A reverse coarea-type inequality in Carnot groups
Annales de l'Institut Fourier, Volume 72 (2022) no. 1, pp. 155-185.

We prove a coarea-type inequality for a continuously Pansu differentiable function acting between two Carnot groups endowed with homogeneous distances. We assume that the level sets of the function are uniformly lower Ahlfors regular and that the Pansu differential is everywhere surjective.

Nous démontrons une inégalité de type co-aire pour une fonction entre deux groupes de Carnot munis de distances homogènes. On suppose que la fonction est continûment différentiable au sens de Pansu avec différentielle continue. On suppose aussi que les ensembles de niveau de la fonction sont uniformément inférieurement Ahlfors-réguliers, et que la différentielle de Pansu est partout surjective.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3474
Classification: 28A75, 28A78, 22E30
Keywords: Carnot groups, coarea formula, spherical measure, packing measure.
Mot clés : Groupe de Carnot, formule de co-aire, mesure spherique, mesure de packing.
Corni, Francesca 1

1 Università di Bologna, Dip.to di Matematica, Piazza di Porta San Donato, 5, 40126, Bologna, Italy
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2022__72_1_155_0,
     author = {Corni, Francesca},
     title = {A reverse coarea-type inequality in {Carnot} groups},
     journal = {Annales de l'Institut Fourier},
     pages = {155--185},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {72},
     number = {1},
     year = {2022},
     doi = {10.5802/aif.3474},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3474/}
}
TY  - JOUR
AU  - Corni, Francesca
TI  - A reverse coarea-type inequality in Carnot groups
JO  - Annales de l'Institut Fourier
PY  - 2022
SP  - 155
EP  - 185
VL  - 72
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3474/
DO  - 10.5802/aif.3474
LA  - en
ID  - AIF_2022__72_1_155_0
ER  - 
%0 Journal Article
%A Corni, Francesca
%T A reverse coarea-type inequality in Carnot groups
%J Annales de l'Institut Fourier
%D 2022
%P 155-185
%V 72
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3474/
%R 10.5802/aif.3474
%G en
%F AIF_2022__72_1_155_0
Corni, Francesca. A reverse coarea-type inequality in Carnot groups. Annales de l'Institut Fourier, Volume 72 (2022) no. 1, pp. 155-185. doi : 10.5802/aif.3474. https://aif.centre-mersenne.org/articles/10.5802/aif.3474/

[1] Bonfiglioli, Andrea; Lanconelli, Ermanno; Uguzzoni, Francesco Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007, xxvi+800 pages | MR | Zbl

[2] Evans, Lawrence C.; Gariepy, Ronald F. Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992, viii+268 pages | Zbl

[3] Federer, Herbert Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag New York Inc., New York, 1969, xiv+676 pages | MR

[4] Franchi, Bruno; Serapioni, Raul; Serra Cassano, Francesco Meyers–Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math., Volume 22 (1996) no. 4, pp. 859-890 | MR | Zbl

[5] Franchi, Bruno; Serapioni, Raul; Serra Cassano, Francesco Regular submanifolds, graphs and area formula in Heisenberg groups, Adv. Math., Volume 211 (2007) no. 1, pp. 152-203 | DOI | MR | Zbl

[6] Franchi, Bruno; Serapioni, Raul; Serra Cassano, Francesco Differentiability of intrinsic Lipschitz functions within Heisenberg groups, J. Geom. Anal., Volume 21 (2011) no. 4, pp. 1044-1084 | DOI | MR | Zbl

[7] Franchi, Bruno; Serapioni, Raul Paolo Intrinsic Lipschitz graphs within Carnot groups, J. Geom. Anal., Volume 26 (2016) no. 3, pp. 1946-1994 | DOI | MR | Zbl

[8] Julia, Antoine; Golo, Sebastiano Nicolussi; Vittone, Davide Area of intrinsic graphs and coarea formula in Carnot Groups (2020) (https://arxiv.org/abs/2004.02520)

[9] Karmanova, M.; Vodopyanov, S. A coarea formula for smooth contact mappings of Carnot–Carathéodory spaces, Acta Appl. Math., Volume 128 (2013), pp. 67-111 | DOI | MR | Zbl

[10] Kozhevnikov, Artem Propriétés métriques des ensembles de niveau des applications différentiables sur les groupes de Carnot, Ph. D. Thesis, Paris 11 (2015) (Available on the webpage https://tel.archives-ouvertes.fr/tel-01178864/document)

[11] Magnani, Valentino Differentiability and area formula on stratified Lie groups, Houston J. Math., Volume 27 (2001) no. 2, pp. 297-323 | MR | Zbl

[12] Magnani, Valentino On a general coarea inequality and applications, Ann. Acad. Sci. Fenn. Math., Volume 27 (2002) no. 1, pp. 121-140 | MR | Zbl

[13] Magnani, Valentino The coarea formula for real-valued Lipschitz maps on stratified groups, Math. Nachr., Volume 278 (2005) no. 14, pp. 1689-1705 | DOI | MR | Zbl

[14] Magnani, Valentino Blow-up of regular submanifolds in Heisenberg groups and applications, Cent. Eur. J. Math., Volume 4 (2006) no. 1, pp. 82-109 | DOI | MR | Zbl

[15] Magnani, Valentino Non-horizontal submanifolds and coarea formula, J. Anal. Math., Volume 106 (2008), pp. 95-127 | DOI | MR | Zbl

[16] Magnani, Valentino Area implies coarea, Indiana Univ. Math. J., Volume 60 (2011) no. 1, pp. 77-100 | DOI | MR | Zbl

[17] Magnani, Valentino Towards differential calculus in stratified groups, J. Aust. Math. Soc., Volume 95 (2013) no. 1, pp. 76-128 | DOI | MR | Zbl

[18] Magnani, Valentino Towards a theory of area in homogeneous groups (2018) (https://arxiv.org/abs/1810.08094)

[19] Magnani, Valentino Towards a theory of area in homogeneous groups, Calc. Var. Partial Differential Equations, Volume 58 (2019) no. 3, 91 | DOI | MR | Zbl

[20] Magnani, Valentino; Stepanov, Eugene; Trevisan, Dario A rough calculus approach to level sets in the Heisenberg group, J. Lond. Math. Soc. (2), Volume 97 (2018) no. 3, pp. 495-522 | DOI | MR | Zbl

[21] Monti, Roberto; Serra Cassano, Francesco Surface measures in Carnot–Carathéodory spaces, Calc. Var. Partial Differential Equations, Volume 13 (2001) no. 3, pp. 339-376 | DOI | MR | Zbl

[22] Pansu, Pierre Une inégalité isopérimétrique sur le groupe de Heisenberg, C. R. Acad. Sci. Paris Sér. I Math., Volume 295 (1982) no. 2, pp. 127-130 | MR | Zbl

[23] Pansu, Pierre Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2), Volume 129 (1989) no. 1, pp. 1-60 | DOI | MR | Zbl

[24] Pansu, Pierre On the quasisymmetric Hölder-equivalence problem for Carnot groups, Ann. Fac. Sci. Toulouse Math. (6), Volume 29 (2020) no. 4, pp. 951-969 | DOI | MR | Zbl

[25] Ricci, Fulvio Sub-Laplacians on nilpotent Lie groups (2002-2003) (unpublished lecture http://homepage.sns.it/fricci/papers/sublaplaciani.pdf)

[26] Serra Cassano, Francesco Some topics of geometric measure theory in Carnot groups, Geometry, Analysis and Dynamics on sub-Riemannian manifolds. Vol. 1 (EMS Ser. Lect. Math.), Eur. Math. Soc., Zürich, 2016, pp. 1-121 | MR | Zbl

Cited by Sources: