The split case of the Prasad–Takloo-Bighash conjecture for cuspidal representations of level zero
[Le cas déployé de la conjecture de Prasad–Takloo-Bighash pour les représentations cuspidales de niveau zéro]
Annales de l'Institut Fourier, Tome 72 (2022) no. 1, pp. 123-153.

Soit E/F une extension quadratique de corps locaux nonarchimédiens de caractéristique résiduelle impaire. On prouve une conjecture de Prasad et Takloo-Bighash dans le cas des représentations cuspidales de niveau zéro de GL 2m (F). Cette conjecture caractérise la distinction pour la paire (GL 2m (F),GL m (E)) selon un caractère μdet de GL m (E), en termes de certaines conditions sur le paramètre de Langlands incluant une valeur spéciale de facteur epsilon. On montre aussi que l’espace des formes linéaires équivariantes vaut un lorsque E/F est non ramifiée, et aussi lorsque μ est modéré.

Let E/F be a quadratic extension of non archimedean local fields of odd residual characteristic. We prove a conjecture of Prasad and Takloo-Bighash, in the case of cuspidal representations of depth zero of GL 2m (F). This conjecture characterizes distinction for the pair (GL 2m (F),GL m (E)) with respect to a character μdet of GL m (E), in terms of certain conditions on Langlands paremeters, including an epsilon value. We also compute the multiplicity of the involved equivariant linear forms when E/F is unramified, and also when μ is tame. In both cases this multiplicity is at most one.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3456
Classification : 22E50, 11F70
Keywords: Cuspidal representations of level zero, Distinction, The Prasad–Takloo-Bighash conjecture
Mot clés : Représentations cuspidales de niveau zéro, Distinction, Conjecture de Prasad–Takloo-Bighash

Chommaux, Marion 1 ; Matringe, Nadir 1

1 LMA, Site du Futuroscope - Téléport 2 11 Boulevard Marie et Pierre Curie Bâtiment H3- TSA 61125 86073 Poitiers Cedex 9, (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2022__72_1_123_0,
     author = {Chommaux, Marion and Matringe, Nadir},
     title = {The split case of the {Prasad{\textendash}Takloo-Bighash} conjecture for cuspidal representations of level zero},
     journal = {Annales de l'Institut Fourier},
     pages = {123--153},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {72},
     number = {1},
     year = {2022},
     doi = {10.5802/aif.3456},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3456/}
}
TY  - JOUR
AU  - Chommaux, Marion
AU  - Matringe, Nadir
TI  - The split case of the Prasad–Takloo-Bighash conjecture for cuspidal representations of level zero
JO  - Annales de l'Institut Fourier
PY  - 2022
SP  - 123
EP  - 153
VL  - 72
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3456/
DO  - 10.5802/aif.3456
LA  - en
ID  - AIF_2022__72_1_123_0
ER  - 
%0 Journal Article
%A Chommaux, Marion
%A Matringe, Nadir
%T The split case of the Prasad–Takloo-Bighash conjecture for cuspidal representations of level zero
%J Annales de l'Institut Fourier
%D 2022
%P 123-153
%V 72
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3456/
%R 10.5802/aif.3456
%G en
%F AIF_2022__72_1_123_0
Chommaux, Marion; Matringe, Nadir. The split case of the Prasad–Takloo-Bighash conjecture for cuspidal representations of level zero. Annales de l'Institut Fourier, Tome 72 (2022) no. 1, pp. 123-153. doi : 10.5802/aif.3456. https://aif.centre-mersenne.org/articles/10.5802/aif.3456/

[1] Badulescu, Alexandru Ioan Global Jacquet–Langlands correspondence, multiplicity one and classification of automorphic representations, Invent. Math., Volume 172 (2008) no. 2, pp. 383-438 (with an appendix by Neven Grbac) | DOI | MR | Zbl

[2] Badulescu, Alexandru Ioan; Roche, Philippe Global Jacquet–Langlands correspondence for division algebras in characteristic p, Int. Math. Res. Not., Volume 2017 (2017) no. 7, pp. 2172-2206 | DOI | MR | Zbl

[3] Blondel, Corinne; Henniart, Guy; Stevens, Shaun Jordan blocks of cuspidal representations of symplectic groups, Algebra Number Theory, Volume 12 (2018) no. 10, pp. 2327-2386 | DOI | MR | Zbl

[4] Broussous, Paul; Lemaire, Bertrand Building of GL (m,D) and centralizers, Transform. Groups, Volume 7 (2002) no. 1, pp. 15-50 | DOI | MR | Zbl

[5] Broussous, Paul; Matringe, Nadir Multiplicity One for Pairs of Prasad–Takloo-Bighash Type, Int. Math. Res. Not., Volume 2021 (2019) no. 21, pp. 16421-16445 | DOI | Zbl

[6] Broussous, Paul; Schneider, Peter Type theory and coefficient systems on the building, Bull. Soc. Math. Fr., Volume 145 (2017) no. 1, pp. 97-159 | DOI | MR | Zbl

[7] Bushnell, Colin J.; Henniart, Guy The local Langlands conjecture for GL (2), Grundlehren der Mathematischen Wissenschaften, 335, Springer, 2006 | DOI | MR | Zbl

[8] Bushnell, Colin J.; Henniart, Guy Explicit functorial correspondences for level zero representations of p-adic linear groups, J. Number Theory, Volume 131 (2011) no. 2, pp. 309-331 | DOI | MR | Zbl

[9] Chommaux, Marion Distinction of the Steinberg representation and a conjecture of Prasad and Takloo-Bighash, J. Number Theory, Volume 202 (2019), pp. 200-219 | DOI | MR | Zbl

[10] Fröhlich, Albrecht; Queyrut, Jacques On the functional equation of the Artin L-function for characters of real representations, Invent. Math., Volume 20 (1973), pp. 125-138 | DOI | MR | Zbl

[11] Gan, Wee Teck; Lomelí, Luis Globalization of supercuspidal representations over function fields and applications, J. Eur. Math. Soc., Volume 20 (2018) no. 11, pp. 2813-2858 | DOI | MR | Zbl

[12] Guo, Jiandong Uniqueness of generalized Waldspurger model for GL (2n), Pac. J. Math., Volume 180 (1997) no. 2, pp. 273-289 | DOI | MR | Zbl

[13] Hakim, Jeffrey; Murnaghan, Fiona Distinguished tame supercuspidal representations, Int. Math. Res. Pap. IMRP (2008) no. 2, rpn005 | MR | Zbl

[14] Langlands, Robert On the Functional Equation of the Artin L-functions (1970) (preprint, https://publications.ias.edu/rpl/paper/61)

[15] Matringe, Nadir On the local Bump–Friedberg L-function, J. Reine Angew. Math., Volume 709 (2015), pp. 119-170 | DOI | MR | Zbl

[16] Moy, Allen Local constants and the tame Langlands correspondence, Am. J. Math., Volume 108 (1986) no. 4, pp. 863-930 | DOI | MR | Zbl

[17] Offen, Omer Relative spherical functions on -adic symmetric spaces (three cases), Pac. J. Math., Volume 215 (2004) no. 1, pp. 97-149 | DOI | MR | Zbl

[18] Prasad, Dipendra The space of degenerate Whittaker models for general linear groups over a finite field, Int. Math. Res. Not. (2000) no. 11, pp. 579-595 | DOI | MR | Zbl

[19] Prasad, Dipendra Multiplicities under basechange: finite field case (2019) (https://arxiv.org/abs/1911.02783, to appear in Journal of Algebra)

[20] Prasad, Dipendra; Schulze-Pillot, Rainer Generalised form of a conjecture of Jacquet and a local consequence, J. Reine Angew. Math., Volume 616 (2008), pp. 219-236 | DOI | MR | Zbl

[21] Prasad, Dipendra; Takloo-Bighash, Ramin Bessel models for GSp(4), J. Reine Angew. Math., Volume 655 (2011), pp. 189-243 | DOI | MR | Zbl

[22] Saito, Hiroshi On Tunnell’s formula for characters of GL (2), Compos. Math., Volume 85 (1993) no. 1, pp. 99-108 | Numdam | MR | Zbl

[23] Sécherre, Vincent Représentations cuspidales de GL(r,D) distinguées par une involution intérieure (2020) (preprint, https://lmv.math.cnrs.fr/wp-content/uploads/2020/05/autodual.pdf)

[24] Suzuki, Miyu Classification of standard modules with linear periods, J. Number Theory, Volume 218 (2021), pp. 302-310 | DOI | MR | Zbl

[25] Suzuki, Miyu; Xue, Hang Linear intertwining periods and epsilon dichotomy for linear models (2020) (preprint, https://www.math.arizona.edu/%7exuehang/intertwining_v1.pdf)

[26] Tate, John T. jun Number theoretic background, Automorphic forms, representations and L-functions (State Univ., Corvallis, Oregon, 1977) (Proceedings of Symposia in Pure Mathematics), Volume 33-2, American Mathematical Society (1979), pp. 3-26 | MR | Zbl

[27] Tunnell, Jerrold B. Local ϵ-factors and characters of GL (2), Am. J. Math., Volume 105 (1983) no. 6, pp. 1277-1307 | DOI | MR | Zbl

[28] Weil, André Basic number theory, Grundlehren der Mathematischen Wissenschaften, 144, Springer, 1974 | MR | Zbl

[29] Xue, Hang Epsilon dichotomy for linear models (2020) (to appear in Algebra Number Theory, https://www.math.arizona.edu/~xuehang/epsilon_ant_final.pdf)

Cité par Sources :