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MONODROMY OF THE FAMILY OF CUBIC
SURFACES BRANCHING OVER SMOOTH CUBIC

CURVES

by Adán MEDRANO MARTÍN DEL CAMPO

Abstract. — Consider the family of smooth cubic surfaces which can be real-
ized as threefold-branched covers of P2, with branch locus equal to a smooth cubic
curve. This family is parametrized by the space U3 of smooth cubic curves in P2

and each surface is equipped with a Z/3Z deck group action.
We compute the image of the monodromy map ρ induced by the action of π1(U3)

on the 27 lines contained on the cubic surfaces of this family. Due to a classical
result, this image is contained in the Weyl groupW (E6). Our main result is that ρ
is surjective onto the centralizer of the image a of a generator of the deck group. Our
proof is mainly computational, and relies on the relation between the 9 inflection
points in a cubic curve and the 27 lines contained in the cubic surface branching
over it.
Résumé. — On considère la famille des surfaces cubiques lisses qui sont réalisées

comme recouvrements ramifieés triples de P2, avec une courbe cubique lisse comme
locus de ramification. Cette famille est paramétrée par l’espace U3 des courbes
cubiques lisses sur P2 et chaque surface est munie d’une action de groupe Z/3Z.

On calcule l’image de l’homomorphisme de monodromie ρ induit par l’action du
π1(U3) sur les 27 droites contenues dans chaque surface cubique de cette famille.
Grâce à un résultat classique, cette image est contenue dans le groupe de Weyl
W (E6). Notre résultat principal est que ρ est surjective sur le centralisateur de
l’image d’un générateur du groupe. Notre démonstration est principalement cal-
culatoire, et repose sur la relation entre les 9 points d’inflexion dans une courbe
cubique et les 27 droites contenues dans la surface cubique se ramifiant dessus.

1. Introduction

Families of algebraic varieties are ubiquitous in algebraic geometry. A
basic but often difficult question that arises for any such family is to

Keywords: Monodromy, Cubic Surface, Cubic Curve.
2020 Mathematics Subject Classification: 14D05.



964 Adán MEDRANO MARTÍN DEL CAMPO

determine its monodromy. A classical example is the universal cubic surface
given by the smooth fiber bundle

S E3,3 {(S, p) | p ∈ S}

U3,3 S

where U3,3 is the parameter space of smooth cubic surfaces in P3. This bun-
dle induces a monodromy homomorphism ρ : π1(U3,3) → Aut(H2(S;Z)).
Klein and Jordan proved that the Galois group of the equation for the 27
lines on a cubic is precisely W (E6), the Weyl group of E6, which coincides
with the image of the monodromy homomorphism induced by the universal
family E3,3 → U3,3. A natural way to further study this family is to study
subfamilies of it. In this paper we study the subfamily of smooth cubic
surfaces which can be realized as cyclic branched covers of P2, branching
over a smooth cubic plane curve. To do this we exploit connections between
datum associated to cubic surfaces, and its analogue for cubic curves. The
most notable example in this paper is the relation between the 27 lines
contained in a cubic surface, and the 9 inflection points of the curve over
which it branches.
The parameter space of homogeneous degree d polynomials in variables

x, y, z is given by

P
(

Symd
(
C3)) = PN(d) where N (d) =

(
d+ 2

2

)
− 1.

The vanishing locus of f ∈ PN(d) is defined as the set

V (f) =
{
P ∈ P2 ∣∣ f (P ) = 0

}
.

The discriminant locus is the subset ∆d ⊂ PN(d) consisting of polynomials
whose vanishing locus is singular. The parameter space of smooth degree
d plane curves in P2 is therefore defined as

Ud = PN(d) \∆d.

Let f ∈ Ud and let C = V (f) be its vanishing locus. Then [C] = d[H] ∈
H2(P2;Z), where [H] is the hyperplane class in P2. The curve C is a complex
codimension 1 submanifold of P2, so there exists a cyclic k-fold branched
cover X of P2 with branched locus equal to [H] (see [6, Proposition 4.10])
and this is equivalent to k | d. It is a classsical result (see [10]) that the
fundamental group of the complement of a smooth degree d curve in P2

ANNALES DE L’INSTITUT FOURIER



MONODROMY OF A FAMILY OF CUBIC SURFACES 965

is cyclic of order d. In light of this, for f ∈ U3 consider the cyclic 3-fold
branched cover

Xf

P2 V (f)

pZ/3Z

The surface Xf can be embedded into P3 as a cubic surface V (w3 − f).
In particular, U3 parametrizes all such surfaces of the form V (w3 − f). We
define the universal 3-branched cover of P2 as the fiber bundle

E3 =
{

(P, f) ∈ P3 × U3
∣∣P ∈ V (w3 − f

)}
→ U3

(P, f) 7→ f

where the fiber of E3 → U3 is diffeomorphic to a smooth cubic surface. For
the sake of simplicity in calulations that will be carried on further in this
paper, choose the curve f = y2z − x3 + xz2 as a base point in U3. The
action of π1(U3) on (V (w3 − f);Z) induces a monodromy homomorphism

ρ : π1 (U3)→ Aut
(
H2 (V (w3 − f

)
;Z
))
.

In [1], Dolgachev–Libgober describe π1(U3) as a central extension

1→ H3 (Z/3Z)→ π1 (U3)→ SL2 (Z)→ 1(1.1)

of SL2(Z) by the Z/3Z-points of the 3-dimensional Heissenberg group,
defined as

H3 (Z/3Z) =


1 a c

0 1 b

0 0 1

∣∣∣∣∣∣ a, b, c ∈ Z/3Z

 .

The extension (1.1) is split, so π1(U3) has a semidirect product structure
H3(Z/3Z) oϕ SL2(Z), which we describe later in the paper.
The image of ρ can be further restricted by noting that the intersection

form inH2(V (w3−f);Z) remains invariant under the action of the image of
ρ. As explained in Section 2.1, this implies that the image of ρ is contained
in the automorphism group of the 27 lines contained in V (w3 − f) due to
an argument in [3]. On the same paper, Harris shows this group is precisely
W (E6), the Weyl group of E6. Moreover, each fiber of E3 has a Z/3Z deck
group action induced by its cyclic branched cover structure. A generator T
of this deck group action is given by

T : V
(
w3 − f

)
→ V

(
w3 − f

)
[x : y : z : w] 7→

[
x : y : z : e−2πi/3w

]
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966 Adán MEDRANO MARTÍN DEL CAMPO

and T induces an action Ω on H2(V (w3− f);Z) which commutes with the
image of ρ. As we shall see, Ω is realized as the image of a generator of
the center of H3(Z/3Z) inside π1(U3). Altogether, this shows that one may
restrict the monodromy homomorphism ρ to the centralizer CW (E6)(Ω) of
Ω in W (E6), giving:

ρ : π1 (U3)→ CW (E6) (Ω) .

Our main result in this paper is the following.

Theorem 1.1. — The monodromy representation

ρ : π1 (U3)→ CW (E6) (Ω)

of the universal 3-branched cover of P2 is surjective and its image is iso-
morphic to the semidirect product

H3 (Z/3Z) oϕ SL2 (Z/3Z) .

The first step towards the proof of Theorem 1.1 is to find geometric
representatives of a basis for H2(V (w3−f);Z) in terms of V (f) ⊂ P2. The
crucial observation is that to each of the 9 inflection points of V (f), we
can associate 3 lines in V (w3 − f), all of which lie over the given inflection
point.
Then we reduce the range of ρ to W (E6). The action Ω induced by the

Z/3Z deck group action gives a permutation of the 27 lines in V (w3 − f)
which permutes the line triples lying over a same inflection point disjointly.
The image of ρ commutes with Ω and thus the image of ρ is contained in
CW (E6)(Ω).
Using the semidirect product structure on π1(U3), we choose 4 of its

elements and compute their action on the geometric datum associated to
the chosen basepoint curve

f = y2z − x3 + xz2.

The key step of the proof is performing these computations explicitly. The
group generated by the images of the 4 chosen elements is then shown to
be isomorphic to H3(Z/3Z)oϕSL2(Z/3Z). The centralizer CW (E6)(Ω) and
this subgroup both have order 648, so they must be isomorphic. Since

H3 (Z/3Z) oϕ SL2 (Z/3Z) < Im (ρ) < CW (E6) (Ω)

the three groups must be isomorphic, concluding the proof. A public repos-
itory containing the Sage [8] and Mathematica [9] computations employed
can be found in the following link:

Computation Repository

ANNALES DE L’INSTITUT FOURIER
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Remark 1.2. — The problem studied in this paper lies within a much
more general context, arising from the study of universal families of degree
d cyclic branched covers over smooth hypersurfaces of degree n in PN ,
where d divides n.

Xd,n Ed,n,N

Un,N
In this paper, we study the family corresponding to the case (d, n,N) =
(3, 3, 2). The problem of determining the monodromy of these families has
been previously studied in lower dimension. In [5], McMullen provides a
description of the family of degree d cyclic branched covers branching over
n distinct points in P1, given by a smooth subvariety of degree n in P1.
This corresponds to the case (d, n,N) = (d, n, 1). He then determines for
which pairs (d, n) the induced monodromy map is surjective onto the cor-
responding automorphism group with the natural restrictions that come
along with the branch cover structure.
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2. Preliminaries

2.1. General facts about cubic surfaces

We begin by recalling facts about smooth cubic surfaces which we wil
employ through the paper. These facts can be found in e.g. [4]. Let X ⊂ P3

be a smooth cubic surface.

TOME 72 (2022), FASCICULE 3



968 Adán MEDRANO MARTÍN DEL CAMPO

A classical result states all smooth cubic surfaces X are blowups of P2

at six points p1, . . . , p6 in general position, and moreover X contains 27
lines. Therefore, the intersection form on H2(X;Z) is of type (1, 6) and we
have the decomposition

H2 (X;Z) ∼= H2 (X;Z)+ ⊕H
2 (X;Z)− ∼= Z⊕ Z6.

The cohomology classes of any six pairwise disjoint lines in X form a basis
for H2(X;Z)−. The intersection pattern of these 27 lines is given by the
dual of the Schläfli graph, regarding each line as a vertex, and two lines
intersect if and only if their corresponding vertices are joined by an edge.
Let

Bl{p1, ..., p6}
(
P2) X

P2

π

∼=

be the blowup map from X to P2 at the points p1, . . . , p6. Set e0, e1, . . . ,

e6 ∈ H2(X;Z) as e0 = π−1(PD[H]), the preimage of the Poincaré dual of
the hyperplane class [H] in P2, and ei as the class of the exceptional divisor
Li corresponding to pi for i = 1, . . . , 6. The divisors L1, . . . , L6 constitute
6 of the lines contained in X, and the remaining 21 = 15+6 lines are given
by blowups of

• the 15 lines which pass through pi and pj for all pairs i 6= j, and
• the 6 conics determined by 5 of the blowup points pi.

The lines L1, . . . , L6 are pairwise disjoint, and thus e1, . . . , e6 form a basis
for H2(X;Z)−. With respect to the basis {e0, e1, . . . , e6} of H2(X;Z), the
intersection form is given by

(·, ·)X : H2 (X;Z)×H2 (X;Z)→ Z

(a,b) 7→ aT
(

1 0
0 −I6

)
b.

Let Li,j be the line in X which is a blowup of the line passing through pi
and pj , and let Li∗ be the line in X which is a blowup of the conic passing
through all blowup points except for pi. Then

[Li,j ] = e0 − ei − ej and [Li∗ ] = 2e0 + ei − (e1 + · · ·+ e6) .

In [3], it is shown that the group of automorphisms of H2(X;Z) that pre-
serve the intersection form is isomorphic to the Galois group of X, and
these two groups are isomorphic to W (E6). These automorphisms are de-
termined by the images of the cohomology classes of any six disjoint lines,

ANNALES DE L’INSTITUT FOURIER
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such as e1, . . . , e6. Since the intersection form is preserved, this is equivalent
to a permutation of the 27 lines in X.

2.2. Inflection points of V (f) versus lines in V
(
w3 − f

)
The lines on a cubic surface X ∼= V (w3 − f) have a very particular

structure, which can be described in terms of the inflection points of f .
Since f is a smooth cubic curve, it has 9 inflection points, given by the
intersection V (f) ∩ V (det Hess(f)), where

Hess (f) =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2


is the Hessian matrix of f . The structure of the lines is described in the
following proposition.

Proposition 2.1. — Consider a smooth cubic curve V (f) ⊂ P2 and
the branched cover

V
(
w3 − f

)
P2 V (f)

pZ/3Z

Let P be an inflection point of V (f) and let lP ⊂ P2 be the tangent line
to V (f) at P . Then p−1(lP ) consists of 3 concurrent lines at p−1(P ) in
V (w3 − f). Namely, the 27 lines conatained in V (w3 − f) lie over each of
the 9 inflection points of f in concurrent triples.

Proof. — Performing a change of coordinates, f can be transformed into
its Hesse normal form, which is

f = x3 + y3 + z3 − 3µxyz

for some µ such that µ3 6= 1. We have det Hess(f) = 216(1 − µ3)xyz, so
the inflection points of f are

[1 : −1 : 0] [1 : −ω : 0]
[
1 : −ω2 : 0

]
[−1 : 0 : 1] [−ω : 0 : 1]

[
−ω2 : 0 : 1

]
[0 : 1 : −1] [0 : 1 : −ω]

[
0 : 1 : −ω2]

TOME 72 (2022), FASCICULE 3



970 Adán MEDRANO MARTÍN DEL CAMPO

The tangent line to V (f) at a point P is given by the equation

∇fP · (x, y, z) = x
∂f

∂x
(P ) + y

∂f

∂y
(P ) + z

∂f

∂z
(P ) = 0

and for such an f we have ∇f = (3x2 − 3µyz, 3y2 − 3µzx, 3z2 − 3µxy).
Hence the tangent lines at the inflection points of f are

V (x+ y + µz) V
(
x+ ω2y + µωz

)
V
(
x+ ωy + µω2z

)
V (x+ µy + z) V

(
ω2x+ µωy + z

)
V
(
ωx+ µω2y + z

)
V (µx+ y + z) V

(
µωx+ y + ω2z

)
V
(
µω2x+ y + ωz

)
in correspondence with the inflection points shown above. Consider a tan-
gent line L at one of the inflection points P , say L = V (µx + y + z).
We now proceed to determine its preimage p−1(L) (the preimage for all
remaining lines is determined in an analogous manner). Points in p−1(L)
satisfy y = −µx− z. Combining this equation along with f we obtain

w3 − x3 − z3 + (µx+ z)3 + 3µxz (µx+ z) = w3 −
(
1− µ3)x3 = 0

and thus, letting η be a cube root of 1− µ3, we have that p−1(L) consists
of three lines through p−1(P ) given by

V (w − ωnηx) ∩ V (µx+ y + z) ⊂ P3 for n = 0, 1, 2.

This is analogous for the remaining tangent lines at the inflection points of
V (f), so to each inflection point P of V (f), we have associated 3 lines in
V (w3 − f) passing through p−1(P ). �

It should be emphasized that Proposition 2.1 is the crucial property that
characterises the cubic surfaces of the form V (w3 − f), and this property
will be exploited throughout this paper.

3. Restricting Im (ρ)

In this section, we show that the image of ρ is contained in the centralizer
of an order 3 element Ω ∈W (E6).

3.1. The action Ω

Consider the action τ of H3(Z/3Z) on V (f) coming from the extension
given in [1], which acts on the inflection points of V (f). These inflection
points correspond to the 3-torsion points of V (f), or those points P with

ANNALES DE L’INSTITUT FOURIER



MONODROMY OF A FAMILY OF CUBIC SURFACES 971

3P = 0, given an elliptic curve structure on it. Moreover, τ acts by transla-
tion on the Z/3Z×Z/3Z lattice formed by these 3-torsion points. Namely,
the translation on the Z/3Z× Z/3Z lattice is given by the a and b entries
of a matrix element of H3(Z/3Z) as follows:

τ : H3 (Z/3Z) y V (f) (Z/3Z) ∼= Z/3Z× Z/3Z1 a c

0 1 b

0 0 1

 · (x, y) = (x+ a, y + b) .

We will use this action in Section 5.1, further explained from the Hessian
normal form of a cubic curve. The action of an element M ∈ H3(Z/3Z)
under τ comes from a linear transformation in P2 [1]. This action can be
lifted to a linear transformation on P3 giving an automorphism of V (w3−f)
which induces the element in Im(ρ) coming from M . Let Z be a generator
of the center Z(H3(Z/3Z)). Lifting Z to an action on P3 gives an automor-
phism T which fixes the inflection points in the curve V (f) ∩ V (w), and
acts on V (w3−f) by multiplication by ω−1 = e−2πi/3 on the w-coordinate:

T : [x : y : z : w] 7→
[
x : y : z : ω−1w

]
ω = e

2πi
3 .

This is precisely a generator of the Z/3Z deck group action on V (w3 − f).
Let Ω be the element of Im(ρ) induced by T . We can now prove the following
proposition.
Proposition 3.1. — With the notation above, Im(ρ) is contained in

the centralizer CAut(H2(V (w3−f);Z))(Ω).
Proof. — The homomorphism Φ : SL2(Z) → Aut(H3(Z/3Z)) induced

by the split group extension

1→ H3 (Z/3Z)→ π1 (U3)→ SL2 (Z)→ 1

described in [1] is given by the composition

SL2 (Z) SL2 (Z/3Z) Aut (H3 (Z/3Z))mod 3

Φ

ϕ

where the map ϕ is given by:

ϕ : SL2 (Z/3Z)→ Aut (H3 (Z/3Z))

M 7→

ϕM :

1 a c

0 1 b

0 0 1

 7→
1 M1 (a, b) c

0 1 M2 (a, b)
0 0 1


M(a, b) =

(
M1(a, b),M2(a, b)

)

TOME 72 (2022), FASCICULE 3



972 Adán MEDRANO MARTÍN DEL CAMPO

for all M ∈ SL2(Z/3Z). Since the center of H3(Z/3Z) is given by

Z (H3 (Z/3Z)) ∼=

〈1 0 1
0 1 0
0 0 1

〉

it follows that ΦN fixes Z(H3(Z/3Z)) for every N ∈ SL2(Z). Therefore,
Z(H3(Z/3Z)) is in the center of π1(U3). Since Ω ∈ ρ(Z(H3(Z/3Z))) by
construction, it follows that Ω is in the center of Im(ρ), or equivalently,
Im(ρ) is contained in the centralizer of Ω. �

3.2. Restriction to W (E6)

Proposition 3.2. — Im(ρ) is contained in W (E6).

Proof. — The action of any element σ ∈ π1(U3) on V (w3 − f) maps
V (w3−f)∩V (w) to itself, inducing a permutation on the set of 9 inflection
points of V (f). This implies that the preimages of the inflection points
under the branched cover p are permuted as well, and we have shown these
are exactly the 27 lines in V (w3− f). Therefore, σ maps lines to lines, and
for any line L ⊂ V (w3 − f) we have

ρ (σ) ([L]) = [σ (L)] .

The incidence of the 27 lines contained in V (w3−f) is therefore preserved.
The classes of these lines span H2(V (w3 − f);Z) and its intersection form
is non-degenerate, so ρ preserves said intersection form. In [3], it is shown
that automorphisms of H2(V (w3−f);Z) preserving the form lie within the
odd orthogonal group O−6 (Z/2Z), which is isomorphic to the Weyl group
W (E6). Hence, Im(ρ) ⊂W (E6). �

Summarizing, Proposition 3.1 and Proposition 3.2 give the following
corollary.

Corollary 3.3. — We have Im(ρ) ⊂ CW (E6)(Ω).

3.3. Computing
∣∣CW (E6) (Ω)

∣∣
Consider theW (E6)-action on itself by conjugation. By the orbit-stabili-

zer theorem applied to Ω, we have

51840 = |W (E6)| =
∣∣OrbitW (E6) (Ω)

∣∣ · ∣∣CW (E6) (Ω)
∣∣

ANNALES DE L’INSTITUT FOURIER
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and the order of the orbit of Ω corresponds to the size of its conjugacy
class. We will determine the size of this conjugacy class by looking at
the character table of W (E6), found for example in [2]. For this, we must
compute the action of Ω on the set of lines of our chosen base point, the
surface V (w3 − f) corresponding to the curve

f = y2z − x3 + xz2.

With the help of [8], we enumerate the 27 lines in V (w3−f). Then, we find
a set of six pairwise disjoint lines L1, . . . , L6 ⊂ V (w3− f), and proceed to
compute the intersection pattern of the remaining 21 lines with each Li in
order to compute their cohomology classes. We obtain that for our choice
of lines, Ω acts by

L1 7→ L5∗ L2 7→ L2,3 L3 7→ L3,6

L4 7→ L1∗ L5 7→ L4∗ L6 7→ L2,6

following the notation in Section 2.1. Therefore, with respect to the basis
{e0, [L1], . . . , [L6]} we have

Ω =



4 2 1 1 2 2 1
−1 −1 0 0 0 −1 0
−2 −1 −1 0 −1 −1 −1
−2 −1 −1 −1 −1 −1 0
−1 −1 0 0 −1 0 0
−1 0 0 0 −1 −1 0
−2 −1 0 −1 −1 −1 −1


Now consider the complex W (E6)-representation given by

C7 ∼= H2 (V (w3 − f
)

;C
) ∼= H2 (V (w3 − f

)
;Z
)
⊗ C

This representation contains a copy of the trivial representation, since
the canonical class is fixed by W (E6), and a copy of an irreducible 6-
dimensional representation. Namely,

H2 (V (w3 − f
)

;C
) ∼= Ctriv ⊕ V6.

Since Trace(Ω) = −2, at the level of characters we have

−2 = χH2(V (w3−f);C) (Ω) = χCtriv (Ω) + χV6 (Ω) = 1 + χV6 (Ω)

and therefore χV6(Ω) = −3. There exist two 6-dimensional irreducible rep-
resentations of W (E6), both of which have a unique conjugacy class whose

TOME 72 (2022), FASCICULE 3



974 Adán MEDRANO MARTÍN DEL CAMPO

character equals −3. Therefore, Ω must belong to this conjugacy class,
which has order 80. Thus, we conclude∣∣CW (E6) (Ω)

∣∣ = |W (E6)|∣∣OrbitW (E6) (Ω)
∣∣ = 51840

80 = 648.

4. Explicit computations for f = y2z − x3 + xz2

We have constructed via Proposition 2.1 a correspondence between the
inflection points of a smooth cubic curve V (f) and triples of lines in its
associated surface V (w3 − f) lying over the inflection points of V (f). The
goal of this section is to compute this datum explicitly for a choice of f
serving as a base point in U3. This datum is then manipulated with the
aid of computer software ([8] and [9]), and used in Section 5 to explicitly
compute generators of Im(ρ).

4.1. Inflection points of f

Consider the curve f = y2z − x3 + xz2. Then

∇f =

−3x2 + z2

2yz
y2 + 2xz


Hess (f) =

−6x 0 2z
0 2z 2y
2z 2y 2x

 .

Hence, det Hess(f) = 8(3x(y2−xz)− z3) and the inflection points of f are
given by

V
(
y2z − x3 + xz2) ∩ V

(
3xy2 − 3x2z − z3) .

Let [x : y : z] be an inflection point of f .
If z = 0, then f = −x3 = 0 so x = 0, and thus [x : y : z] = [0 : 1 : 0].
If z 6= 0, we may take z = 1. Then y2 = x3 − x and 3xy2 − 3x2 − 1 = 0.

Substituting y2 in the second equation we obtain

R (x) = 3x4 − 6x2 − 1 = 0.

Hence, the remaining 8 inflection points are [α : ±
√
α3 − α : 1] with α a

root of R (x). Namely, letting

a =

√
3 + 2

√
3

3
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we have

α ∈

{
±a,±ia

(√
3− 1

)2
2

}
.

To describe the y-coordinate of these inflection points, note that α satisfies
that α2 − 1 = ± 2

√
3

3 , so letting b =
√
a 2
√

3
3 we have

y ∈
{
±b,±ib,±b (1 + i)

(√
3− 1

)
,±b (1− i)

(√
3− 1

)}
.

Therefore, the inflection points of f = y2z − x3 + xz2 are

[−a : +ib : 1]
[
−ia (√3−1)2

2 : −b (1 + i)
(√

3− 1
)

: 1
] [

+ia (√3−1)2

2 : −b (1− i)
(√

3− 1
)

: 1
]

[−a : −ib : 1]
[
+ia (√3−1)2

2 : +b (1− i)
(√

3− 1
)

: 1
] [

−ia (√3−1)2

2 : +b (1 + i)
(√

3− 1
)

: 1
]

[0 : 1 : 0] [+a : +b : 1] [+a : −b : 1]

and we present them in this way since these inflection points are in direct
correspondence with the inflection points of the Hesse normal form fH
of f = y2z − x3 + xz2 as shown in the proof of Proposition 2.1 after
transforming V (f) to V (fH) via the linear map A : P2 → P2 given by

A =


1 0 −a

−
√

3+1
2 −i 4

√
3+2
√

3
4 −a

(√
3−1
2

)
−
√

3+1
2 i 4

√
3+2
√

3
4 −a

(√
3−1
2

)
 .

We use this transformation to compute the images of the generators of
H3(Z/3Z) < π1(U3), as [1] decribe the action of H3(Z/3Z) in terms on the
Hessian form of cubic curves.

4.2. Lines in V
(
w3 − fλ

)
Consider a family of variations of f parametrized by λ ∈ C\{±1}, given

by

fλ := y2z − (x− z) (x+ z) (x− λz) = y2z − x3 + λx2z + xz2 − λz3

where f = f0. We now proceed to compute the inflection points of V (fλ)
and the lines in V (w3−fλ), following Section 4.1 and the proof of Proposi-
tion 2.1, respectively. These calculations are crucial for the computation of
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ρ(SL2(Z)), as we shal see in Section 5.2. To compute the inflections points
of fλ, we use

∇fλ =

−3x2 + z2 + 2λxz
2yz

y2 + 2xz − 3λz2


Hess (fλ) =

−6x+ 2λz 0 2z + 2λx
0 2z 2y

2z + 2λx 2y 2x− 6λz

 .

Hence, 1
8 det Hess (f) = (3x − λz)(y2 − xz + 3λz2) − z(z + λx)2 so the

inflection points of f are given by

V
(
y2z − x3 + λx2z + xz2 − λz3)

∩ V
(

(3x− λz) y2 − z
(
x2 (3 + λ2)− 8λxz + z2 (1 + 3λ2) )).

Let [x : y : z] be an inflection point.
If z = 0, then f = −x3 = 0 so x = 0, and thus [x : y : z] = [0 : 1 : 0].
If z 6= 0, then one may assume z = 1. Then

y2 = x3 − λx2 − x+ λ

0 = (3x− λ) y2 −
(
3 + λ2)x2 + 8λx− 1− 3λ2

Substituting y2 in the second equation we obtain

Rλ (x) = 3x4 − 4λx3 − 6x2 + 12λx− 1− 4λ2 = 0.

Hence, the remaining 8 inflection points are [α : ±
√
α3 − λα2 − α+ λ : 1]

with α a root of Rλ(x).
We may now proceed to compute the triples of lines in V (w3−fλ) above

each inflection point in V (fλ).
At the inflection point [0 : 1 : 0], we have the tangent line is given by

z = 0. This gives
w3 − fλ = w3 + x3 = 0

so the three lines lying above [0 : 1 : 0] are

V (w + ωnx) ∩ V (z) for n = 0, 1, 2.

At an inflection point of the form P = [α :
√
α3 − λα2 − α+ λ : 1], the

tangent line at P is given by

V
( (
−3α2 + 2λα+ 1

)
x+

(
2
√
α3 − λα2 − α+ λ

)
y

+
(
α3 − λα2 + α− 2λ

)
z
)
.
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To compute the three lines lying over P in V (w3 − fλ), we substitute

y2 =
((
−3α2 + 2λα+ 1

)
x+

(
α3 − λα2 + α− 2λ

)
z
)2

4 (α3 − λα2 − α+ λ)
in fλ, and using that Rλ(α) = 0 to simplify, we obtain

w3 − fλ = w3 + (x− αz)3 = 0.

Hence, the lines lying over P are

V (w + ωn (x− αz))

∩ V
((
−3α2 + 2λα+ 1

)
x+

(
2
√
α3 − λα2 − α+ λ

)
y

+
(
α3 − λα2 + α− 2λ

)
z
)

for n = 0, 1, 2.

5. Computing generators of Im (ρ)

The goal of this section is to use the datum computed in Section 4 to
determine explicitly the images under ρ of 4 elements of π1(U3). The images
computed will serve a posteriori as generators of Im(ρ). The 4 elements for
which we choose to compute their images come from the semidirect product
structure of π1(U3),

π1 (U3) ∼= H3 (Z/3Z) oϕ SL2 (Z)

and will, again a posteriori, provide the semidirect product structure of
Im(ρ).

5.1. Images of generators of H3 (Z/3Z)

The transformation A : P2 → P2 introduced in Section 4.1 maps the
curve f = y2z−x3+xz2 to its Hesse normal form, fH = x3+y3+z3−3µxyz,
where µ =

√
3 + 1. The map A induces a map

A′ =
(
A 0
0 −η

)
: P3 → P3

where η is a cube root of 1 − µ3. Since µ is real, we can take η to be real
for convenience. The map A′ maps the surface V (w3 − f) to V (w3 − fH),

TOME 72 (2022), FASCICULE 3



978 Adán MEDRANO MARTÍN DEL CAMPO

and being a linear map, it defines a mapping between the 27 lines of one
surface to the other. Namely, we have

V
(
w3 − f

)
V
(
w3 − fH

)
L A′ (L) = LH

A′

A′

and with the help of [8], we compute the mapping of the lines as depicted
in Figure 5.1. For each surface, a set of 6 pairwise non-intersecting lines
{L1, . . . , L6} is found along with their incidences with the remaining 21
lines. This allows us to compute the classes of the 27 lines with respect to
the basis e0, [L1], . . . , [L6] of (V (w3 − f);Z) and (V (w3 − fH);Z) respec-
tively.

L3 L5,6 L4,5
L3,6 L3,4 L5
L6∗ L1,2 L4∗

L1∗ L2,6 L2,4
L1,4 L2∗ L1,6
L4 L6 L3,5

L1,3 L1 L3∗

L2,5 L5∗ L2
L4,6 L1,5 L2,3

A′−→

L3 L3,4 L4∗

L3,6 L1,2 L4,5
L6∗ L5,6 L5

L1∗ L6 L1,6
L1,4 L2,6 L3,5
L4 L2∗ L2,4

L1,3 L1 L3∗

L2,5 L5∗ L2
L4,6 L1,5 L2,3

Figure 5.1. Mapping of the lines in V (w3−f) (left) to lines in V (w3−
fH) (right) induced by A′. The lines are determined by their position
in the diagram, and each labeled line on the left diagram is mapped
to the line with the same label on the right diagram. Each box is in
correspondance to the inflection points shown in Section 4, and lines
in each box lie over the same inflection point of f (left) and fH (right).
Moreover, each line has a defining equation which depends on a power
of ω = e2πi/3. Within each box, the powers ωn in the defining equations
of the lines are 1, ω, ω2 from top to bottom.
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The purpose of A′ is to determine the H3(Z/3Z)-action on V (f) from
the corresponding H3(Z/3Z)-action on V (fH). The later action is explicitly
described in [1]. It is given by translation on the lattice of inflection points
of fH , and it is generated by

X =

1 0 0
0 ω 0
0 0 ω2

 and Y =

0 1 0
0 0 1
1 0 0

 in PSL3 (C) .

These can be lifted to automorphisms of V
(
w3 − fH

)
as

X ′ =


1 0 0 0
0 ω 0 0
0 0 ω2 0
0 0 0 1

 and Y ′ =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 in PSL4 (C)

and these last two maps provide a permutation on the lines of V (w3−fH).
This can be translated into a permutation of the lines in V (w3 − f) with
the map A′. Thus, with the help of Figure 5.1 we obtain:

(1) The map X ′ induces a permutation H1 ∈W (E6) which maps

L1 7→ L6 L2 7→ L3,5 L3 7→ L1,3

L4 7→ L6∗ L5 7→ L2,3 L6 7→ L3,4

(2) The map Y ′ induces a permutation H2 ∈W (E6) which maps

L1 7→ L3∗ L2 7→ L2,5 L3 7→ L1,2

L4 7→ L2,6 L5 7→ L3 L6 7→ L2,4

and therefore, with respect to our basis {e0, [L1], . . . , [L6]} we obtain the
matrices
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H1 =



3 0 1 1 2 1 1
−1 0 0 −1 −1 0 0
−1 0 0 0 −1 −1 0
−2 0 −1 −1 −1 −1 −1
−1 0 0 0 −1 0 −1
−1 0 −1 0 −1 0 0

0 1 0 0 0 0 0



H2 =



3 2 1 1 1 0 1
−1 −1 0 −1 0 0 0
−2 −1 −1 −1 −1 0 −1

0 0 0 0 0 1 0
−1 −1 0 0 0 0 −1
−1 −1 −1 0 0 0 0
−1 −1 0 0 −1 0 0


where

H := 〈H1, H2〉 = ρ (H3 (Z/3Z)) < W (E6) .
With the help of [9], we compute the size of the matrix group generated
by H1 and H2, and we obtain that |H| = |H3(Z/3Z)| = 27. Therefore,
H ∼= H3(Z/3Z).

5.2. Images of elements coming from SL2 (Z)

Now we use our results from Section 4.2 to compute the image of two
elements in SL2(Z) < π1(U3). Recall that by Hurwitz’s theorem, every
smooth cubic curve is realized as a double branched cover of P1, with
branch locus equal to 4 distinct points {a, b, c, d} ∈ P1. With a suitable
change of coordinates given by a projective linear transformation in P2,
the branch points {a, b, c} may be mapped to {±1,∞}, and the remaining
branch point d is mapped to some λ ∈ C \ {±1}. Therefore, a cubic curve
can be embedded in P2 as a curve fλ in the family defined in Section 4.2

fλ = y2z − (x− z) (x+ z) (x− λz) with λ ∈ C \ {±1}

which is the projectivization of the elliptic curve y2 = (x−1)(x+1)(x−λ).
The curve f = y2z − x3 + xz2 is in such form letting λ = 0, and the
space C \ {±1} parametrizes a subset of curves in U3 containing f . A loop
based at 0 in C \ {±1} naturally parametrizes a loop based at f in U3 via
the map λ 7→ fλ. Since every cubic curve fλ has an inflection point at
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[0 : 1 : 0], this inflection point is fixed by any automorphism of f coming
from elements in π1(U3) given by loops in U3 consisting of curves of the
form fλ. This implies that for such loops, the action of H3(Z/3Z) < π1(U3)
on H2(V (w3 − f);Z) is trivial, as there is no translation on the inflection
points of f . Therefore these loops come from SL2(Z) < π1(U3). In light
of this, we consider the generators of π1(C \ {±1}) depicted in Figure 5.2
along with the corresponding loops in U3 parametrized by these generators.
Our goal is now to compute the image under ρ of these loops in π1(U3).

0×
−1

×1

γ− γ+

γ− : [0, 1]→ C \ {±1} t 7→ −1 + e2πit

γ+ : [0, 1]→ C \ {±1} t 7→ 1− e2πit

Figure 5.2. Generators γ−, γ+ of π1 (C \ {±1} , 0).

A loop γ ∈ π1(C \ {±1}) induces a permutation on the 27 lines of
V
(
w3 − f

)
as follows: in Section 4 we prove that the 24 of the lines in

V (w3 − fλ) are given by

V
(
w + ωn (x− αz)

)
∩ V

((
−3α2 + 2λα+ 1

)
x+

(
2
√
α3 − λα2 − α+ λ

)
y

+
(
α3 − λα2 + α− 2λ

)
z
)

and the remaining 3 are given by V (w+ωnx)∩V (z). Letting λ = γ(t), α and
λ vary continuously in t. Indeed, α is a root of Rλ(x), a quartic polynomial
whose coefficients are polynomials in λ. This implies that along the surfaces
V (w3 − fλ), these lines vary continuously. For a line L ⊂ V (w3 − f), let
L(γ, t) be the line in V (w3 − fγ(t)) obtained by varying L along γ. Thus,
γ induces a permutation given by

L (γ, 0) 7→ L (γ, 1) .

To compute these permutations explicitly, we recall that lines in V (w3−fλ)
lie over the inflection points of fλ in triples. The lines V (w+ ωnx) ∩ V (z)
are fixed along any path γ, as the coefficients of their defining equations
are constant functions of λ. Thus, it remains to study what happens to the
remaining 8 triples of lines. Let p(γ, t) be the inflection point of fγ(t) over
which the line L(γ, t) lies. Then, we have the following proposition.
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Proposition 5.1. — The permutation L(γ, 0) 7→ L(γ, 1) induces a per-
mutation p(γ, 0) 7→ p(γ, 1) on the inflection points of f . Moreover, the
permutation L(γ, 0) 7→ L(γ, 1) is completely determined by its induced
permutation p(γ, 0) 7→ p(γ, 1).

Proof. — Since any loop γ induces an automorphism of V (fλ), the per-
mutation L(γ, 0) 7→ L(γ, 1) induces a permutation p (γ, 0) 7→ p(γ, ) by
restriction to the inflection point of f contained in each line. This implies
that the lines over each inflection point p(γ, 0) in f are mapped to the lines
over p(γ, 1).
Moreover, in the defining equation w+ωn(x−αz) of any of these 24 lines,

the x-coefficient ωn is a constant function of λ. Therefore this coefficient
remains constant in the defining equations of L(γ, 0) and L (γ, 1) for any
line L and any loop γ. The permutation on the lines is simply determined
by the defining equation

V
((
−3α2 + 2λα+ 1

)
x±

(
2
√
α3 − λα2 − α+ λ

)
y

+
(
α3 − λα2 + α− 2λ

)
z
)
.

In particular, the y-coordinate of each of the 8 inflection points of f
distinct from [0 : 1 : 0] distinguishes each inflection point. It is also a
scalar multiple of the y-coefficient in the defining equations of the 24 lines
over the inflection points distinct from [0 : 1 : 0], and this coefficient
distinguishes such defining equations. Therefore the defining equation of
our lines changes according to this coefficient, which changes according
to the inflection points of f . This shows that the induced permutation
L(γ, 0) 7→ L (γ, 1) is completely determined by its associated permutation
on the inflection points p(γ, 0) 7→ p(γ, 1). �

Hence it suffices to study the permutation p(γ, 0) 7→ p(γ, 1). To do so,
we simply study the permutation of the y-coordinates of these inflection
points. We compute this with the help of [9] as follows:
Given a path γ, y-coordinate of the inflection points of fγ(t) distinct from

[0 : 1 : 0] are determined by the roots of the polynomial Rγ(t), which are
the x-coordinates of these inflection points. We plot
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XN (γ) :=
{(

x,
k

N

)
∈ C× [0, 1]

∣∣∣∣ k = 0, 1, . . . , N

and [x : y : 1] is an inflection point of fγ( kN )

}
YN (γ) :=

{(
y,
k

N

)
∈ C× [0, 1]

∣∣∣∣ k = 0, 1, . . . , N

and [x : y : 1] is an inflection point of fγ( kN )

}
Uniform continuity of the map t 7→ p(γ, t) guarantees that for a suffi-

ciently large integer N , the distance between the y-coordinates correspond-
ing to the inflection points p(γ, kN ) and p(γ, k+1

N ) is bounded by a fixed
ε > 0 for every k. Therefore the y-coordinates of the points p(γ, kN ) can
be determined from the starting point p(γ, 0). This is illustrated for the
curves γ− and γ+ in Figure 5.3 and Figure 5.4.

Figure 5.3. Plots of XN (γ−) (left) and XN (γ+) (right) for N = 100.

Figure 5.4. Plots of YN (γ−) (left) and YN (γ+) (right) for N = 100.

TOME 72 (2022), FASCICULE 3



984 Adán MEDRANO MARTÍN DEL CAMPO

The permutations on the roots of R0 induced by γ− and γ+ are given
as in Figure 5.5, and the permutations on y-coordinates of the inflection
points of f0 = f induced by γ− and γ+ are given as in Figure 5.6.

a−a
ia

(√3−1)2

2

−ia (√3−1)2

2

a−a
ia

(√3−1)2

2

−ia (√3−1)2

2

Figure 5.5. Permutation of the roots of R0 induced by γ− (left) and
γ+ (right)

b−b

ib

−ib

b (1 + i)
(√

3− 1
)

−b (1 + i)
(√

3− 1
)

b (1− i)
(√

3− 1
)

−b (1− i)
(√

3− 1
)

b−b

ib

−ib

b (1 + i)
(√

3− 1
)

−b (1 + i)
(√

3− 1
)

b (1− i)
(√

3− 1
)

−b (1− i)
(√

3− 1
)

Figure 5.6. Permutation on the y-coordinates of inflection points of f
induced by γ− (left) and γ+ (right).

(1) The loop γ− induces a permutation G1 ∈W (E6) which maps

L1 7→ L1 L2 7→ L2 L3 7→ L4,5

L4 7→ L6 L5 7→ L3,4 L6 7→ L3,5

(2) The loop γ+ induces a permutation G2 ∈W (E6) which maps

L1 7→ L5,6 L2 7→ L1,6 L3 7→ L3

L4 7→ L4 L5 7→ L2 L6 7→ L1,5

and therefore, with respect to our basis {e0, [L1], . . . , [L6]} we obtain the
matrices
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G1 =



2 0 0 1 0 1 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
−1 0 0 0 0 −1 −1
−1 0 0 −1 0 −1 0
−1 0 0 −1 0 0 −1

0 0 0 0 1 0 0



G2 =



2 1 1 0 0 0 1
−1 0 −1 0 0 0 −1

0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
−1 −1 0 0 0 0 −1
−1 −1 −1 0 0 0 0


where

G := 〈G1, G2〉 < ρ (SL2 (Z)) < W (E6) .
With the help of [9], we compute the order of the matrix group generated
by G1 and G2, and we obtain |G| = 24 = 23 · 3. Moreover, we make the
following observations about G:

• [G1, G2] 6= 1, so G is not abelian.
• G3

1 = G3
2 = 1 and 〈G1〉 6= 〈G2〉, so 3-Sylow subgroups of G are not

normal.
• ord(G1G2) = 6 and ord([G1, G2]) = 4, so G contains elements of
order 4 and 6.

Using the classification of groups of order 24 in [7], the first 3 observations
reduce our posibilities for G to SL2(Z/3Z), S4 and A4 × Z/2Z. Since S4
has no elements of order 6 and A4 × Z/2Z has no elements of order 4, we
conclude G ∼= SL2(Z/3Z).

6. Proof of the Main Theorem

Now that we have computed explicitly H1, H2, G1, G2 inside Im(ρ), we
are ready to conclude. Recall the groups H,G < Im(ρ) are defined in
Section 5 and we have shown

H := 〈H1, H2〉 ∼= H3 (Z/3Z) and G := 〈G1, G2〉 ∼= SL2 (Z/3Z) .
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Consider the subgroup of Im(ρ) generated by H1, H2, G1, G2,

I := 〈H1, H2, G1, G2〉 .

We will show I ∼= Im (ρ) in order to conclude.
Proof of Theorem 1.1. — With the help of [9], we compute the inter-

section of the matrix groups H and G and obtain that H ∩ G = {1}.
Conjugating H1 and H2 by G1 and G2 we obtain

G1H1G
−1
1 = ΩH1H2 G2H1G

−1
2 = H1

G1H2G
−1
1 = H2 G2H2G

−1
2 = Ω−1H−1

1 H2.

Therefore, H is normal in I. These two facts together imply that

I ∼= H o G ∼= H3 (Z/3Z) o SL2 (Z/3Z) .

The homomorphism ϕ : SL2(Z/3Z) → Aut(H3(Z/3Z)) described in Sec-
tion 3 completely describes this semidirect product structure, and an ex-
plicit isormorphism I→ H3(Z/3Z) oϕ SL2(Z/3Z) is given by

H1 7→

1 1 1
0 1 0
0 0 1

 , I

 G1 7→
(
I,

(
1 0
1 1

))

H2 7→

1 0 1
0 1 1
0 0 1

 , I

 G2 7→
(
I,

(
1 2
0 1

))
.

Since |I| 6 | Im (ρ) | 6 |CW (E6)(Ω)| = 648 and

|I| = |H| · |G| = |H3 (Z/3Z)| · |SL2 (Z/3Z)| = 27 · 24 = 648

we have that the equalities must hold. By Corollary 3.3, we have that
Im(ρ) ⊂ CW (E6)(Ω), so we conclude

I ∼= Im (ρ) ∼= CW (E6) (Ω) ∼= H3 (Z/3Z) oϕ SL2 (Z/3Z) . �
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