On the locus of genus 3 curves that admit meromorphic differentials with a zero of order 6 and a pole of order 2
Annales de l'Institut Fourier, Volume 72 (2022) no. 1, pp. 261-299.

The main goal of this article is to compute the class of the divisor of ¯ 3 obtained by taking the closure of the image of Ω 3 (6;-2) by the forgetful map. This is done using Porteous formula and the theory of test curves. For this purpose, we study the locus of meromorphic differentials of the second kind, computing the dimension of the map of these loci to g and solving some enumerative problems involving such differentials in low genus. A key tool of the proof is the compactification of strata recently introduced by Bainbridge–Chen–Gendron–Grushevsky–Möller.

Le but principal de cet article est de calculer la classe du diviseur de ¯ 3 qu’on obtient en prenant la fermeture de l’image de la strate Ω 3 (6;-2) par la fonction qui oublie la différentielle. Ceci est réalisé via la formule de Porteous et la théorie des courbes test. À cette fin, nous étudions certaines propriétés du lieu des différentielles méromorphes de seconde espèce, i.e. dont tous les résidus sont nuls. Nous calculons la dimension de l’image de ce lieu dans g par l’application d’oubli pour tout g et pour toute partition. De plus, nous résolvons certains problèmes énumératifs impliquant ces différentielles en petit genre. L’outil clef de la preuve est la compactification des strates de différentielles abéliennes récemment introduite par Bainbridge–Chen–Gendron–Grushevsky–Möller.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3472
Classification: 30F30, 14H10, 32G15, 14H45
Keywords: Abelian differentials, Differentials of second kind, Moduli Space of curves, Deligne–Mumford compactification, Picard group
Mot clés : Différentielles abéliennes, Différentielles de seconde espèce, Espace des modules des courbes, Compactification de Deligne–Mumford compactification, Groupe de Picard

Castorena, Abel 1; Gendron, Quentin 2, 3

1 Centro de Ciencias Matemáticas-UNAM, Antigua Car. a Pátzcuaro 8701, Col. Ex Hacienda San José de la Huerta, Morelia, Mich., México
2 Centro de Ciencias Matemáticas-UNAM, Antigua Car. a Pátzcuaro 8701, Col. Ex Hacienda San José de la Huerta, Morelia, Mich. (México)
3 Centro de Investigación en Matemáticas, Guanjuato, Gto., AP 402, CP 36000 (México)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2022__72_1_261_0,
     author = {Castorena, Abel and Gendron, Quentin},
     title = {On the locus of genus 3 curves that admit meromorphic differentials with a zero of order 6 and a pole of order 2},
     journal = {Annales de l'Institut Fourier},
     pages = {261--299},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {72},
     number = {1},
     year = {2022},
     doi = {10.5802/aif.3472},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3472/}
}
TY  - JOUR
AU  - Castorena, Abel
AU  - Gendron, Quentin
TI  - On the locus of genus 3 curves that admit meromorphic differentials with a zero of order 6 and a pole of order 2
JO  - Annales de l'Institut Fourier
PY  - 2022
SP  - 261
EP  - 299
VL  - 72
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3472/
DO  - 10.5802/aif.3472
LA  - en
ID  - AIF_2022__72_1_261_0
ER  - 
%0 Journal Article
%A Castorena, Abel
%A Gendron, Quentin
%T On the locus of genus 3 curves that admit meromorphic differentials with a zero of order 6 and a pole of order 2
%J Annales de l'Institut Fourier
%D 2022
%P 261-299
%V 72
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3472/
%R 10.5802/aif.3472
%G en
%F AIF_2022__72_1_261_0
Castorena, Abel; Gendron, Quentin. On the locus of genus 3 curves that admit meromorphic differentials with a zero of order 6 and a pole of order 2. Annales de l'Institut Fourier, Volume 72 (2022) no. 1, pp. 261-299. doi : 10.5802/aif.3472. https://aif.centre-mersenne.org/articles/10.5802/aif.3472/

[1] Bae, Younghan; Holmes, David; Pandharipande, Rahul; Schmitt, Johannes; Schwarz, Rosa Pixton’s formula and Abel-Jacobi theory on the Picard stack, 2020 (to appear in Acta Math.) | arXiv

[2] Bainbridge, Matt; Chen, Dawei; Gendron, Quentin; Grushevsky, Samuel; Möller, Martin Compactification of strata of abelian differentials., Duke Math. J., Volume 167 (2018) no. 12, pp. 2347-2416 | MR | Zbl

[3] Bainbridge, Matt; Chen, Dawei; Gendron, Quentin; Grushevsky, Samuel; Möller, Martin The moduli space of multi-scale differentials, 2019 | arXiv

[4] Boissy, Corentin Connected components of the strata of the moduli space of meromorphic differentials., Comment. Math. Helv., Volume 90 (2015) no. 2, pp. 255-286 | DOI | MR | Zbl

[5] Bud, Andrei The image in the moduli space of curves of strata of meromorphic and quadratic differentials, Math. Z., Volume 298 (2021), pp. 975-988 | DOI | MR | Zbl

[6] Chen, Dawei Strata of abelian differentials and the Teichmüller dynamics, J. Mod. Dyn., Volume 7 (2013) no. 1, pp. 135-152 | DOI | Zbl

[7] Chen, Dawei; Chen, Qile Principal boundary of moduli spaces of abelian and quadratic differentials., Ann. Inst. Fourier, Volume 69 (2019) no. 1, pp. 81-118 | DOI | Numdam | MR | Zbl

[8] Chen, Dawei; Tarasca, Nicola Loci of curves with subcanonical points in low genus., Math. Z., Volume 284 (2016) no. 3-4, pp. 683-714 | DOI | MR | Zbl

[9] Cukierman, Fernando Families of Weierstrass points., Duke Math. J., Volume 58 (1989) no. 2, pp. 317-346 | MR | Zbl

[10] Delecroix, Vincent; Schmitt, Johannes; Zelm, Jason van admcycles – a Sage package for calculations in the tautological ring of the moduli space of stable curves, J. Softw. Algebra Geom., Volume 11 (2021) no. 1, pp. 89-112 | DOI | MR | Zbl

[11] Esteves, Eduardo The stable hyperelliptic locus in genus 3: an application of Porteous formula., J. Pure Appl. Algebra, Volume 220 (2016) no. 2, pp. 845-856 | DOI | MR | Zbl

[12] Faber, Carel A conjectural description of the tautological ring of the moduli space of curves, Moduli of curves and abelian varieties. The Dutch intercity seminar on moduli, Vieweg, 1999, pp. 109-129 | DOI | Zbl

[13] Gendron, Quentin The Deligne-Mumford and the Incidence Variety Compactifications of the Strata of Ω g ., Ann. Inst. Fourier, Volume 68 (2018) no. 3, pp. 1169-1240 | DOI | MR | Zbl

[14] Gendron, Quentin Sur les noeuds de Weierstraß, Ann. Henri Lebesgue, Volume 4 (2021), pp. 571-589 | DOI | MR | Zbl

[15] Gendron, Quentin; Tahar, Guillaume Différentielles abéliennes à singularités prescrites, J. Éc. Polytech., Math., Volume 8 (2021), pp. 1397-1428 | DOI | Zbl

[16] Harris, Joe On the Kodaira dimension of the moduli space of curves. II: The even-genus case., Invent. Math., Volume 75 (1984), pp. 437-466 | DOI | MR | Zbl

[17] Harris, Joe; Morrison, Ian Slopes of effective divisors on the moduli space of stable curves., Invent. Math., Volume 99 (1990) no. 2, pp. 321-355 | DOI | MR | Zbl

[18] Harris, Joe; Morrison, Ian Moduli of curves, Graduate Texts in Mathematics, 187, Springer, 1998, xiv+366 pages | Zbl

[19] Harris, Joe; Mumford, David On the Kodaira dimension of the moduli space of curves., Invent. Math., Volume 67 (1982), pp. 23-86 | DOI | MR | Zbl

[20] Hirzebruch, Friedrich Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete, 9, Springer, 1956 | Zbl

[21] Hurwitz, Adolf Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Springer, 2000, xxiv+249 pages | DOI | Zbl

[22] Masur, Howard; Tabachnikov, Serge Rational billiards and flat structures., Handbook of dynamical systems. Volume 1A, North-Holland, 2002, pp. 1015-1089 | DOI | Zbl

[23] Möller, Martin Teichmüller curves, mainly from the viewpoint of algebraic geometry, Moduli spaces of Riemann surfaces (IAS/Park City Mathematics Series), Volume 20, American Mathematical Society, 2011, pp. 267-318 | DOI | Zbl

[24] Mullane, Scott Divisorial strata of abelian differentials., Int. Math. Res. Not., Volume 2017 (2017) no. 6, pp. 1717-1748 | MR | Zbl

[25] Mullane, Scott Strata of differentials of the second kind, positivity and irreducibility of certain Hurwitz spaces, 2019 | arXiv

[26] Sauvaget, Adrien Cohomology classes of strata of differentials., Geom. Topol., Volume 23 (2019) no. 3, pp. 1085-1171 | DOI | MR | Zbl

Cited by Sources: