The main goal of this article is to compute the class of the divisor of obtained by taking the closure of the image of by the forgetful map. This is done using Porteous formula and the theory of test curves. For this purpose, we study the locus of meromorphic differentials of the second kind, computing the dimension of the map of these loci to and solving some enumerative problems involving such differentials in low genus. A key tool of the proof is the compactification of strata recently introduced by Bainbridge–Chen–Gendron–Grushevsky–Möller.
Le but principal de cet article est de calculer la classe du diviseur de qu’on obtient en prenant la fermeture de l’image de la strate par la fonction qui oublie la différentielle. Ceci est réalisé via la formule de Porteous et la théorie des courbes test. À cette fin, nous étudions certaines propriétés du lieu des différentielles méromorphes de seconde espèce, i.e. dont tous les résidus sont nuls. Nous calculons la dimension de l’image de ce lieu dans par l’application d’oubli pour tout et pour toute partition. De plus, nous résolvons certains problèmes énumératifs impliquant ces différentielles en petit genre. L’outil clef de la preuve est la compactification des strates de différentielles abéliennes récemment introduite par Bainbridge–Chen–Gendron–Grushevsky–Möller.
Revised:
Accepted:
Published online:
Keywords: Abelian differentials, Differentials of second kind, Moduli Space of curves, Deligne–Mumford compactification, Picard group
Mot clés : Différentielles abéliennes, Différentielles de seconde espèce, Espace des modules des courbes, Compactification de Deligne–Mumford compactification, Groupe de Picard
Castorena, Abel 1; Gendron, Quentin 2, 3
@article{AIF_2022__72_1_261_0, author = {Castorena, Abel and Gendron, Quentin}, title = {On the locus of genus 3 curves that admit meromorphic differentials with a zero of order 6 and a pole of order 2}, journal = {Annales de l'Institut Fourier}, pages = {261--299}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {1}, year = {2022}, doi = {10.5802/aif.3472}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3472/} }
TY - JOUR AU - Castorena, Abel AU - Gendron, Quentin TI - On the locus of genus 3 curves that admit meromorphic differentials with a zero of order 6 and a pole of order 2 JO - Annales de l'Institut Fourier PY - 2022 SP - 261 EP - 299 VL - 72 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3472/ DO - 10.5802/aif.3472 LA - en ID - AIF_2022__72_1_261_0 ER -
%0 Journal Article %A Castorena, Abel %A Gendron, Quentin %T On the locus of genus 3 curves that admit meromorphic differentials with a zero of order 6 and a pole of order 2 %J Annales de l'Institut Fourier %D 2022 %P 261-299 %V 72 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3472/ %R 10.5802/aif.3472 %G en %F AIF_2022__72_1_261_0
Castorena, Abel; Gendron, Quentin. On the locus of genus 3 curves that admit meromorphic differentials with a zero of order 6 and a pole of order 2. Annales de l'Institut Fourier, Volume 72 (2022) no. 1, pp. 261-299. doi : 10.5802/aif.3472. https://aif.centre-mersenne.org/articles/10.5802/aif.3472/
[1] Pixton’s formula and Abel-Jacobi theory on the Picard stack, 2020 (to appear in Acta Math.) | arXiv
[2] Compactification of strata of abelian differentials., Duke Math. J., Volume 167 (2018) no. 12, pp. 2347-2416 | MR | Zbl
[3] The moduli space of multi-scale differentials, 2019 | arXiv
[4] Connected components of the strata of the moduli space of meromorphic differentials., Comment. Math. Helv., Volume 90 (2015) no. 2, pp. 255-286 | DOI | MR | Zbl
[5] The image in the moduli space of curves of strata of meromorphic and quadratic differentials, Math. Z., Volume 298 (2021), pp. 975-988 | DOI | MR | Zbl
[6] Strata of abelian differentials and the Teichmüller dynamics, J. Mod. Dyn., Volume 7 (2013) no. 1, pp. 135-152 | DOI | Zbl
[7] Principal boundary of moduli spaces of abelian and quadratic differentials., Ann. Inst. Fourier, Volume 69 (2019) no. 1, pp. 81-118 | DOI | Numdam | MR | Zbl
[8] Loci of curves with subcanonical points in low genus., Math. Z., Volume 284 (2016) no. 3-4, pp. 683-714 | DOI | MR | Zbl
[9] Families of Weierstrass points., Duke Math. J., Volume 58 (1989) no. 2, pp. 317-346 | MR | Zbl
[10] admcycles – a Sage package for calculations in the tautological ring of the moduli space of stable curves, J. Softw. Algebra Geom., Volume 11 (2021) no. 1, pp. 89-112 | DOI | MR | Zbl
[11] The stable hyperelliptic locus in genus 3: an application of Porteous formula., J. Pure Appl. Algebra, Volume 220 (2016) no. 2, pp. 845-856 | DOI | MR | Zbl
[12] A conjectural description of the tautological ring of the moduli space of curves, Moduli of curves and abelian varieties. The Dutch intercity seminar on moduli, Vieweg, 1999, pp. 109-129 | DOI | Zbl
[13] The Deligne-Mumford and the Incidence Variety Compactifications of the Strata of ., Ann. Inst. Fourier, Volume 68 (2018) no. 3, pp. 1169-1240 | DOI | MR | Zbl
[14] Sur les noeuds de Weierstraß, Ann. Henri Lebesgue, Volume 4 (2021), pp. 571-589 | DOI | MR | Zbl
[15] Différentielles abéliennes à singularités prescrites, J. Éc. Polytech., Math., Volume 8 (2021), pp. 1397-1428 | DOI | Zbl
[16] On the Kodaira dimension of the moduli space of curves. II: The even-genus case., Invent. Math., Volume 75 (1984), pp. 437-466 | DOI | MR | Zbl
[17] Slopes of effective divisors on the moduli space of stable curves., Invent. Math., Volume 99 (1990) no. 2, pp. 321-355 | DOI | MR | Zbl
[18] Moduli of curves, Graduate Texts in Mathematics, 187, Springer, 1998, xiv+366 pages | Zbl
[19] On the Kodaira dimension of the moduli space of curves., Invent. Math., Volume 67 (1982), pp. 23-86 | DOI | MR | Zbl
[20] Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete, 9, Springer, 1956 | Zbl
[21] Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Springer, 2000, xxiv+249 pages | DOI | Zbl
[22] Rational billiards and flat structures., Handbook of dynamical systems. Volume 1A, North-Holland, 2002, pp. 1015-1089 | DOI | Zbl
[23] Teichmüller curves, mainly from the viewpoint of algebraic geometry, Moduli spaces of Riemann surfaces (IAS/Park City Mathematics Series), Volume 20, American Mathematical Society, 2011, pp. 267-318 | DOI | Zbl
[24] Divisorial strata of abelian differentials., Int. Math. Res. Not., Volume 2017 (2017) no. 6, pp. 1717-1748 | MR | Zbl
[25] Strata of differentials of the second kind, positivity and irreducibility of certain Hurwitz spaces, 2019 | arXiv
[26] Cohomology classes of strata of differentials., Geom. Topol., Volume 23 (2019) no. 3, pp. 1085-1171 | DOI | MR | Zbl
Cited by Sources: