Nous démontrons une inégalité de type co-aire pour une fonction entre deux groupes de Carnot munis de distances homogènes. On suppose que la fonction est continûment différentiable au sens de Pansu avec différentielle continue. On suppose aussi que les ensembles de niveau de la fonction sont uniformément inférieurement Ahlfors-réguliers, et que la différentielle de Pansu est partout surjective.
We prove a coarea-type inequality for a continuously Pansu differentiable function acting between two Carnot groups endowed with homogeneous distances. We assume that the level sets of the function are uniformly lower Ahlfors regular and that the Pansu differential is everywhere surjective.
Révisé le :
Accepté le :
Publié le :
Keywords: Carnot groups, coarea formula, spherical measure, packing measure.
Mot clés : Groupe de Carnot, formule de co-aire, mesure spherique, mesure de packing.
Corni, Francesca 1
@article{AIF_2022__72_1_155_0, author = {Corni, Francesca}, title = {A reverse coarea-type inequality in {Carnot} groups}, journal = {Annales de l'Institut Fourier}, pages = {155--185}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {1}, year = {2022}, doi = {10.5802/aif.3474}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3474/} }
TY - JOUR AU - Corni, Francesca TI - A reverse coarea-type inequality in Carnot groups JO - Annales de l'Institut Fourier PY - 2022 SP - 155 EP - 185 VL - 72 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3474/ DO - 10.5802/aif.3474 LA - en ID - AIF_2022__72_1_155_0 ER -
%0 Journal Article %A Corni, Francesca %T A reverse coarea-type inequality in Carnot groups %J Annales de l'Institut Fourier %D 2022 %P 155-185 %V 72 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3474/ %R 10.5802/aif.3474 %G en %F AIF_2022__72_1_155_0
Corni, Francesca. A reverse coarea-type inequality in Carnot groups. Annales de l'Institut Fourier, Tome 72 (2022) no. 1, pp. 155-185. doi : 10.5802/aif.3474. https://aif.centre-mersenne.org/articles/10.5802/aif.3474/
[1] Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007, xxvi+800 pages | MR | Zbl
[2] Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992, viii+268 pages | Zbl
[3] Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag New York Inc., New York, 1969, xiv+676 pages | MR
[4] Meyers–Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math., Volume 22 (1996) no. 4, pp. 859-890 | MR | Zbl
[5] Regular submanifolds, graphs and area formula in Heisenberg groups, Adv. Math., Volume 211 (2007) no. 1, pp. 152-203 | DOI | MR | Zbl
[6] Differentiability of intrinsic Lipschitz functions within Heisenberg groups, J. Geom. Anal., Volume 21 (2011) no. 4, pp. 1044-1084 | DOI | MR | Zbl
[7] Intrinsic Lipschitz graphs within Carnot groups, J. Geom. Anal., Volume 26 (2016) no. 3, pp. 1946-1994 | DOI | MR | Zbl
[8] Area of intrinsic graphs and coarea formula in Carnot Groups (2020) (https://arxiv.org/abs/2004.02520)
[9] A coarea formula for smooth contact mappings of Carnot–Carathéodory spaces, Acta Appl. Math., Volume 128 (2013), pp. 67-111 | DOI | MR | Zbl
[10] Propriétés métriques des ensembles de niveau des applications différentiables sur les groupes de Carnot, Ph. D. Thesis, Paris 11 (2015) (Available on the webpage https://tel.archives-ouvertes.fr/tel-01178864/document)
[11] Differentiability and area formula on stratified Lie groups, Houston J. Math., Volume 27 (2001) no. 2, pp. 297-323 | MR | Zbl
[12] On a general coarea inequality and applications, Ann. Acad. Sci. Fenn. Math., Volume 27 (2002) no. 1, pp. 121-140 | MR | Zbl
[13] The coarea formula for real-valued Lipschitz maps on stratified groups, Math. Nachr., Volume 278 (2005) no. 14, pp. 1689-1705 | DOI | MR | Zbl
[14] Blow-up of regular submanifolds in Heisenberg groups and applications, Cent. Eur. J. Math., Volume 4 (2006) no. 1, pp. 82-109 | DOI | MR | Zbl
[15] Non-horizontal submanifolds and coarea formula, J. Anal. Math., Volume 106 (2008), pp. 95-127 | DOI | MR | Zbl
[16] Area implies coarea, Indiana Univ. Math. J., Volume 60 (2011) no. 1, pp. 77-100 | DOI | MR | Zbl
[17] Towards differential calculus in stratified groups, J. Aust. Math. Soc., Volume 95 (2013) no. 1, pp. 76-128 | DOI | MR | Zbl
[18] Towards a theory of area in homogeneous groups (2018) (https://arxiv.org/abs/1810.08094)
[19] Towards a theory of area in homogeneous groups, Calc. Var. Partial Differential Equations, Volume 58 (2019) no. 3, 91 | DOI | MR | Zbl
[20] A rough calculus approach to level sets in the Heisenberg group, J. Lond. Math. Soc. (2), Volume 97 (2018) no. 3, pp. 495-522 | DOI | MR | Zbl
[21] Surface measures in Carnot–Carathéodory spaces, Calc. Var. Partial Differential Equations, Volume 13 (2001) no. 3, pp. 339-376 | DOI | MR | Zbl
[22] Une inégalité isopérimétrique sur le groupe de Heisenberg, C. R. Acad. Sci. Paris Sér. I Math., Volume 295 (1982) no. 2, pp. 127-130 | MR | Zbl
[23] Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2), Volume 129 (1989) no. 1, pp. 1-60 | DOI | MR | Zbl
[24] On the quasisymmetric Hölder-equivalence problem for Carnot groups, Ann. Fac. Sci. Toulouse Math. (6), Volume 29 (2020) no. 4, pp. 951-969 | DOI | MR | Zbl
[25] Sub-Laplacians on nilpotent Lie groups (2002-2003) (unpublished lecture http://homepage.sns.it/fricci/papers/sublaplaciani.pdf)
[26] Some topics of geometric measure theory in Carnot groups, Geometry, Analysis and Dynamics on sub-Riemannian manifolds. Vol. 1 (EMS Ser. Lect. Math.), Eur. Math. Soc., Zürich, 2016, pp. 1-121 | MR | Zbl
Cité par Sources :