Soit une extension quadratique de corps locaux nonarchimédiens de caractéristique résiduelle impaire. On prouve une conjecture de Prasad et Takloo-Bighash dans le cas des représentations cuspidales de niveau zéro de . Cette conjecture caractérise la distinction pour la paire selon un caractère de , en termes de certaines conditions sur le paramètre de Langlands incluant une valeur spéciale de facteur epsilon. On montre aussi que l’espace des formes linéaires équivariantes vaut un lorsque est non ramifiée, et aussi lorsque est modéré.
Let be a quadratic extension of non archimedean local fields of odd residual characteristic. We prove a conjecture of Prasad and Takloo-Bighash, in the case of cuspidal representations of depth zero of . This conjecture characterizes distinction for the pair with respect to a character of , in terms of certain conditions on Langlands paremeters, including an epsilon value. We also compute the multiplicity of the involved equivariant linear forms when is unramified, and also when is tame. In both cases this multiplicity is at most one.
Révisé le :
Accepté le :
Publié le :
Keywords: Cuspidal representations of level zero, Distinction, The Prasad–Takloo-Bighash conjecture
Mot clés : Représentations cuspidales de niveau zéro, Distinction, Conjecture de Prasad–Takloo-Bighash
Chommaux, Marion 1 ; Matringe, Nadir 1
@article{AIF_2022__72_1_123_0, author = {Chommaux, Marion and Matringe, Nadir}, title = {The split case of the {Prasad{\textendash}Takloo-Bighash} conjecture for cuspidal representations of level zero}, journal = {Annales de l'Institut Fourier}, pages = {123--153}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {1}, year = {2022}, doi = {10.5802/aif.3456}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3456/} }
TY - JOUR AU - Chommaux, Marion AU - Matringe, Nadir TI - The split case of the Prasad–Takloo-Bighash conjecture for cuspidal representations of level zero JO - Annales de l'Institut Fourier PY - 2022 SP - 123 EP - 153 VL - 72 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3456/ DO - 10.5802/aif.3456 LA - en ID - AIF_2022__72_1_123_0 ER -
%0 Journal Article %A Chommaux, Marion %A Matringe, Nadir %T The split case of the Prasad–Takloo-Bighash conjecture for cuspidal representations of level zero %J Annales de l'Institut Fourier %D 2022 %P 123-153 %V 72 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3456/ %R 10.5802/aif.3456 %G en %F AIF_2022__72_1_123_0
Chommaux, Marion; Matringe, Nadir. The split case of the Prasad–Takloo-Bighash conjecture for cuspidal representations of level zero. Annales de l'Institut Fourier, Tome 72 (2022) no. 1, pp. 123-153. doi : 10.5802/aif.3456. https://aif.centre-mersenne.org/articles/10.5802/aif.3456/
[1] Global Jacquet–Langlands correspondence, multiplicity one and classification of automorphic representations, Invent. Math., Volume 172 (2008) no. 2, pp. 383-438 (with an appendix by Neven Grbac) | DOI | MR | Zbl
[2] Global Jacquet–Langlands correspondence for division algebras in characteristic , Int. Math. Res. Not., Volume 2017 (2017) no. 7, pp. 2172-2206 | DOI | MR | Zbl
[3] Jordan blocks of cuspidal representations of symplectic groups, Algebra Number Theory, Volume 12 (2018) no. 10, pp. 2327-2386 | DOI | MR | Zbl
[4] Building of and centralizers, Transform. Groups, Volume 7 (2002) no. 1, pp. 15-50 | DOI | MR | Zbl
[5] Multiplicity One for Pairs of Prasad–Takloo-Bighash Type, Int. Math. Res. Not., Volume 2021 (2019) no. 21, pp. 16421-16445 | DOI | Zbl
[6] Type theory and coefficient systems on the building, Bull. Soc. Math. Fr., Volume 145 (2017) no. 1, pp. 97-159 | DOI | MR | Zbl
[7] The local Langlands conjecture for , Grundlehren der Mathematischen Wissenschaften, 335, Springer, 2006 | DOI | MR | Zbl
[8] Explicit functorial correspondences for level zero representations of -adic linear groups, J. Number Theory, Volume 131 (2011) no. 2, pp. 309-331 | DOI | MR | Zbl
[9] Distinction of the Steinberg representation and a conjecture of Prasad and Takloo-Bighash, J. Number Theory, Volume 202 (2019), pp. 200-219 | DOI | MR | Zbl
[10] On the functional equation of the Artin -function for characters of real representations, Invent. Math., Volume 20 (1973), pp. 125-138 | DOI | MR | Zbl
[11] Globalization of supercuspidal representations over function fields and applications, J. Eur. Math. Soc., Volume 20 (2018) no. 11, pp. 2813-2858 | DOI | MR | Zbl
[12] Uniqueness of generalized Waldspurger model for , Pac. J. Math., Volume 180 (1997) no. 2, pp. 273-289 | DOI | MR | Zbl
[13] Distinguished tame supercuspidal representations, Int. Math. Res. Pap. IMRP (2008) no. 2, rpn005 | MR | Zbl
[14] On the Functional Equation of the Artin L-functions (1970) (preprint, https://publications.ias.edu/rpl/paper/61)
[15] On the local Bump–Friedberg -function, J. Reine Angew. Math., Volume 709 (2015), pp. 119-170 | DOI | MR | Zbl
[16] Local constants and the tame Langlands correspondence, Am. J. Math., Volume 108 (1986) no. 4, pp. 863-930 | DOI | MR | Zbl
[17] Relative spherical functions on -adic symmetric spaces (three cases), Pac. J. Math., Volume 215 (2004) no. 1, pp. 97-149 | DOI | MR | Zbl
[18] The space of degenerate Whittaker models for general linear groups over a finite field, Int. Math. Res. Not. (2000) no. 11, pp. 579-595 | DOI | MR | Zbl
[19] Multiplicities under basechange: finite field case (2019) (https://arxiv.org/abs/1911.02783, to appear in Journal of Algebra)
[20] Generalised form of a conjecture of Jacquet and a local consequence, J. Reine Angew. Math., Volume 616 (2008), pp. 219-236 | DOI | MR | Zbl
[21] Bessel models for GSp(4), J. Reine Angew. Math., Volume 655 (2011), pp. 189-243 | DOI | MR | Zbl
[22] On Tunnell’s formula for characters of , Compos. Math., Volume 85 (1993) no. 1, pp. 99-108 | Numdam | MR | Zbl
[23] Représentations cuspidales de GL(r,D) distinguées par une involution intérieure (2020) (preprint, https://lmv.math.cnrs.fr/wp-content/uploads/2020/05/autodual.pdf)
[24] Classification of standard modules with linear periods, J. Number Theory, Volume 218 (2021), pp. 302-310 | DOI | MR | Zbl
[25] Linear intertwining periods and epsilon dichotomy for linear models (2020) (preprint, https://www.math.arizona.edu/%7exuehang/intertwining_v1.pdf)
[26] Number theoretic background, Automorphic forms, representations and -functions (State Univ., Corvallis, Oregon, 1977) (Proceedings of Symposia in Pure Mathematics), Volume 33-2, American Mathematical Society (1979), pp. 3-26 | MR | Zbl
[27] Local -factors and characters of , Am. J. Math., Volume 105 (1983) no. 6, pp. 1277-1307 | DOI | MR | Zbl
[28] Basic number theory, Grundlehren der Mathematischen Wissenschaften, 144, Springer, 1974 | MR | Zbl
[29] Epsilon dichotomy for linear models (2020) (to appear in Algebra Number Theory, https://www.math.arizona.edu/~xuehang/epsilon_ant_final.pdf)
Cité par Sources :