’inflexion dans une courbe cubique et les droites contenues dans la surface cubique se ramifiant dessus.
Revised:
Accepted:
Published online:
Keywords: Monodromy, Cubic Surface, Cubic Curve
Mot clés : Monodromie, Surface Cubique, Courbe Cubique
Medrano Martín del Campo, Adán 1
@article{AIF_2022__72_3_963_0, author = {Medrano Mart{\'\i}n del Campo, Ad\'an}, title = {Monodromy of the family of {Cubic} {Surfaces} branching over {Smooth} {Cubic} {Curves}}, journal = {Annales de l'Institut Fourier}, pages = {963--987}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {3}, year = {2022}, doi = {10.5802/aif.3481}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3481/} }
TY - JOUR AU - Medrano Martín del Campo, Adán TI - Monodromy of the family of Cubic Surfaces branching over Smooth Cubic Curves JO - Annales de l'Institut Fourier PY - 2022 SP - 963 EP - 987 VL - 72 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3481/ DO - 10.5802/aif.3481 LA - en ID - AIF_2022__72_3_963_0 ER -
%0 Journal Article %A Medrano Martín del Campo, Adán %T Monodromy of the family of Cubic Surfaces branching over Smooth Cubic Curves %J Annales de l'Institut Fourier %D 2022 %P 963-987 %V 72 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3481/ %R 10.5802/aif.3481 %G en %F AIF_2022__72_3_963_0
Medrano Martín del Campo, Adán. Monodromy of the family of Cubic Surfaces branching over Smooth Cubic Curves. Annales de l'Institut Fourier, Volume 72 (2022) no. 3, pp. 963-987. doi : 10.5802/aif.3481. https://aif.centre-mersenne.org/articles/10.5802/aif.3481/
[1] On the fundamental group of the complement to a discriminant variety, Algebraic Geometry, Proc. Conf., Chicago Circle 1980 (Lecture Notes in Mathematics), Volume 862, Springer, 1981, pp. 1-25 | MR | Zbl
[2] The classes and representations of the groups of 27 lines and 28 bitangents, Ann. Mat. Pura Appl., Volume 32 (1951) no. 83, pp. 83-119 | DOI | MR | Zbl
[3] Galois Groups of Enumerative Problems, Duke Math. J., Volume 46 (1979) no. 4, pp. 715-719 | MR | Zbl
[4] Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977, pp. 395-409 (Chapter V) | Zbl
[5] Braid groups and Hodge theory, Math. Ann., Volume 355 (2013) no. 3, pp. 893-946 | DOI | MR | Zbl
[6] Geometry of Characteristic Classes, Translations of Mathematical Monographs; Iwanami Series in Modern Mathematics, 199, American Mathematical Society, 2001 (Chapter 4) | DOI | Zbl
[7] Classification of groups of order 24, 2011 (https://groupprops.subwiki.org/wiki/classification_of_groups_of_order_24)
[8] SageMath, the Sage Mathematics Software System (Version 9.2), 2021 (https://www.sagemath.org)
[9] Mathematica, Version 12.2 (Champaign, IL, 2020, https://www.wolfram.com/mathematica)
[10] On the problem of existence of algebraic functions of two variables possessing a given branch curve, Am. J. Math., Volume 51 (1929), pp. 305-328 | DOI | MR | Zbl
Cited by Sources: