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ON THE LOCUS OF GENUS 3 CURVES THAT ADMIT
MEROMORPHIC DIFFERENTIALS WITH A ZERO OF

ORDER 6 AND A POLE OF ORDER 2

by Abel CASTORENA & Quentin GENDRON (*)

Abstract. — The main goal of this article is to compute the class of the di-
visor of M3 obtained by taking the closure of the image of ΩM3(6;−2) by the
forgetful map. This is done using Porteous formula and the theory of test curves.
For this purpose, we study the locus of meromorphic differentials of the second
kind, computing the dimension of the map of these loci to Mg and solving some
enumerative problems involving such differentials in low genus. A key tool of the
proof is the compactification of strata recently introduced by Bainbridge–Chen–
Gendron–Grushevsky–Möller.
Résumé. — Le but principal de cet article est de calculer la classe du diviseur de

M3 qu’on obtient en prenant la fermeture de l’image de la strate ΩM3(6;−2) par la
fonction qui oublie la différentielle. Ceci est réalisé via la formule de Porteous et la
théorie des courbes test. À cette fin, nous étudions certaines propriétés du lieu des
différentielles méromorphes de seconde espèce, i.e. dont tous les résidus sont nuls.
Nous calculons la dimension de l’image de ce lieu dansMg par l’application d’oubli
pour tout g et pour toute partition. De plus, nous résolvons certains problèmes
énumératifs impliquant ces différentielles en petit genre. L’outil clef de la preuve
est la compactification des strates de différentielles abéliennes récemment introduite
par Bainbridge–Chen–Gendron–Grushevsky–Möller.

1. Introduction

The birational geometry of the moduli space Mg of curves of genus g
is an important topic in algebraic geometry. A way to understand it, is
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Deligne–Mumford compactification, Picard group.
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by studying the effective and ample divisors on Mg. For example, Har-
ris and Mumford [16, 19] use the geometric properties of special classes of
these divisors to compute, for genus g > 23, the Kodaira dimension ofMg.
Still many interesting questions related to the birational geometry ofMg

remain. To give an example, it is an open problem to know if the slope con-
jecture [17] holds asymptotically. In order to obtain new effective divisors
inMg that help to understand more aspects of its geometry, we can take
the projection of strata of abelian differentials to Mg. The study of the
divisors coming from holomorphic strata has been carried out in [24], but
the case of meromorphic strata is still completely open. The goal of this
article is to give the first steps in this direction, that is, we present new
techniques to study these divisors in the first interesting and non-trivial
case.
More precisely, let X be a smooth projective irreducible complex curve

of genus g and KX be the canonical line bundle on X. The global sec-
tions of KX are the holomorphic differentials, and they form a vector space
H0(X,KX) of dimension g. A non-zero holomorphic differential ω over a
curve X induces a translation structure on the complement of the zeroes
of ω which can be realized as a plane polygon with certain side identifica-
tions by translations. Hence the pair (X,ω) is called indistinctly a transla-
tion surface or an abelian differential (see for example [22, 23]).
Let ΩMg be the moduli space of abelian differentials (X,ω) of genus g.

This forms a vector bundle ΩMg → Mg whose fiber on X ∈ Mg is the
space H0(X,KX), which is called the Hodge bundle. Let µ = (a1, . . . , an)
a positive partition of 2g − 2, that is, the integers ai ∈ Z>0 satisfy the
equation

∑n
j=1 aj = 2g − 2. The stratum of abelian differentials ΩMg(µ)

of type µ parametrises all couples (X,ω) ∈ ΩMg with prescribed zeroes of
order ai at distinct points zi ∈ X for i = 1, . . . , n.
The above construction can be extended to the case of meromorphic

abelian differentials. For every partition µ = (a1, . . . , an;−b1, . . . ,−bp) of
2g − 2 with ai, bj > 1 there is a moduli space ΩMg(µ) parametrising the
pairs (X,ω), where X is a genus g curve and ω a meromorphic differential
with zeroes of order ai at points zi and poles of order bj at points wj . More
details on the construction are given at the beginning of Section 2.
From the projection map ΩMg → Mg we have a projective bundle

P(ΩMg) over Mg with fibre Pg−1. The image of the stratum ΩMg(µ)
in P(Mg) is called the projective stratum PΩMg(µ). Similarly we can
define the projective strata in the meromorphic case. In both cases, the
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projective strata PΩMg(µ) parametrize abelian differentials modulo mul-
tiplication by non-zero complex scalars.
There is a natural map π : ΩMg(µ) → Mg which factors through the

space PΩMg(µ) forgetting the differential. We denote by Mg(µ) the im-
age of the stratum ΩMg(µ) inMg by π and byMg(µ) its closure in the
Deligne–Mumford moduli space of stable curves Mg. These loci are in-
teresting subloci of Mg, but only a few results on them are known. The
dimension of (the irreducible components of)Mg(µ) have been computed
in [13] in the holomorphic case and [5] in the meromorphic case. Moreover,
in the holomorphic case, when the locusMg(µ) is a divisor inMg, its class
has been computed in [24].
In this paper, we study the lociMg(µ) in the case of strata of meromor-

phic differentials. When these loci are divisors inMg, we want to compute
their class in the Picard group. In order to present our methods in a clear
way, we treat as an example the stratum ΩM3(6;−2). Recall that the
Picard group of M3 is generated by the first Chern class λ of the Hodge
bundle, and by the two boundary divisors δ0 and δ1 being the classes of the
closures of the locus of irreducible singular curves and the locus obtained
by gluing a smooth genus 1 curve to a smooth genus 2 curve respectively.
Our main result is the following.

Theorem 1.1. — The class ofM3(6;−2) in Pic(M3)⊗Q is

(1.1)
[
M3(6;−2)

]
= 17108λ− 1792δ0 − 4396δ1 .

The computation of the restriction of
[
M3(6;−2)

]
to Pic(M3)⊗Q = Q·λ

using Porteous formula is done in Section 4, thus giving the coefficient of λ
in Equation (1.1). For the class in Pic(M3)⊗Q we use the theory of test
curves and degeneration techniques in Section 5.
In order to perform the test curve in Section 5.3, some enumerative

problems related to abelian differentials naturally appear. In particular, we
consider the differentials with zero residues at all poles. These differentials
are classically called differentials of the second kind. We denote by ΩRg(µ)
the locus of ΩMg(µ) parametrizing the meromorphic differentials of type µ
of the second kind. In Section 3 we compute the dimension of the image of
the space ΩRg(µ) by the forgetful map inside the moduli space of curves.

Theorem 1.2. — Let µ = (a1, . . . , an;−b1, . . . ,−bp) be a partition of
2g − 2 such that p > 2 and bi > 2 for all i.

• If g = 1 the dimension of the projection of every component of
ΩR1(µ) toM1,1 forgetting any subset of cardinal n+ p− 1 of the
singularities is 1.
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264 Abel CASTORENA & Quentin GENDRON

• If g > 2, the dimension of the projection of ΩRg(µ) to Mg is
min {3g − 3; 2g + n− 2}.

After giving some general results on families of stable curves and multi-
scale differentials in Section 5.1, we solve some enumerative problems on
differentials of the second kind in Section 5.2. The most interesting enu-
merative problem that we solve is the following one.

Theorem 1.3. — The map π : PΩR1(6;−2,−2,−2)→M1,1 forgetting
the polar points is an unramified cover of degree 7.

This result can be interpreted in the following way. On a fixed curve X of
genus 1 there exist 7 differentials in ΩR1(6;−2,−2,−2) modulo translation
on X and multiplication by C∗ of the differential.
To conclude, note that according to [4] the strata of ΩM3(6;−2) has

three connected components. Each component gives rise to an irreducible
component of the divisor M3(6;−2). We make some comments on this
problem at the end of this paper (see Corollary 5.10) and in a future work
we want to study each of these irreducible components.

Related works and possible applications

The study of the geometry of the strata of differentials recently at-
tracted lots of interest. Sauvaget [26] computes the Poincaré-dual coho-
mology classes of all strata in an inductive way. Extending the theory of
the double ramification cycle, another group of authors computes in [1]
the class of these strata in the tautological ring. Using this last result, our
computation has been checked using sage package admcycles [10] and can
be similarly checked using the results of Sauvaget. On the other hand, our
method gives some geometric information that seems difficult to obtain by
their methods. Moreover, we believe that the generalisation of our result
to other meromorphic strata can make more effective the computations of
the software. Hence using both point of view on the strata, we should be
able to deduce interesting properties of the birational geometry ofMg.

Acknowledgements

We want to thank warmly Johannes Schmitt for detecting errors with
the program [10] and for stimulating discussions leading to the corrected
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version. We thank Dawei Chen, Noe Bárcenas and Scott Mullane for their
valuable help on several mathematical topics and the anonymous referee for
useful comments. Moreover we thank Miguel Magaña Lemus and Gerardo
Tejero Gómez for technical support.

2. Background

In this section we recall some known facts, first about the multi-scale
differentials and then about Chern classes of the moduli space.

First we give some common background. Let consider the moduli space
of smooth m-pointed genus g curves Mg,m. Let π : X → Mg,m be the
universal curve overMg,m, and let ωπ := ωX|Mg,m

be the relative dualizing
sheaf. We have that ΩMg,m := π∗(ωπ) is a vector bundle overMg,m, that
is the pull-back of the Hodge bundle.
Let n, p be strictly positive integers with m = n + p. We denote by

µ = (a1, . . . , an;−b1, . . . ,−bp) a m-tuple of integers such that ai, bj > 1
and

∑n
j=1 aj−

∑p
i=1 bi = 2g−2. We study meromorphic differentials η with

zeroes of order ai at the points zi and poles of order bj at the points wj ,
i.e. such that (η) = (η)0− (η)∞ =

∑
ajzj−

∑
biwi. We will usually write z

for the tuple of points (z1, . . . , zn;w1, . . . , wp). For j = 1, . . . ,m, let Dj be
the sections of the universal curve corresponding to the marked points zj if
j 6 n and wn+j if j > n+ 1. The strata ΩMg(µ) of abelian differentials of
type µ is defined to be the subspace of π∗(ωπ)(

∑p
i=1 biDn+i) of differentials

which vanish to order ai at the sections Di up to the action of the group
permuting the singularities of the same order.

2.1. The multi-scale differentials

In this section we recall some notions that we need about twisted and
multi-scale differentials as introduced in [2] and [3].

We begin by recalling the notion of twisted differentials on which is based
the more sophisticated notion of multi-scale differentials.

Definition 2.1. — A twisted differential ω of type µ (compatible with
a full order 4) on a stable n-pointed curve (X, z) is a collection of (possibly
meromorphic) differentials ωv on the irreducible components Xv of X and
a full order 4 on the set of these components, such that no ωv is identically
zero, with the following properties:

TOME 72 (2022), FASCICULE 1
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(0) (Vanishing as prescribed) Each differential ωv is holomorphic and
non-zero outside of the nodes and marked points of Xv. Moreover,
if a marked point zj lies on Xv, then ordzj

ωv = mj .
(1) (Matching orders) For any node of X that identifies q1 ∈ Xv1 with

q2 ∈ Xv2 ,
ordq1 ωv1 + ordq2 ωv2 = −2 .

(2) (Matching residues at simple poles) If at a node that identifies q1 ∈
Xv1 with q2 ∈ Xv2 the condition ordq1 ωv1 = ordq2 ωv2 = −1 holds,
then Resq1 ωv1 + Resq2 ωv2 = 0.

(3) (Partial order) If a node of X identifies q1 ∈ Xv1 with q2 ∈ Xv2 ,
then v1 < v2 if and only if ordq1 ωv1 > −1. Moreover, v1 � v2 if and
only if ordq1 ωv1 = −1.

(4) (Global residue condition) For every level i and every connected
component Y of X>i that does not contain a pole wi the following
condition holds. Let q1, . . . , qb denote the set of all nodes where Y
intersects X(i). Then

b∑
j=1

Resq−
j
ω = 0 ,

where by definition q−j ∈ X(i).

Note that by point (1) of Definition 2.1, at each node of X the twisted
differential ω, either has two simple poles or has a zero of order k on one
branch of the node and a pole of order −k − 2 on the other branch. The
prong number at a node is 0 in the first case and κ = k + 1 in the second
case.
Now we give the definition of a multi-scale differential, referring to [3]

for details.

Definition 2.2. — A multi-scale differential (X, z, ω,4, σ) of type µ is
a stable pointed curve (X, z) with z = (z1, . . . , zn;w1, . . . , wp), a twisted
differential ω of type µ over X compatible with the total order 4 and a
global prong-matching σ.

The notion of prong-matching is introduced and discussed in great details
in [3]. For us it will not be crucial to know its precise definition. It is
sufficient to now that it gives a way to glue the differentials at the nodes.
We will use mainly the facts that it is a finite data and that the number of
possible classes of prong-matching is computable. In the important case of
a multi-scale differential with two levels, this number is

(2.1) κ = gcd(κi) ,
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where i runs through the set of nodes of the multi-scale differential.
The importance of the notion of multi-scale differentials comes from the

following theorem proved in [3].

Theorem 2.3. — The stratum ΩMg(µ) is an open dense subset of the
moduli space ΞMg(µ) of the multi-scale differentials of type µ. Moreover,
the projectivisation of ΞMg(µ) is a compactification of the projecivized
stratum PΩMg(µ).

Moreover, there exists a good system of coordinates near the boundary
of this space (see [3, Section 9]). The perturbed periods coordinates give
a way to understand the families of degenerating differentials with special
properties. In this article, the relevant information that we need is that near
a given multi-scale differential, the top differential is a small deformation
away from the nodal points, while on the lower levels the differentials are
multiplied by

∏
tai
i , where ti is a local parameter for each level of the

multi-scale differential and ai is an integer defined in [3, Equation (6.7)].
Moreover, we know the local equations of the nodes in the universal family.
In the useful case of a multi-scale differential with two levels we can be

more specific. The local equation of the family at the node ni is xiyi = tai

for a local parameter t and with ai = lcm(κn)/κi.

2.2. Chern classes

The goal of this section is to recall some facts about Chern classes on
the moduli space of curves. In order to make this section self contained, we
begin by recalling some well-know facts of algebraic geometry.

2.2.1. Some Notation

Let f : Z ↪→ Y be a closed immersion of schemes, and denote the sheaf
of Kähler differentials of Z over Y by Ω1

Z|Y . We have the exact sequence

0 −→ IZ −→ OY −→ OZ −→ 0 ,

where I = IZ is the ideal sheaf of Z and OY /IZ = OZ . Let F be a locally
free sheaf on Y , then tensoring the above exact sequence by F we get

0 −→ IZ ⊗ F −→ F −→ FZ −→ 0 ,

where FZ = F ⊗OZ . The conormal sheaf N∨Z|Y of f is the quasi-coherent
OZ-module I/I2 and the normal sheaf is NZ|Y = HomOZ

((I/I2),OZ).

TOME 72 (2022), FASCICULE 1



268 Abel CASTORENA & Quentin GENDRON

Suppose now that Z is an effective Cartier divisor and let F = OY (Z) the
associated invertible sheaf, then we have an exact sequence

0 −→ OY −→ OY (Z) −→ OZ(Z) −→ 0 ,

where OZ(Z) = OY (Z)|Z . In this case we have that N∨Z|Y = OY (−Z)|Z
and NZ|Y = OY (Z)|Z . From the exact sequence

0 −→ OY (−2Z) −→ OY (−Z) −→ OY (−Z)|Z −→ 0

we have that

Ω1
Z|Y ' I/I

2 = OY (−Z)/OY (−2Z) = OY (−Z)|Z = N∨Z|Y
and

(2.2) (Ω1
Z|Y )∨ ' OY (Z)/OY = OY (Z)|Z = NZ|Y .

We recall that if A is a ring and N ⊂ M ⊂ L are A-modules, then there
is the isomorphism L/M ' (L/N)/(M/N). In our case we have the inclu-
sion OY ⊂ OY ((n − 1)Z) ⊂ OY (nZ) of coherent sheaves on Y . Hence we
consider for every n > 1 the quotient sheaves to get the following exact
sequences on Y

(2.3) 0 −→ OY ((n− 1)Z)/OY −→ OY (nZ)/OY
−→ OY (nZ)/OY ((n− 1)Z) −→ 0 .

2.2.2. The setting

Given any family π : X → B of curves of genus g, we denote by ωX|B
the relative dualizing sheaf of the family π. When the family π contains
singular fibers, we have that ωX|B is equal to Ω1

X|B away of the nodes of the
fibers, thus, when the family is a family of smooth curves we can identify
ωX|B ' Ω1

X|B .
Consider the universal curve π0 : X = Mg,1 → Mg. For g > 2 this

map is smooth of relative dimension one. We denote by Ω the relative
dualizing sheaf ωX|Mg

associated to π0. Let πn : Xn →Mg be the n-fold
fiber product of X over Mg. The space Xn parametrises smooth genus g
curves with n-tuples of not necessary distinct points. Note that the fiber
over X ∈Mg of πn is the direct product Xn = X × · · · ×X and the fiber
ofMg,n →Mg is the complement of the diagonal ∆ in Xn, where

∆ = {(X, q1; . . . , qn) : qi = qj for at least two indices i 6= j} .

Let ∆ij be the diagonal corresponding the points where qi = qj for two
indices i 6= j. Let πi : Xn → X be the forgetful map which forgets all but
the i-th factor and let define the sheaf Ωi = π∗i (Ω).
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2.2.3. The Chern classes for π∗(Ω2(2∆))

We restrict our attention to the case n = 1, that is, we consider the pro-
jection π = π1 : X 2 → X on the first factor. We writeO = OX 2 and consider
the diagonal of the fiber product on X 2, that is, ∆: X → X 2 = X ×Mg

X ,
that we identify ∆(X ) ' X . We write ∆ to denote the image ∆(X ). From
identifications in Equation (2.2) and from the exact sequence (2.3) with
Z = ∆ and Y = X 2, we have that the normal bundle N∆|X 2 satisfies

(2.4) N∆|X 2 = OX 2(∆)/OX 2 ' (Ω1
∆|X 2)∨

' (π∗2(Ω1
X|Mg

))∨ = (Ω2)∨ = π∗2(Ω)∨ .

With this notation, we twist the sequence (2.3) for n = 2 by Ω2 = π∗2(Ω)
to get the exact sequence

0 −→ Ω2 ⊗ (Ω1
∆|X 2)∨ −→ Ω2 ⊗ (O(2∆)/O) −→ Ω2 ⊗ ((Ω1

∆|X 2)2)∨ −→ 0 .

Using Equation (2.4) the previous exact sequence reads

0 −→ OX 2 −→ Ω2 ⊗ (O(2∆)/O) −→ (Ω2)∨ −→ 0 .

Pushing down this exact sequence to X with π∗ we have the following exact
sequence of coherent sheaves

(2.5) 0 −→ F0 −→ F1 −→ F2 −→ F3 −→ 0 ,

where F0 := π∗(OX 2) = OX , F1 := π∗(Ω2⊗(O(2∆)/O)), F2 := π∗(Ω∨2 ) and
F3 := R1π∗OX 2 = OX . The equality R1π∗(Ω2 ⊗ O(2∆)/O)) = 0 follows
from the fact that Ω2 ⊗ O((b − 1)∆)/O)) is supported on ∆ (since the
latter is isomorphic to Ω2(2∆)|2∆). The fiber of F1 at a point (X, p) ∈ X is
the two-dimensional vector space of sectionsH0(X,KX(2p)/KX). Similarly
the fibers of F0 and F3 at (X, p, q) are H0(X,OX) and the fiber of F2 is
H0(X,K∨X) = {0}. So the exact sequence (2.5) reads

0 −→ OX −→ F1 −→ π∗(Ω∨2 ) −→ OX −→ 0 .

We split this sequence into the two short exact sequences

0 −→ OX −→ F1 −→ Im −→ 0

and
0 −→ Coker −→ OX −→ 0 ,

where Im and Coker are the image and cokernel of the map F1 → π∗(Ω∨2 ).
The fact that c(OX ) = 1 and the additivity of Chern classes imply that
c(Im) = c(π∗(Ω∨2 )). Hence the Chern classes satisfy

(2.6) c(F1) = c(OX 2)c(π∗(Ω∨2 )) = 1−K1 ,
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where, following the notation in [12], we have that K1 = c1(π∗(Ω∨2 )) is the
first Chern class.
Let E = π∗(Ω2) and E2 = π∗(Ω2 ⊗ OX 2(2∆)) = π∗(Ω2(2∆)). Since

R1π∗Ω2 = OX , we have the exact sequence

0 −→ E −→ E2 −→ F1 −→ OX −→ 0 .

Using the same trick as previously this implies that the Chern classes satisfy
the equality c(E2) = c(E)c(F1) = (1+λ)(1−K1). This leads to the following
result.

Proposition 2.4. — The Chern class of E2 is

c(E2) = 1 +
∑
i>1

(λi − λi−1K1) .

To conclude, let us remark that we can define a similar vector bundle
on Xn. It suffices to consider the exact sequence

0 −→ OXn −→ Ω2 ⊗ (O(2∆n,n+1)/O) −→ (Ω2)∨ −→ 0

and to define E2 to be the push-forward by the map forgetting the last point
of the middle term. Then Proposition 2.4 remains true in this generalised
context.

2.2.4. The Chern classes for π∗(Ω2(b∆)) with b > 3

Now we want to extend the result of the formula of the Chern class of
Proposition 2.4 to the bundle Eb := π∗(Ω2(b∆)) on X for all b > 3. Note
that the fiber of Eb at a point (X, p) ∈ X is the space H0(X,KX(bp)) of
differentials on X that have at worst poles of order b at p.

As in the previous subsection R1π∗(Ω2 ⊗ O((b − 1)∆)/O)) = 0 since
the sheaf is supported on the diagonal. Using this fact, twisting the exact
sequence (2.3) by Ω2 and using Equation (2.4) we obtain the exact sequence

0→ π∗(Ω2⊗O((b−1)∆)/O))→ π∗(Ω2⊗O(b∆)/O))→ π∗((Ω⊗b−1
2 )∨)→ 0

on X . This gives a recursive formula for Chern classes of Eb as follow

c(π∗(Ω2 ⊗O(b∆)/O))) = c(π∗(Ω2 ⊗O((b− 1)∆)/O))c(π∗((Ω⊗b−1
2 )∨)) .

Since the base case c(π∗(Ω2 ⊗ O(2∆)/O))) = (1 − K1) is given by equa-
tion (2.6), we obtain

(2.7) c(π∗(Ω2 ⊗O(b∆)/O))) =
b−1∏
i=1

(1− iK1) .

ANNALES DE L’INSTITUT FOURIER



CURVES WITH A DIFFERENTIAL WITH SINGULARITIES (6;−2) 271

Let X be a smooth curve and p ∈ X. For all positive integer b we have
the following exact sequence

0 −→ KX −→ KX(bp) −→ KX(bp)|bp −→ 0 .

In order to globalize this exact sequence to the universal curve X we proceed
as follow. On X 2 we have the following exact sequence

(2.8) 0 −→ O −→ O(b∆) −→ (O(b∆))|b∆ −→ 0 .

Tensoring with Ω2 and pushing down to X we obtain, usuing the fact that
R1π∗Ω2 = OX , the following exact sequence

0 −→ π∗(Ω2) −→ π∗(Ω2(b∆)) −→ π∗(Ω2(b∆)|b∆) −→ OX −→ 0 .

Since the exact sequence (2.8) gives that OX 2(b∆)/OX 2 = O(b∆)|b∆,
we identify the vector bundle π∗(Ω2(b∆)|b∆) with π∗(Ω2 ⊗ (O(b∆)/O)).
Hence using the same trick as in the case b = 2, Equation (2.7) gives the
class c(Eb).

Proposition 2.5. — The Chern class of Eb is

c(Eb) = (1 + λ)
b−1∏
i=1

(1− iK1) .

Finally note that, as in the case of E2, this proposition can be extended
on Xn to the sheaf Eb similarly defined.

2.2.5. Known facts about Chern Classes

We conclude this section by recalling two known facts about Chern
classes. The first one is the inversion formula for Chern classes. The second
is some equalities for the Chern classes above the moduli space.

We first give a formula in order to compute the inverse of a Chern class.
Much more material around this circle of ideas can be found in [20]. Let us
first define the polynomial

Pn(x1, . . . , xn) =
∑

i1+2i2+···+nin=n

 (i1 + · · ·+ in)!
i1! · · · in!

n∏
j=1

(−xj)ij
 .

To be concrete, the polynomials Pn for n 6 3 are

P0 = 1 ,
P1 = −x1 ,

P2 = x2
1 − x2 ,

P3 = −x3
1 + 2x1x2 − x3 .
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The importance of these polynomials is given by the following result that
will be used several times in Section 5.

Lemma 2.6. — Let E be a complex vector bundle over a complex man-
ifold X whose Chern class is c(E) = 1 + c1(E) + c2(E) + · · ·+ cn(E). Then
the Chern class of the dual E∨ of E is

c(E∨) = 1 + P1(c1) + P2(c1, c2) + · · ·+ Pn(c1, . . . , cn) .

Note that the Chern class of E∨ is also known as the (total) Segre class
of E. Moreover we will usually denote E∨ by −E, viewing it as an element
of the Grothendieck group (see [18, Section 3.E]).
We now recall some results about Chern classes on the moduli space.

These results are due to [19] and many examples of application can be find
in [12].

Lemma 2.7. — Let Ki be the class of Ωi = π∗i (Ω) and ∆ij be (the class
of) the (i, j)-th diagonal as introduced in Section 2.2.2, then

∆id∆jd = ∆ij∆id for i < j < d ,

∆2
ij = −Ki∆ij for i < j ,

Kj∆ij = Ki∆ij for i < j .

Moreover for every monomial M pulled back from X d−1 we have

πd,∗(M ·∆id) = M ,

πd,∗(M ·Kk
d ) = M · p∗(κk−1) ,

where p : X d−1 →Mg is the map forgetting all the marked points.

3. The locus of differentials of the second kind

The objective of this section is to compute the dimension of the pro-
jection to Mg of the locus parametrizing the differentials of second kind
in the strata of meromorphic differentials. Recall that the differentials of
second kind are meromorphic differentials such that the residue at ev-
ery pole is zero. We denote the locus of differentials of second kind of
type µ = (a1, . . . , an;−b1, . . . ,−bp) by ΩRg(µ).

We begin with a preliminary result.

Lemma 3.1. — Given a stratum ΩMg(a1, . . . , an;−b1, . . . ,−bp) of mero-
morphic differentials such that g > 1, p > 2 and bi 6= 1. The subspace which
parametrises differentials with zero residues at the first i 6 p− 1 points is
of codimension i.
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Proof. — By [15] these subspaces are not empty. Moreover, each condi-
tion on the residues gives a linear equation in period coordinates. Since
these equations involve at most p−1 residues, the i equations are indepen-
dent. Hence the locus that they define is of codimension i. �

We can now compute the dimension of the projection of the loci of dif-
ferentials of second kind to Mg, proving Theorem 1.2. Recall that this
theorem says that the dimension of the projection is 1 in the genus one
case and min {3g − 3; 2g + n− 2} in the genus g > 2 case. The proof is by
degeneration in the spirit of Theorem 1.3 of [13]. In this proof, we use the
notation b =

∑p
i=1 bi.

Proof. — We begin with the case g = 1. In that case, Lemma 3.1 implies
that the dimension of the space ΩRg(µ) is equal to n + 1. If there were a
component of ΩR1(µ) such that the dimension of the projection is zero,
then there exists a curveX having a n+1 dimensional family of differentials
of the second kind of type µ onX. We know (see for example [21, Section 2])
that a differential of type µ on X can be written

(3.1) ω = λ
σa1(z − z1) · · ·σan(z − zn)
σb1(z − w1) · · ·σbp(z − wp)

dz ,

where σ is Weierstraß sigma-function of X, the sum
∑
aizi −

∑
bjwj = 0

and λ ∈ C∗. Without lose of generality we suppose that the forgetful map
toM1,1 keep the point z1. Hence the dimension of the space of differentials
given by Equation (3.1) on the elliptic curve (X, z1) is n+ p− 1. It is easy
to check that the residue map given the residues of ω at w1, . . . , wp−1 is
a non constant rational function from Cn+p−1 to Cp−1. Hence the variety
given by this equation is of dimension n and can not be a whole component
of the locus ΩRg(µ).
For g > 2, we degenerate to the curve X pictured in Figure 3.1. The

curve X0 is of genus g−1 and the genus of X1 is 1. We denote by p0 and p1
the nodal points belonging respectively to X0 and X1.

z1

z2

zn

X0

w1

w2

wp

X1

Figure 3.1. The pointed curve X we are degenerated to.
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We consider the twisted differential ω on X such that the restriction ωi
to the irreducible component Xi are the following differentials. On X0 the
differential is in the stratum ΩMg−1(a1, . . . , an;−b − 2) and on X1 the
differential is in ΩR1(b;−b1, . . . ,−bp). Note that by [25, Theorem 1.1] this
twisted differential is in the closure of ΩRg(µ). Moreover according to [5],
the dimension of the projection ΩMg−1(a1, . . . , an;−b − 2) to Mg−1 is
min(3(g − 1)− 3, 2(g − 1)− 2 + n).

Suppose that n > g− 1, then there exist a dense subset U ofMg−1 such
that for every point X ′0 in U there exists a differential ω0 on X ′0. Moreover
there is a positive dimensional family of such differentials with the polar
point p0 moving on X ′0. By the case of genus g = 1, the dimension of
the projection of ΩR1(b;−b1, . . . ,−bp) is equal to one. Moreover, there is
one smoothing parameter at the node. Summing up the contribution, the
dimension of the projection is 3(g−1)−3+1+1+1 = 3g−3, where 3(g−1)−3
is the dimension of the projection of ΩMg−1(a1, . . . , an;−b− 2) toMg−1
and the three 1 are respectively the moving point p0 ∈ X ′0, the dimension
of the space of elliptic curves {(X1, p1)} and the smoothing parameter of
the node.
If n < g− 1 then by [5] there exists a 2(g− 1)− 2 +n dimension space of

curves X0 which admits such differential ω0. Moreover the set of possible
point p0 is finite on X0. Hence the dimension of the projection of the locus
ΩRg(µ) is 2(g − 1) − 2 + n + 1 + 1 = 2g − 2 + n in this case. In this
sum, the contribution 2(g− 1)− 2 +n is the dimension of the projection of
ΩMg−1(a1, . . . , an;−b− 2) toMg−1 and the remaining contribution from
the dimension of the space of elliptic curves {(X1, p1)} and the smoothing
parameter of the node. �

4. The class of the divisor M3(6;−2)

The goal of this section is to compute the class of the divisor defined by
the projectionM3(6;−2) of ΩM3(6;−2) toM3. This gives the coefficient
of the λ-class in Equation (1.1) of Theorem 1.1. In order to do this, we use
Porteus Formula and the results recalled in Section 2.2.

For n > 1, set O = OXn . Recall that the diagonal ∆ij is given by
the locus where qi = qj in X 3 and define the divisor D6

2 = 2∆23 − 6∆13
inside X 3. Tensoring the exact sequence

0 −→ O(−6∆13) −→ O −→ O|6∆13 −→ 0
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by Ω3(2∆23) we obtain

0→ Ω3 ⊗O(−6∆13 + 2∆23)→ Ω3 ⊗O(2∆23)→ Ω3 ⊗O(2∆23)|6∆13 → 0 .

Pushing down this exact sequence on X 2 by the map π forgetting the third
point, we obtain

0 −→ π∗(Ω3(D6
2)) −→ π∗(Ω3 ⊗O(2∆23)) −→ π∗(Ω3(2∆23)|6∆13) −→ 0 .

We define the following coherent sheaf on X 2

F = π∗(Ω3 ⊗ (O(2∆23)/(O(D6
2))) .

Note that the stalk Fx of F at a point x = (X; z, w) ∈ X 2 is given by

Fx = H0(X,KX(2w)/KX(2w − 6z)) .

The evaluation map gives a morphism φ : E2 → F over X 2 such that on
the stalk we have

φx : (E2)x = H0(X,KX(2w)) −→ Fx = H0(X,KX(2w)/KX(2w − 6z)) .

Since the dimension of the source is 4 and the dimension of the target is 6,
by Porteous formula (see [18, Theorem 3.114]) the class of the degeneracy
locus where the map has rank less or equal to three is c3(F − E2). Note
that this degeneracy locus can contain extra components in the diagonal
∆1,2 = {(w, z) : w = z}. This is indeed the case and we will deal with this
problem at the end of this section.
The Chern classes of F is given by the following general formula.

Lemma 4.1. — The Chern class of the vector bundle whose fiber is

H0

(
K

(
p∑
i=1

biwi

)
/K

(
p∑
i=1

biwi −
n∑
i=1

aizi

))
is equal to

n∏
i=1

ai∏
j=1

(1 + jKp+i +
p∑
k=1

bk∆k,p+i) .

Proof. — Given an effective divisor D on a smooth curve X, recall that
the sheaf KX(D) is the sheaf of meromorphic differentials ω such that
div(ω)(q) +D(q) > 0 at every point q on X. In particular if q /∈ supp(D),
then ω is holomorphic at q. If q is a zero of order a for ω, then in an open
neighbourhood U around q with local coordinate z, we can trivialize KX so
that the form za · ω generates the stalk KX(D)|q. Then the identification
KX(D)|q ' K⊗aX |q ⊗Oq(D) holds.
Recall that we denote by µ = (a1, . . . , an;−b1, . . . ,−bp) a partition of

2g − 2 where ai, bj > 1 and that m = n+ p.
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On Xm we denote ∆Z =
∑n
i=1 ai∆p+i,m+1 and ∆W =

∑p
j=1 bj∆j,m+1

the divisor of zeros and poles respectively. We then consider the divisor
∆Z,W = ∆Z−∆W and the following two exact sequences on Xm+1 and Xm
respectively:

0 −→ O(−∆Z,W ) −→ O(∆W ) −→ O(∆W )|∆Z
−→ 0 ,

0→ π∗(Ωm+1(−∆Z,W ))→ π∗(Ωm+1(∆W ))→ π∗(Ωm+1(∆W )|∆Z
)→ 0 .

We recall that O(∆W )|∆Z
= O∆Z

(∆W ) = O(∆W )⊗O∆Z
. We set

F := π∗(Ωm+1(∆W )|∆Z
) ' π∗(Ωm+1(∆W )/Ωm+1(∆W −∆Z)) .

To compute the Chern classes of F we adapt a classical argument that we
learned in [6]. For every i = 1, . . . , n, we consider the bundle

Ωm+1(∆W − ai∆p+i,m+1) = Ωm+1 ⊗O(∆W − ai∆p+i,m+1)

on Xm+1, where Ωm+1 is Hodge bundle on Xm+1.
Consider the case i = 1 and in order to simplify the notation we will

use ∆ for the diagonal ∆p+1,m+1. We have exact sequences:

0 −→ Ωm+1(∆W − a1∆) −→ Ωm+1(∆W − (a1 − 1)∆)
−→ Ωm+1(∆W − a1∆)|∆ → 0 ,

0 −→ Ωm+1(∆W − a1∆) −→ Ωm+1(∆W ) −→ Ωm+1(∆W )|a1∆ −→ 0 ,

0 −→ Ωm+1(∆W − (a1 − 1)∆) −→ Ωm+1(∆W )
−→ Ωm+1(∆W )|(a1−1)∆ −→ 0 .

We define

F1 := π∗

(
Ωm+1(∆W − (a1 − 1)∆)

Ωm+1(∆W − a1∆)

)
, F0 := π∗

(
Ωm+1(∆W )

Ωm+1(∆W − a1∆)

)
,

and F2 := π∗

(
Ωm+1(∆W )

Ωm+1(∆W − (a1 − 1)∆)

)
.

From the natural inclusions

Ωm+1(∆W − a1∆) ⊂ Ωm+1(∆W − a1∆)
⊂ Ωm+1(∆W − (a1 − 1)∆) ⊂ Ωm+1(∆W )

and the fact that the sheaf Ωm+1(∆W−(a1−1)∆)
Ωm+1(∆W−a1∆) is supported on ∆, we have

the following exact sequence:

0 −→ F1 −→ F0 −→ F2 −→ 0 .
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Since the divisor ∆ has multiplicity a1 at ∆Z and ∆ /∈ Supp(∆W ), the
fiber of F1 at z1 isKX

 p∑
j=1

bjwj

 |z1 ' (KX |z1)⊗a1 ⊗Oz1

 p∑
j=1

bjwj

 ,

then we have that F1 ' Ω⊗a1
n ⊗OXn(∆W ).

Following this argument we can to construct a new filtration

0 −→ F ′1 −→ F1 −→ F ′2 −→ 0 ,

where F ′1 is the sheaf defined as

F ′1 := π∗

(
Ωm+1 (∆W − (m2 − 1)∆)
Ωm+1 (∆W − (a1 − 1)∆)

)
,

and we have that F ′1 ' Ωa1−1
n ⊗ OXn(∆W ). In this way using a sequence

of filtrations obtained by subtracting 1 successively to a1 we get that

F0 ' [Ω⊗a1
n ⊗OXn(∆W )]⊗ [Ω⊗(a1−1)

n ⊗OXn(∆W )]⊗· · ·⊗ [Ωn⊗OXn(∆W )] .

By subtracting 1 successively to all ai we can reduce to signature

(1, 0, . . . , 0;−b1, . . . ,−bp)

to obtain the expression for the Chern class of F as desired. �

Applying Lemma 4.1 to the case of the stratum ΩM3(6;−2), we get that

c(F) =
6∏
j=1

(1 + jK2 + 2∆12) ,

= 1 + (21K2 + 12∆12) + (175K2
2 + 210K2∆12 + 60∆2

12)

+ (735K3
2 + 1400K2

2∆12 + 840K2∆2
12 + 160∆3

12) + . . . .

By Proposition 2.4 we obtain that the class of −E2 is

c(−E2) = 1 + (K1 − λ1) + (K2
1 − λ1K1 + λ2

1 − λ2)

+ (K3
1 − λ1K

2
1 + (λ2

1 − λ2)K1 + 2λ1λ2 − λ3 − λ3
1) + . . . .

So we obtain

c3(F − E2) = (735K3
2 + 1400K2

2∆12 + 840K2∆2
12 + 160∆3

12)

+ (175K2
2 + 210K2∆12 + 60∆2

12) · (K1 − λ1)

+ (21K2 + 12∆12) · (K2
1 − λ1K1 + λ2

1 − λ2)

+ (K3
1 − λ1K

2
1 + (λ2

1 − λ2)K1 + 2λ1λ2 − λ3 − λ3
1) .
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This is equal to the Chern class of M3(6;−2) inside A3(M3,2). We now
simplify this expression. We first expand this sum, leading to the equality

c3(F − E2) = 735K3
2 + 175(K1 − λ1)K2

2 + 21(K2
1 − λ1K1 + λ2

1 − λ2)K2

+ 1400∆12K
2
2 + 210∆12K1K2 − 210∆12λ1K2

+ 840∆2
12K2 +K3

1 − λ1K
2
1 + 12∆12K

2
1 + (λ2

1 − λ2)K1

− 12∆12λ1K1 + 60∆2
12K1 − λ3 + 2λ1λ2

− 12∆12λ2 − λ3
1 + 12∆12λ

2
1 − 60∆2

12λ1 + 160∆3
12 .

We now simplify this expression using the equalities recalled in the first
part of Lemma 2.7. For example, the second equality of this lemma implies
that the coefficient 60∆2

12K1 is equal to −60∆12K
2
1 . Doing this for all the

coefficient, this gives the expression

c3(F − E2) = 735K3
2 + 175(K1 − λ1)K2

2 + 21(K2
1 − λ1K1 + λ2

1 − λ2)K2

+ (882K2
1 − 162λ1K1 + 12(λ2

1 − λ2))∆12

+K3
1 − λ1K

2
1 + (λ2

1 − λ2)K1 − λ3 + 2λ1λ2 − λ3
1 .

We now forget the two marked points to obtain the λ-class ofM3(6;−2)
in the Picard group of M3. By forgetting the second point and using the
formulas of the second part of Lemma 2.7 we obtain

π2,∗ (c3(F − E(2))) = 735κ2 + 175(K1 − λ1)κ1

+ 21(K2
1 − λ1K1 + λ2

1 − λ2)κ0

+ 882K2
1 − 162λ1K1 + 12λ2

1 − 12λ2 .

And finally by forgetting the first point we get

π1,∗ ◦π2,∗ (c3(F − E(2))) = 882κ1−162κ0λ1 +175κ0κ1−21κ2
0λ1 +21κ0κ1 .

Hence using that κ0 = 4 and κ1 = 12λ1 we finally obtain that the class of
π1,∗ ◦ π2,∗ (c3(F − E(2))) in Pic(M3) is

[π1,∗ ◦ π2,∗ (c3(F − E(2)))] = 19008λ1 .

The degeneracy locus of the map φ : E2 → F contains the locus that
we are interested in of curves X together with points w and z such that
there exists a differential with divisor 6z − 2w and a locus supported in
the diagonal ∆. So in order to obtain the class ofM3(6;−2) in the Picard
group ofM3 it remains to subtract this contribution. This is in general a
delicate task and we refer to [9, 11, 16] for some examples.
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At a point (X, z, z) of the diagonal, the evaluation map restricts to

φz : H0(X,KX(2z)) −→ H0(X,KX(2z)/KX(−4z)) .

This has generically rank 4 as expected and has rank 3 exactly if there is
an abelian differential on X which has a zero of order 4 at z. The class of
this locus is classical but we recall it for completeness. We have

c(F) = 1 + 10K1 + 35K2
1 + · · · .

Hence
c2(F − E) = λ2

1 − 10λ1K1 + 35K2
1 .

When pushing down toM3 we obtain

π1,∗(c2(F − E)) = 35κ1 − 10λ1κ0

= 35 · 12λ1 − 10 · 4λ1

= 380λ1 ,

where we used again that κ1 = 12λ1 and κ0 = 4.
Now we compute the multiplicity of this locus. Consider a point (X, z)

where z is such that there exists a differential ω on X whose divisor is 4z.
Locally the vector bundle E2 is generated by four sections. Let u is a local
coordinate of X at z, we can take these sections to be ηt = du

u2 , the family
of differentials u2ηt, a family of differentials vanishing at order 1 or 2 at z
depending if X is non hyperelliptic or hyperelliptic respectively and finally
a family of the form ωt := u2(u4 + s)ω0 where s is a function of the base
vanishing at X. So the locus of pointed curves (X, z) is given by the scheme
given by the two by two minors of the matrix(

1 u2 u3h u2(u4 + s)
0 2u ∂u(u3h) 6u5 + 2us

)
,

where h depends if the point is Weierstraß or not. It is easy to check that
the column where it appears the function h will not contribute to the
multiplicity. In fact, the multiplicity of this point is given by the order of
vanishing of s. In order to compute this order note that ωt leads to a family
of multi-scale differentials after blowing up the diagonal ∆. Note that the
equation of the node is then given by xy = f where f is the function
defining the diagonal. Moreover, the function s is a rescaling parameter for
this family of multi-scale differentials as defined in [3, Section 11.1]. More
precisely, according to Equation (11.1) and Definition 11.2 of [3], we have
s = f5, where the 5 is the prong number. This implies that the multiplicity
of the considered locus is 5.
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Summing up all the computations of this section, we obtain that the
class ofM3(6;−2) in the Picard group ofM3 is

(4.1) [M3(6;−2)] = 19008λ1 − 5 · 380λ1 = 17108λ1 .

5. Class of the divisor M3(6;−2)

In this section we compute the class of the locusM3(6;−2) in the rational
Picard group Pic(M3)⊗Q, proving Theorem 1.1. We first give in Section 5.1
some general facts on degenerating families of curves and differentials. Then
we solve in Section 5.2 some enumerative problems related to differentials
of the second kind. And finally in Section 5.3 we use this information to
compute the class [M3(6;−2)] using the method of test curves.

5.1. General facts on degenerating families

First we consider the problem of finding out how many fibres are iso-
morphic in some families of semi-stable curves. These families naturally
appear in the context of plumbing of differentials. To introduce them, we
recall from [2] that a plumbing fixture is the family πa : Va → ∆1 of cylin-
ders degenerating to a node

Va(t) = {(u, v, t) ∈ ∆3
1 : uv = ta}

where a ∈ Z>0 and the projection is given by πa(u, v, t) = t. We will look
at the families of curves obtained by gluing the plumbing fixture at the
nodal points of a trivial family of pointed curves. In particular, the annuli
on the curves at which we glue the plumbing fixtures are constant. These
families are special cases of the families appearing in the plumbing setup
of [2, p. 2394].

Lemma 5.1. — Let X0 be a curve with one node n and X the curve
obtained by gluing a projective line E at n. We denote by n1 and n2 the
nodes of X. Let (B, p) be a smooth curve with parameter t at p and let
f : X → (B, p) be the family obtained by gluing the plumbing fixtures
x1y1 = ta1 and x2y2 = cta2 with |c| = 1 at the nodes ni of X. Then the
induced map µf : B →Mg is a cover ramified at p of degree a1 + a2 on its
image.
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Proof. — The proof has two parts. First we are going to give a condition
so that two curves of the basic family are isomorphic near X. Then we
are going to count the number of curves that satisfy that criterion in the
hypotheses of the lemma.
LetX be a semi-stable curve satisfying the hypotheses of Lemma 5.1 with

exceptional component E. Consider the family Y → ∆2 = {(t1, t2) : |ti|< 1}
such that the curve above the point (t1, t2) is obtained by gluing the plumb-
ing fixtures Va(ti) at ni. Moreover, we assume that the plumbing is such
that xi are local equations of E in Y and y1y2 = 1. Consider the two
curves Xθ1,θ2 and Xϑ1,ϑ2 above the parameters (r1 exp(iθ1), r2 exp(iθ2))
and (r1 exp(iϑ1), r2 exp(iϑ2)). We now show that these curves are isomor-
phic if and only if θ1 + θ2 = ϑ1 + ϑ2.
Let us study when the identity of a neighborhood of a complement of

xi = 0 in the curves Xθ1,θ2 and Xϑ1,ϑ2 can be extended to an isomorphism
ϕ : Xθ1,θ2 → Xϑ1,ϑ2 . The identity can be extended through the annuli
xiyi = ti by the functions

φi : (xi, yi) 7−→ (xi, exp(i(θi − ϑi))yi) .

The functions φi can be extended to an holomorphic function on E if and
only if φ1 coincides with φ2 on E, that is

exp(i(θ1 − ϑ1))y1 = exp(−i(θ2 − ϑ2))y2 = exp(−i(θ2 − ϑ2))y−1
1 .

From that equation it follows directly that the curves Xθ1,θ2 y Xϑ1,ϑ2 are
isomorphic if and only if θ1 − ϑ1 + θ2 − ϑ2 = 0.

Now we fix two integers a1, a2 > 1 as in lemma 5.1 and a real number
r > 0. We introduce the curve

Ca1,a2,c =
{

(a1θ, c+ a2θ) : θ ∈ S1} ⊂ S1 × S1 .

It follows from the first part of the proof that it suffices to show that
the antidiagonal ∆ =

{
(θ,−θ) : θ ∈ S1} in S1 × S1 and the locus Ca1,a2,c

have a1 + a2 points of intersection. Since for every c the curve Ca1,a2,c is
a translation of Ca1,a2,0 the number of intersections does not depend on c.
Assume first that a1 and a2 are prime to each other. The intersections be-
tween ∆ and Ca1,a2,0 are given by the points (k/(a1 + a2),−k/(a1 + a2))
with k ∈ {0, . . . , a1 + a2 − 1}. Hence there are a1 + a2 points of inter-
section between the loci ∆ and Ca1,a2,0. If d = gcd(a1, a2) > 1 then the
curves ∆ and Ca1,a2,0 have a1/d + a2/d points of intersection, each of
multiplicity d. �

The following result will be very useful in order to compute some inter-
section numbers in Section 5.3.
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Lemma 5.2. — Let (X; z, w;ω) be a twisted differential of type (a;−b)
of genus g > 2. Then the underlying pointed curve (X; z, w) is not one of
the curves pictured in Figure 5.1 where E is a rational curve.

X1

z

X2

w

E

X1

w

X2

z

E

X1

z w

X2

E

Figure 5.1. The stable pointed curve (X; z, w) with one projective bridge.

Before completing the proof, we remark that it seems to be a general
principle that special points related to differentials do not easily converge
to a separating node. On the other hand, we will see in Section 5.2 that
special points can easily converge to separating nodes. For an other instance
of this principle, the reader can look at [14].

Proof. — In these three cases the restriction of ω to E has at least two
poles. Hence Theorem 1.2 of [15] implies that the residues of these nodes
are different from zero. Hence the global residue condition, that is recalled
in Definition 2.1, can not be satisfied on any of these curves. �

Finally, we give the form of the curve underlying a multi-scale differential
of second kind with a unique zero in genus 1.

Lemma 5.3. — The multi-scale differentials (X; z, w1, . . . , wp, ω;σ;4)
in the boundary of the locus ΩR1(a;−b1, . . . ,−bp) of differentials of the
second kind are such that X is either irreducible (with one node) or is two
rational curves which are glued together at two nodes.

Proof. — If X was a curve not of one type given in Lemma 5.3, then
either X has a rational component with marked points glued at the rest
of the curve at one node or it is a chain of rational components of length
strictly greater than 2.

In the first case the differential on the rational curve has exactly one
zero. Hence by [15] it has some poles with non zero residues. This implies
that this differential can not be in the limit of a family of differential of
ΩR1(a;−b1, . . . ,−bp) as proved in [25, Theorem 1.1].
In the second case, consider the component X1 of X which contains the

zero z of the multi-scale differential. Then the component X1 is the unique
local minimum for the full order 4 as shown in [2, Lemma 3.9]. This implies
that the differential ω|X1 has two poles at the nodal points of X1. On the
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adjacent components X2 and X3 the differentials ω|Xi
have a zero at the

corresponding nodal point. Hence at the other nodal points the differentials
on ω|X2 and ω|X3 have another zero. Indeed, suppose that ω|X2 has a pole
at the other nodal point of X2. Then by [15, Theorem 1.2] the form ω|X2

has at least two poles with nonzero residues, one of which being a marked
pole, giving a contradiction to [25, Theorem 1.1]. This implies that there
are both higher for 4 than some other components of X. Hence there is
another local minimum, contradicting the uniqueness of the local minimum
for 4. �

5.2. Some enumerative problems

Let us begin with a proposition giving the number of differentials with
a unique zero and a unique pole on a curve of genus 2. This is essentially
known (see [8, Proposition 2.2] or [24, Section 2.6]) but we recall since it is
only implicitly stated in the cited articles.

Proposition 5.4. — For every a > 2, the map

π : PΩM2(a+ 2;−a) −→M2

is an unramified cover of degree 2(a+ 2)2a2 − 18.

Proof. — Let C be a general curve of genus 2 and consider the map

f : C2 −→ Pic2(C) : (p1, p2) 7→ (a+ 2)p1 − ap2 .

By [8] and [24] we know that f is a finite map of degree 2(a + 2)2a2.
Moreover, this map is ramified at the loci

∆ =
(
(p1, p2) ∈ C2 : p1 = p2

)
and

K =
(
(p1, p2) ∈ C2 : p1 = ι(p2)

)
,

where ι is the hyperelliptic involution. Note that ∆∩K is the set of the six
Weierstraß points of C. Let us consider the preimage by f of the canonical
bundle of C. If a pair (p1, p2) is in the preimage of KC belongs to ∆, then
(a + 2 − a)p1 is canonical, so p1 is a Weierstraß point. Second, if a pair
(p1, p2) of the preimage of KC belongs to K, then there are differentials
ω1 and ω2 whose respective divisors are (a+ 2)p1 − ap2 and p1 + p2. Then
η = ω1ω

a
2 is a (a + 1)-differential with a unique zero of order 2a + 2.

The (a + 1)-differential η exists on a general curve if and only if η is the
(a+ 1)th power of an abelian differential with a double zero. This implies
that p1 = p2 is a Weierstraß point.
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We now compute the degree of ramification of f at the Weierstraß points
as in [24]. Let p be a Weierstraß point and (ω1, ω2) generators of H0(C,KC)
such that ordp(ω1) = 0 and ordp(ω2) = 2. The derivative of f at p is of the
form

Df(p) =
(

1 1
t21 t22

)
where ti are functions which vanish at p at order 1. Hence the determinant
of this matrix vanishes at order 2 at p. It follows that the order of branching
at p is equal to 2. Hence there are 18 pairs in the preimage of the canonical
divisor KC that do not correspond to solutions in ΩM2(a+ 2;−a) but to
abelian differentials with a single zero order 2.
It remains to show that the cover is not branched. Suppose it is branched,

then the branching point corresponds to a twisted differential where the
underlying curve is a genus 2 curve with a rational curve E glued at a point.
The curve E contains the zero of order a+2 and the pole of order −a. Hence
the restriction of the differential to E has two poles and a unique zero,
hence the residues at the poles are non-zero. Hence this twisted differential
does not satisfy the global residual condition of Definition 2.1 and is not
smoothable. �

We will now deduce an important consequence of this result for the locus
of differentials of second kind on elliptic curves.

Corollary 5.5. — The degree of the map

π : PΩR1(a+ 2;−a,−2) −→M1,1

forgetting the poles is equal to (a+ 2)2 + a2− 10 for a > 3 and 5 for a = 2.

Proof. — Let us consider a stable curve X of genus 2 which is the union
of two elliptic curves attached at one node. We describe all the multi-scale
differentials on a curve X semi-stably equivalent to X. By Lemma 5.2 the
pointed curves which can appear in such multi-scale differentials are of the
form pictured in Figure 5.2.

z

X1 X2

w

(a)

w

X1 X2

z

(b)

z

X1 X2

w

(c)

X1

z

X2

w

(d)

Figure 5.2. The pointed curves (X; z, w) which can appear in multi-
scale differentials at the boundary of the stratum ΩM2(a+ 2;−a).
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In case (a) the differential ω1 on X1 is in the stratum ΩM1(a+2;−a−2)
and the differential ω2 on X2 is in the stratum ΩM1(a;−a). Hence there
are (a + 2)2 − 1 different differentials on X1 and a2 − 1 different differen-
tials on X2. Since there is clearly only one class of prong-matching there
are

(
(a+ 2)2 − 1

) (
a2 − 1

)
different multi-scale differentials of this type.

Moreover, the space of multi-scale differentials is smooth at this point,
hence

(
(a+ 2)2 − 1

) (
a2 − 1

)
degenerate to this type. The type (b) is sim-

ilar. Hence the intersection number with the ones of type (c) (or (d)) is
equal to

D = ((a+ 2)2a2 − 9)−
(
((a+ 2)2 − 1)(a2 − 1)

)
,

= 2a2 + 4a− 6 ,

= (a+ 2)2 + a2 − 10 .

Since the space of multi-scale differentials is smooth at these points and
there is a unique differential on X2 (in the case (c)), this implies that the
number of distinct differentials of the second kind in ΩM1(a + 2;−a,−2)
is (a+2)2 +a2−10 for a > 3. The case a = 2 is similar taking into account
that there is a symmetry since both poles have the same order. �

We now compute the degree of the map π : PΩR1(6;−2,−2,−2) →
M1,1 thus proving Theorem 1.3. In order to illustrate the ideas of the
proof in easier context, we first compute the degrees of the two maps
π : PΩR1(4;−2,−2) → M1,1 and π : PΩR1(5;−3,−2) → M1,1 (that is
already known by Corollary 5.5).

Lemma 5.6. — The degree of the map π : PΩR1(4;−2,−2) → M1,1
forgetting the poles is 5 and the degree of π : PΩR1(5;−3,−2) → M1,1
is 24.

The proof of this result is by degeneration in the moduli space of multi-
scale differentials. The results that we use here are recalled in Section 2.1.

Proof. — We first consider the case of the locus ΩR1(4;−2,−2) of dif-
ferentials of the second kind of type (4;−2,−2). By Lemma 5.3 there are 3
types of pointed curves on which there can exists a multi-scale differential
in the closure of this locus. This is summarised in Table 5.1 that we first
explain in details. Note that Tables 5.2 and 5.3 have the same entries.
The first row gives the pointed stable curves on which there may exist a

multi-scale differential. This is only given up to permuting the poles of the
same order, for example in the second column, the case where w1 and w2
are permuted gives the same differential. The numbers κi are the prong
numbers at the corresponding node.
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Table 5.1. Summary of the case ΩR1(4;−2,−2).

Pointed curve z

w1 w2

κ1 κ2

z

w1

w2 κ1 κ2

z

w1w2

# twisted differentials 1 1 1
# prong-matching 1 1 2

Local degree 1 2 2
Symmetries 1 1 2
Total count 1 2 2

The second row gives the number of twisted differentials that exists on
the pointed curve under consideration.

The third row gives the number of classes of prong-matching. In the cases
we will consider here, the multi-scale differentials have only two nodes and
two levels. Hence this number is simply given by gcd(κ1, κ2).
The fourth row of the table gives the local degree of the stabilisation

map M1,m → M1,1 restricted to the smooth pointed curves underlying
the differentials obtained by smoothing the multi-scale differential under
consideration. We show that this degree is given by Lemma 5.1. Note that
if there is more than one class of prong-matching, the degree is given for
each choice of prong-matching but it does not depend on this choice.
According to the fourth row, on a smooth curve near the boundary

ofM1,1 the number of pointed differentials on the curves which degenerate
to the multi-scale differential under consideration is equal to the degree.
However, it happens that these pointed differentials only differ by a per-
mutation of the marked points. The fifth row gives the order of the group
generated by these permutations of the marked points.

Finally, in the last row we compile this information to give the number of
differentials of type µ on a smooth curve which degenerate to a multi-scale
differential such that the underlying pointed curve is the one of the first
row.
We now return to the case of ΩR1(4;−2,−2). Consider the irreducible

pointed curve pictured in the first column. Any multi-scale differential on
this pointed curve has two single poles at the node. Hence the pull-back
of the differential on the normalisation of the curve lies in the stratum
ΩM0(4;−2,−2,−1,−1) and the residues at the poles of order 2 are equal
to 0. There is a unique such differential whose flat representation is shown in
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Figure 5.3. The reader can consult [22, Section 1] and [4] for the correspon-
dence between flat surfaces and differentials respectively in the holomorphic
and meromorphic case.

1

3
2
3

1
2

Figure 5.3. The differential of ΩM1(4;−2,−2,−1,−1) such that the
residues are (0, 0, 1,−1).

Moreover, the number of prong matching and the local degree are clearly
equal to 1. Hence on a smooth curve near the boundary ofM1,1 there is a
unique differential which degenerate to a multi-scale differential with this
underlying pointed curve.
We now consider the curve pictured in the second column of Table 5.1.

First note that the prong numbers have to be equal to 1, since otherwise
there would exist no full order 4. Hence the differential on the upper com-
ponent is in the stratum ΩM0(0, 0;−2) and the differential on the lower
component is in the stratum ΩM0(4;−2,−2,−2) and the residue vanishes
at the marked pole. There is clearly a unique differential in ΩM0(0, 0;−2).
Moreover [7] show that there is a unique differential satisfying the second
conditions which is shown in Figure 5.4.

1
1
2

2

Figure 5.4. The differential of ΩM1(4;−2,−2,−2) with residues equal
to (0, 1,−1).

Since there is a unique class of prong-matching, there is a unique multi-
scale differential ω with this underlying pointed curve. We can plumb
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this multi-scale differential with a plumbing fixture to constant families
of pointed curves. Indeed the addition of a modification differential does
not change the order of the singularities of the differential of the top compo-
nent. Hence by Lemma 5.1 in the case a1 = a2 = 1 there exists a neighbor-
hood of the boundary ofM1,1 on which there are two differentials near ω.
Moreover, as recalled in Section 2.1, in a neighborhood of this multi-scale
differential the restriction of the differential on the top component looks
like ω0 and on the bottom component like tω−1. The curves are isomorphic
for the parameters t and −t and hence the differentials on these curves are
distinct.
We now consider the case pictured in the third column. Since the residues

of the poles of order −2 vanish, the first point of Theorem 1.2 of [15] implies
that κ1 = κ2 = 2. By Proposition 2.3 of [7] there is a unique element in
ΩM0(1, 1;−2,−2) such that the residues at the poles vanish. Moreover
there are 2 classes of prong-matching which give two disjoint families of
multi-scale differentials. Locally at the nodes ni of the pointed curve, the
first family X1 is given by xiyi = t and the second one X2 is given by
xiyi = (−1)it for i = 1, 2. Moreover we know that in a neighborhood of
the multi-scale differential the form on the top component looks like ω0
and on the bottom component like t2ω−1. Hence the differentials for t
and for −t are equals to each over. Hence on the isomorphic curves above t
and −t both differentials are isomorphic. Hence there is a unique differential
degenerating to each multi-scale differential on this pointed curve.

We conclude that the number of distinct differentials in ΩR1(4;−2,−2)
on a smooth curve of genus 1 is 1 + 2 + 2 = 5.
We now deal with the case of the locus ΩR1(5;−3,−2). There are four

different types of pointed curves on which there can exist a multi-scale
differential in the limit of the locus ΩR1(5;−3,−2). These pointed curves
are pictured in the first row of Table 5.2.
Consider the irreducible curve of the first column. In this case the dif-

ferential has simple poles at the nodal points. So its pull-back lies in the
stratum ΩM1(5;−3,−2,−1,−1) and its residues at the non simple poles
vanish. By Proposition 3.8 of [7] there are precisely 2 non isomorphic such
differentials represented in Figure 5.5.
Moreover the simple poles can be distinguished by the fact that one is

next to the pole of order −2 and the other next to the pole of order −3.
Hence we obtain 4 such multi-scale differentials. It is easy to see that each
of these differentials can be smoothed in a unique way.
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Table 5.2. Summary of the case ΩR1(5;−3,−2).

Pointed curve z

w1 w2
κ1 κ2

zw1

w2 κ1 κ2

zw2

w1 κ1 κ2

z

w1w2

# twisted differentials 4 2 1 2
# prong-matching 1 1 1 1

Local degree 1 2 3 5
Symmetries 1 1 1 1
Total count 4 4 6 10

1

3 2
3

1
2

5
4

4
5

1

3 2
3

1
2

5
4

4
5

Figure 5.5. The two differentials of ΩM1(5;−3,−2,−1,−1) with
residues equal to (0, 0, 1,−1).

Now consider the curve in the second column of Table 5.2, when the pole
of order −2 is on the top component. The differential on the top component
is the unique differential in ΩM0(0, 0;−2). The differential on the bottom
component lies in the meromorphic stratum ΩM0(5;−3,−2,−2) with a
residue equal to 0 at the pole of order −3. Again [7, Proposition 3.8] implies
that there are 2 non isomorphic such differentials. As before the local degree
of each family is 2 and there are two distinct differential on a smooth curve
which degenerate to the considered pointed curve.
Now consider the curve in the third column of Table 5.2, when the pole

of order −3 is on the top component. The differential on the top component
in the stratum ΩM0(1, 0;−3). The differential on the bottom component
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is in the stratum ΩM0(5;−3,−2,−2) with a residue equal to 0 at the
marked pole of order −2. There is a unique such differential. Note that
the prong numbers are equal to 1 and 2. Hence there are two such twisted
differentialdepending on which node we put the distinct prong numbers.
There is only one class of prong-matching. Since locally at the nodes the
families are given by the equations x1y1 = t2 and x1y1 = t, and that
we can plumb the multi-scale differential without modifying the top curve
away from the nodes, we deduce from Lemma 5.1 that each family is a
cover of order 3 toM1,1. Hence there are 6 differentials on a smooth curve
which arise from this case.
Finally, we consider the fouth pointed curve where both poles are on

the top component. The differential on this component is in the locus
ΩR0(2, 1;−2,−3). Again [7] gives that there is a unique such differen-
tial. The differential on the bottom component is the unique differential
in ΩM0(5;−2,−3). Since there are two ways to assign the prong numbers
at the nodes, there are two twisted differentialson this pointed curve. Note
that there is a unique class of prong-matching, hence there are two distinct
multi-scale differentials on this pointed curve. Again each family is locally
a cover of order 5 to M1,1. Hence there are 10 differentials which come
from this case.
Summing up all the contributions we conclude that there are 24

non isomorphic differentials in ΩR1(5;−2,−3) on a smooth curve of
genus 1. �

We now prove Theorem 1.3 by arguments similar to the ones used to
prove Lemma 5.6. Recall that this theorem says that the degree of the
map π : PΩR1(6;−2,−2,−2)→M1,1 is 7. Note that by Theorem 1.2, the
dimension of PΩR1(6;−2,−2,−2) is equal to the dimension ofM1,1, hence
it make sense to compute the degree of the forgetful map.

Proof of Theorem 1.3. — According to Lemma 5.3 there are 4 types of
pointed curves on which there can exists a multi-scale differential in the
closure of ΩR1(6;−2,−2,−2). These curves are shown in the first row of
Table 5.3 (the entries of this table are explained for Table 5.1).
Let us consider the pointed curves of the first column. The pull-back

of the differential on the normalisation lies in ΩM0(6;−2,−2,−2,−1,−1)
with all the residues of the poles of order −2 equal to zero. There is a unique
such differential, and it is not difficult to show that it leads to a unique
multi-scale differential on such pointed curve. Hence there is a unique dif-
ferential on a smooth curve degenerating to this multi-scale differential.
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Table 5.3. Summary of the case ΩR1(6;−2,−2,−2).

Pointed curve z

w1 w2w3

κ1 κ2

z
w1

w2 w3

κ1 κ2

z

w1
w2

w3

κ1 κ2

z

w1
w2

w3

# twisted diff. 1 1 1 1
# prong-match. 1 1 2 3
Local degree 1 2 2 2
Symmetries 1 1 2 3
Total count 1 2 2 2

Consider the pointed curve in the second column. The differential on
the top component is the unique one in the stratum ΩM0(0, 0;−2). The
differential on the bottom component is in ΩM0(6;−2,−2,−2,−2) with
two poles having zero residue. There is a unique such twisted differen-
tialby [7]. Moreover, since there is a unique class of prong-matching, there
is a unique multi-scale differential on this pointed curve. The local equa-
tion of the family at the nodes is xiyi = t, and we can plumb the family
so that the underlying curve satisfies the hypotheses of Lemma 5.1, so by
Lemma 5.1 the local degree of the family of pointed curves is 2. Since the
family of differentials near the top component is given by ω0 and the bot-
tom by tω−1, the differentials on the isomorphic curves for parameters t
and −t are distinct. Hence there are two differentials on a smooth genus 1
curves converging to this multi-scale differential.
Consider the case of pointed curves given in the third column of Ta-

ble 5.3. The differential on the top component is the unique differential
in ΩR0(1, 1;−2,−2). The differential on the bottom component is in the
stratum ΩM0(6;−2,−3,−3) with two poles having zero residue. Propo-
sition 2.3 of [7] implies that there is a unique such twisted differential.
Since the prong-numbers are both equal to 2, there are 2 classes of prong-
matchings. For each class the degree of the restriction of the stabilisation
map to this family is 2. But since near the bottom differential the fam-
ily looks like t2ω−1, the 2 differentials coincide (the marked poles are per-
muted). Hence there are 2 differentials on a smooth curve which degenerate
to the multi-scale differentials in this case.
In the last pointed curve of Table 5.3, the restriction ω0 of the differential

to the top component is the unique element in ΩR0(2, 2;−2,−2,−2). Note
that the top differential in ΩR0(2, 2;−2,−2,−2) has an automorphism
group equal to Z/3Z. This can be check directly since ω0 = z2

(z3−1)2 dz or by
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looking at the flat picture of this differential given in Figure 5.6. The differ-
ential on the bottom component is the unique element in ΩM0(6;−4,−4).
There is a unique such twisted differential but there are 3 classes of prong-
matchings. Here we have a new phenomenon occurring. Indeed the au-
tomorphism group of ω0 acts on the classes of prongs and hence on the
multi-scale differentials. One class of prongs is represented in Figure 5.6
and the acts of the automorphism group consist of permuting cyclically
the polar domains. Hence there is only one class prong-matching modulo
isomorphism. For the smoothing of this multi-scale differential the degree
of the stabilisation map is 2. It is easy to see that the 2 differentials on
isomorphic curves are indeed distinct. Hence there are 2 differentials on a
smooth curve degenerating to this multi-scale differential.

1 2

3 1

2 3

1 2

3 1

2 3

1 2

3 1

2 3

Figure 5.6. The three element in the same class of prong-matchings in
the case ΩR1(6;−2,−2,−2).

Summing up all the cases we obtain that there are 7 non isomorphic
differentials in the locus PΩR1(6;−2,−2,−2) on a general curve of genus 1.
To conclude, it suffices to show that π : PΩR1(6;−2,−2,−2)→M1,1 is

unramified. To prove this, it suffices to show that there exit no twisted dif-
ferentials of type (6;−2,−2,−2) of the second kind on a curve semi-stably
equivalent to a smooth curve of genus 1. This follows from Theorem 1.1
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of [25] by the fact that every twisted differential on such curve has a non-
zero residue either at a node or at a smooth pole. �

To conclude this section on enumerative problems related to differentials,
we compute the degree of the map π : PΩR2(6;−2,−2) → M2, which is
finite by Theorem 1.2.

Proposition 5.7. — The map π : PΩR2(6;−2,−2) → M2 is of de-
gree 644.

The proof of this proposition is by degeneration in the moduli space of
multi-scale differentials.

Proof. — Let us consider the stable curveX which is union of two general
elliptic curves X1 and X2 attached to a point q. We denote by z the zero
of order a, by w1 and by w2 the poles of order 2. We compute the number
of multi-scale differentials on X.
There are six types of pointed curves (X; z, w1, w2) which can have a

multi-scale differential of type (6;−2,−2) of the second kind. The ones with
z ∈ X1 are shown in Figure 5.7 and the other stable curves are symmetric
to these ones with z ∈ X2.

z
w1
w2

X1 X2

(a)

z

w1

X1 X2

w2

(b)

z

X1 X2

w1

w2

(c)

Figure 5.7. The pointed curves (X, z, w1, w2) underlying multi-scale
differentials in the closure of ΩR2(6;−2,−2) (up to permutation of
the points).

In case (a), the differential ω1 on X1 is in the locus ΩR1(6;−2,−2,−2).
Theorem 1.3 gives that there are 7 non isomorphic such differentials. More-
over, the differential ω2 on X2 is the unique holomorphic differential on this
elliptic curve. Since there are three ways of pasting these differentials to-
gether (one for each pole of the differentials ω1), then there are da = 21
such twisted differentials. Moreover since there is a unique class of prong-
matchings there are 21 multi-scale differentials of this type.
In case (b), the differential over X1 is in the locus ΩR1(6;−2,−4). Corol-

lary 5.5 gives that there are 62 + 42 − 10 = 42 such differentials. Moreover
the differential on X2 is one of the 3 differentials of ΩM1(2;−2). Since
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there is a unique class of prong-matching, there exist db = 42 ·3 = 126 such
multi-scale differentials.
In case (c), the differential on X1 in one of the 35 differentials in the

stratum ΩM1(6;−6). The differential on X2 is in ΩR1(4;−2,−2). Hence
Lemma 5.6 implies that there are 5 such differentials. Finally there exist
dc = 35 · 5 = 175 such multi-scale differentials.
Summing up all the contributions, there exist

d = 2 · (da + db + dc) = 2 · (21 + 126 + 175) = 644

multi-scale differentials in the closure of ΩR2(6;−2,−2) on the curve X.
To conclude that the degree of π on X is equal to 644, it remains to

show that there is a unique differential which converges to each multi-scale
differential. Since the family of curve is given by xy = t at the node, there
is a unique differential on nearby smooth curves which converges to each
multi-scale differentials. �

5.3. The class of M3(6;−2) in the Picard group of M3

To compute the coefficients of boundary classes of the divisorM3(6,−2)
of the projection of ΩM3(6,−2) inM3, we use the technique of test curves.
The test curves that we use are well-known and we follow the notation
of [24] to denote them.

First curve

The first curve A is obtained in the following way. Let X2 be a curve of
genus 2 and p a generic point of X2. We glue at p a base point q of a pencil
of plane cubic.

Proposition 5.8. — The intersection number ofM3(6;−2) with A is
equal to 0.

Proof. — It is sufficient to show that there is no twisted differential of
type (6;−2) on a curve semi-stably equivalent to any curve of A. Lemma 5.2
tells us that it is enough to consider cases where the points z and w are on
the smooth part of X. So we have four cases to consider, which we represent
in Figure 5.8.
In case (a) the restriction ω2 of ω to X2 is in the stratum ΩM2(4;−2).

Since this stratum has a projective dimension equal to the dimension ofM2,
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Figure 5.8. The pointed curves (X; z, w) which can both underly a
multi-scale differential of type (6;−2) and be an element of A.

there is a finite number of points that can be the pole of ω2. Hence no
twisted differential of this form can exist, since the point p is generic.
In case (b), the same argument works since the differential ω2 is in

ΩM2(6;−4) with projective dimension equal to that ofM2.
In the case (c), the differential ω2 has a zero of order 2 at p. So this point

has to be a Weierstraß point. It is not possible because this point is generic
on X2.
In the case (d), the differential ω2 is in the stratum ΩM2(6;−2,−2).

In addition, the global residue condition implies that all the residues are
equal to 0. By Lemma 3.1 the locus that parametrises these differentials is
of dimension three. This implies that the point p has to be special on X2,
which gives the last contradiction. �

Second curve

The second curve C is obtained as follows. We choose a general curve X2
of genus 2 and an elliptic curveX1 which we glue together at points q2 ∈ X2
and q1 ∈ X1. The family C is the family where q2 varies over X2.

Proposition 5.9. — The intersection number betweenM3(6;−2) and
the curve C is equal to 8792.

Proof. — A curve X in the family C is in the locusM3(6;−2) if and only
if there is a multi-scale differential of type (6;−2) on a pointed curve semi-
stably equivalent to X. Lemma 5.2 implies that no marked point can be on
a rational bridge between the two components X1 and X2. Moreover, the
points cannot be together on a rational curve. Otherwise on this curve the
differential has to be in the stratum ΩM0(6;−2,−6). By [15, Theorem 1.2]
we know that the residues of the differential at the poles are not zero. Then
the global residue condition cannot be fulfilled. Therefore, the possible
curves belonging to C and in the divisorM3(6;−2) are of the types pictured
in Figure 5.8.

TOME 72 (2022), FASCICULE 1



296 Abel CASTORENA & Quentin GENDRON

In case (a), the differential over X1 is in the stratum ΩM1(6;−6) and the
differential on X2 is in ΩM2(4;−2). According to Proposition 5.4, there
are d2 = 2 ·42 ·(−2)2−18 = 110 possible position for the points q2. So there
are 110 curves in the intersection of C andM3(6;−2) where the zero tends
to X1 and the pole to X2. It remains to compute the multiplicity of these
points. Note that on X1, there are d1 = 62−1 = 35 possible non isomorphic
differentials. Moreover the space of multi-scale differentials is smooth at
these points. Hence this configuration contributes to da = d1 ·d2 = 3850 to
the intersection number between C andM3(6;−2).
In case (b), the restriction of the multi-scale differential to X1 is in

ΩM1(2;−2) and the restriction to X2 is in ΩM2(6;−4). So by Propo-
sition 5.4 there are d2 = 2 · 62 · 42 − 18 = 1134 possible positions for the
point q2. Hence there are 1134 curves of C having multi-scale differentials
of this type. Moreover, since there are d1 = 3 possible differentials on X1
and the space is smooth at these points, each of this point contributes to 3
to the intersection number. So this case contributes to db = d1 · d2 = 3402
to the intersection number between C andM3(6;−2).
In case (c), the restriction of the multi-scale differential to X1 is in

ΩM1(6;−2,−4) and the restriction to X2 is in ΩM2(2). So there are 6
pointed curves that have a twisted differential of this type (one for each
Weierstraß point). Moreover, Corollary 5.5 tells us that over X1 there are
62 + 42 − 10 = 42 differentials in ΩR1(6;−2,−4). So this case contributes
to db = 6 · 42 = 252 to the intersection number.

In case (d), the restriction of the multi-scale differential to X1 is in ΩM1
and the restriction to X2 is in ΩR2(6;−2,−2). So Proposition 5.7 implies
that the number of curves in C that lies in M3(6;−2) with a multi-scale
differential of type (d) is 644. Since each of the intersections is simple and
there are two choices for the pole of order 2, this case contributes to 1288
to the intersection number.
To conclude the proof, it is sufficient to sum the contributions of each

type. Hence we have

M3(6;−3) ∩ [C] = 3850 + 3402 + 252 + 1288 = 8792 . �

Conclusion

Now it remains to collect the information of this section to give the class
αλ + βδ0 + γδ1 ofM3(6;−2) in Pic(M3) ⊗ Q. The classical result of [18,
Table 3.141] implies that:

α+ 12β − γ = 0 , −2γ = 8792 .
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We now by Equation (4.1) that α = 17108. Hence the class of M3(6;−2)
in Pic(M3)⊗Q is given by

(5.1)
[
M3(6;−2)

]
= 17108λ− 1792δ0 − 4396δ1 .

To conclude note that [4] gives that ΩM3(6;−2) has one hyperelliptic
components and two other components distinguished by parity. We de-
note by Mhyp

3 (6;−2) the projection of the hyperelliptic component and
byM+

3 (6;−2) andM−3 (6;−2) the projection of the other components. In
the hyperelliptic case the zero and the pole are distinct Weierstraß points.
Since there are 8 such points, the class ofMhyp

3 (6;−2) is 56 times the class
of the hyperelliptic divisor in M3. According to [18, Equation 3.165], the
class of the hyperelliptic locus is 9λ− δ0− 3δ1. Hence a direct consequence
of Theorem 1.1 is the following result.

Corollary 5.10. — In the rational Picard group of the stackM3 we
have [

M+
3 (6;−2)

]
+
[
M−3 (6;−2)

]
= 16604λ− 1736δ0 − 4228δ1 .

From this corollary we obtain that the slope of the non-hyperelliptic
divisorM+

3 (6;−2)+M−3 (6;−2) is equal to 9+ 35
62 . Note that this is coherent

with the fact [17, Corollary 0.5] that the only divisor of slope less than 28
3

inM3 is the divisor of hyperelliptic curves.
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