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THE SPLIT CASE OF THE
PRASAD–TAKLOO-BIGHASH CONJECTURE FOR
CUSPIDAL REPRESENTATIONS OF LEVEL ZERO

by Marion CHOMMAUX & Nadir MATRINGE

Abstract. — Let E/F be a quadratic extension of non archimedean local fields
of odd residual characteristic. We prove a conjecture of Prasad and Takloo-Bighash,
in the case of cuspidal representations of depth zero of GL2m(F ). This conjecture
characterizes distinction for the pair (GL2m(F ),GLm(E)) with respect to a char-
acter µ ◦ det of GLm(E), in terms of certain conditions on Langlands paremeters,
including an epsilon value. We also compute the multiplicity of the involved equi-
variant linear forms when E/F is unramified, and also when µ is tame. In both
cases this multiplicity is at most one.
Résumé. — Soit E/F une extension quadratique de corps locaux nonarchimé-

diens de caractéristique résiduelle impaire. On prouve une conjecture de Prasad
et Takloo-Bighash dans le cas des représentations cuspidales de niveau zéro de
GL2m(F ). Cette conjecture caractérise la distinction pour la paire (GL2m(F ),
GLm(E)) selon un caractère µ ◦det de GLm(E), en termes de certaines conditions
sur le paramètre de Langlands incluant une valeur spéciale de facteur epsilon. On
montre aussi que l’espace des formes linéaires équivariantes vaut un lorsque E/F
est non ramifiée, et aussi lorsque µ est modéré.

Introduction

Let E/F be a quadratic extension of non archimedean local fields. Let D
be an F -division algebra of dimension d2 and n be a positive integer such
that nd is even. Set M = M(n,D), so that E embeds into M uniquely
up to inner automorphism. Set CE(M) to be the centralizer of E inM, it
is an E-central simple algebra. Let G = M× and H = CE(M)×, for µ :
E∗ → C∗ a smooth character, we denote by µ of the character H obtained
by composing µ with the reduced norm on H. This paper is concerned with

Keywords: Cuspidal representations of level zero, Distinction, The Prasad–Takloo-
Bighash conjecture.
2010 Mathematics Subject Classification: 22E50, 11F70.



124 Marion CHOMMAUX & Nadir MATRINGE

the following conjecture of Prasad and Takloo-Bighash [21, Conjecture 1]
(the generic transfer assumption in [ibid.] has been shown to be unnecessary
in [24]):

Conjecture 0.1. — Let π be an irreducible admissible representation
of G = GL(n,D) with central character ωπ. Let µ be a character of E×
such that µnd2 |F× = ωπ. If the representation π is µ-distinguished by H,
i.e. if HomH(π, µ) 6= 0, then:

(1) the Langlands parameter φ(π) of π takes values in GSPnd(C), with
similitude factor µ|F× ;

(2) the epsilon factor satisfies the relation

ε

(
1
2 , φ(π)⊗ IndWF

WE

(
µ−1)) = (−1)nωE/F (−1)nd2 µ(−1)nd2

where ωE/F is the quadratic character of F× with kernel the norms
of E×, and W stands for the Weil group.

If π is a disrete series representation of G, then the implication becomes
an equivalence.

This conjecture is inspired by earlier results of J. Tunnel and H. Saito for
n = 2 and D = F . In fact Tunnel was the first to consider the problem for
GL(2, F ), and to solve it when the residual characteristic of F is not 2 ([27,
Theorem p. 1277]), then Saito found a simpler proof valid in characteristic
different from 2 ([22, Theorem p. 99]).
The current status of the conjecture is the following: when µ = 1 and

F has characteristic zero and odd residual characteristic, the conjecture
should be proved by the combination of [23, 24, 25, 29]. The paper [29]
holds in characteristic zero, the paper [24] holds in characteristic not 2, and
the parts of [23] which do not depend on [29] hold in residual characteristic
not 2. Finally the reduction from discrete series to cuspidal representa-
tions done in [25] holds in characteristic zero (and assumes odd residual
characteristic because the main theorem depends on [23]).
For general µ and F of characteristic not 2, the conjecture is proved by

the first named author in [9] for Steinberg representations. In this paper,
when the residual characteristic of F is not 2, we prove it for general µ and
depth-zero cuspidal representations of F -split G.

Let us describe the how the paper is organized: we assume the residual
characteristic of F to be different from 2, and suppose that n > 4 as in any
case the conjecture we intend to prove is known for n = 2 from Tunnel and
Saito’s results.
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In Section 2 we treat the case where µ is tame. By standard Mackey
theory arguments, and an also standard argument of Hakim and Mur-
naghan, we characterize µ-distinction of depth-zero cuspidal representa-
tions in terms of their Langlands parameters (Theorem 2.4).
In Section 3, in order to characterize distinction when µ is not tame,

we prove in Proposition 3.2 that a µ-distinguished cuspidal representation
of any inner form of GLn(F ) is µ-selfdual, by a standard globalization
argument.
In Section 4 we extend in Theorem 4.7 our characterization of µ-distinc-

tion depth-zero cuspidal representations of GLn(F ) in terms of their Lang-
lands parameter to any character µ. Along the way we isolate the contri-
bution of residual twisted Shalika models in Proposition 4.3, and show in
Proposition 4.5 that when E/F is unramified, the only double coset con-
tributing to distinction is the one isolated in Proposition 4.3. In particular
this gives a multiplicity at most one statement when E/F is unramified.
In Section 5 we give an explicit characterization of µ-simplecticity of

depth-zero cuspidal representations of GLn(F ) (see Corollary 5.6), which
resembles (and in fact is implied by) our µ-distinction criterion.

Finally in Section 6 we prove the Prasad and Takloo-Bighash conjecture
for depth-zero cuspidal representations of GLn(F ) (Corollary 6.2). With all
the analysis done before, it reduces to a pleasant computation of the epsilon
value of the conjecture for µ-symplectic depth-zero cuspidal representations
of GLn(F ) (with an extra condition on the central character) which is
done in particular thanks to a result of Fröhlich and Queyrut ([10]). The
computation in question is performed in Theorem 6.1.
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1. Preliminary results

1.1. Notation / definitions

Let F be a non-archimedean local field of residual characteristic not 2 and
D an F -central division algebra of dimension d2 over F . We fix an algebraic
closure which will contain all finite extensions of F under consideration, and
similarly for the residual field kF of F . For a finite extension • of F , we
denote by the O•, P•, $•, k• and q• the ring of integers, its maximal ideal,
a fixed uniformizer, the residual field of •. Whenever χ : •∗ → C∗ is a
(smooth) character, we say that it is tame if µ(1 + P•) = {1}. Let E be a
quadratic extension of F (we write E = F [δ] for a fixed δ in E \ F such
that δ2 is in F and we set ∆ = δ2). We let e(E/F ) denote the ramification
index of E/F . When E/F is ramified, we choose $E and $F such that
$F = $2

E ; when E/F is unramified, we choose $F = $E .
Throughout the paper we will have

nd = 2m

for m a natural number. In fact except in Proposition 3.2, we will have

D = F ⇔ d = 1⇔ n = 2m.

We will consider the group

G = GLn(F )

and its subgroup

H ' GLm(E)

embedded in G as we now explain. Let (e1, . . . , em) be the canonical basis
of Em. Then Em identifies to Fn as F -vector space via the basis B =
(δe1, . . . , δem, e1, . . . , em). Now H embeds in G as the fixed points of G
under the involution

θ : G −→ G

g 7→ AgA−1 where A =
(

Im
∆Im

)
.

We denote by detE the determinant map on H identified with GLm(E),
with values in E∗. Hence any character µ of E∗ defines a character which
we still write µ of H, and in fact all characters of H are such.

ANNALES DE L’INSTITUT FOURIER
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1.2. Parametrization of depth-zero cuspidal representations

We call a depth-zero cuspidal representation of GLn(F ) an irreducible
cuspidal representation of this group with a vector fixed by In + $FMn

(OF ). One can parametrize depth-zero cuspidal representations by admis-
sible tame pairs as we now recall (see [8, Part 5]).

• Let L/F be the unramified field extension of degree n, of ring of
integers OL. Let χ be a character of L∗ that satisfies:
– χ is tame,
– χ ◦ γ = χ ⇒ γ = idL for all γ in GalF (L); we say that χ is

regular.
Such a pair (L, χ) is said to be tame admissible.

• As χ is trivial on 1 + PL, (L, χ) induces a pair (kL, χ) where χ is
a character of k∗L which satisfies χ ◦ γ = χ ⇒ γ = idkL for all γ in
GalkF (kL); χ is said to be regular.
By Green parametrization, one can associate to (kL, χ) an ir-

reducible cuspidal representation (πχ,V) of GLn(kF ) i.e. an irre-
ducible representation of GLn(kF ) such that for all proper para-
bolic subgroup P with Levi decomposition P = MN , the vector
subspace of fixed points of V by N is trivial.
More precisely, if one defines an equivalence relation ∼ on regular

characters of k∗L by

χ̄1 ∼ χ̄2 if and only if ∃ γ̄ ∈ GalkF (kL) such that χ̄2 = χ̄1 ◦ γ̄,

one has a bijection:{
equivalence classes for ∼
of regular characters of k∗L

}
−→

{
equivalence classes of irreducible

cuspidal representations of GLn(kF )

}
χ̄ 7→ π̄χ̄

• As GLn(kF ) ' GLn(OF )/1 + $FMn(OF ), π̄χ̄ can be seen as a
representation of GLn(OF ) that is trivial on 1+$FMn(OF ). Then,
one can define a representation of F ∗GLn(OF ), denoted by λχ, in
the following way:

λχ(xk) = χ|F∗(x)π̄χ̄(k) for all x ∈ F ∗, k ∈ GLn(OF ).

• Finally, we set π(χ) := c− IndGLn(F )
F∗GLn(OF )(λχ) (c-Ind refers to com-

pact induction), it is a depth zero cuspidal representation of G.

TOME 72 (2022), FASCICULE 1



128 Marion CHOMMAUX & Nadir MATRINGE

If we denote again by ∼ the equivalence relation between admissi-
ble tame pairs of degree n by χ1 ∼ χ2 if and only if ∃ γ ∈ GalF (L)
such that χ2 = χ1 ◦ γ, one gets a bijection:{
equivalence classes for ∼ of

admissible tame pairs of degree n

}

−→


equivalence classes of

depth 0 cuspidal
representations of GLn(F )


(L, χ) 7→ π(χ)

Let us recall that the central character of π(χ) is χ|F∗ and its contragredient
is π(χ)∨ ' π(χ−1).

1.3. Reminder about the building of GLn(F )

Let us recall how to describe the Bruhat–Tits building of GLn(F ) with
lattice chains.

Definition 1.1. — An OF -lattice chain in Fn is a strictly decreasing
sequence (for inclusion) L = (Lk)k∈Z of lattices such that there exists a
unique positive integer T that satisfies: for any uniformizer $F , $FLk =
Lk+T for all k ∈ Z. The integer T (or T (L)) is called the period of L.

It is known that T is at most n, and that there are lattice chains with
period n. The group GLn(F ) naturally acts on the set of lattice chains
(Lk)k∈Z by g · (Lk)k = (g · Lk)k for g ∈ GLn(F ), and we say that two
lattice chains are equivalent if they are in the same Z-orbit, for Z the
center of GLn(F ).

Definition 1.2. — As a simplicial complex, the Bruhat–Tits building
of GLn(F ), XG, is defined as the the set of equivalence classes of lattice
chains. The (T − 1)-dimensional simplex being the equivalence classes of
lattice chains of period T .

We identify lattice chains of period one with Z-orbits of lattices in Fn,
and denote by [L] the Z-orbit of the lattice L: by definition they from
the set X◦G of vertices of XG. Clearly the group GLn(F )/Z, hence GLn(F )
acts onXG by respecting its simplicial structure. Let K denote the maximal
compact modulo center subgroup F ∗GLn(OF ) and let s0 be the vertex of
XG that is stabilized by K i.e. the standard lattice chain of period 1; the

ANNALES DE L’INSTITUT FOURIER
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vertex s0 is called the standard vertex of XG. We recall the following G-set
isomorphism:

(1.1) X◦G
∼−→ G/K

g · s0 7−→ gK for g ∈ G.

We will need the geometric realization of XG, denoted by |XG|. Each
T − 1-dimensional simplex of XG is embedded in RT−1 with the following
property: if we consider a T − 1-dimensional simplex, the points of its
geometric realization in |XG| are given by the set of all barycenters of its
vertices. We will use the geometric realization of the building XG given by
lattice-functions. The definition comes from [4, Section I.2].

Definition 1.3. — A lattice-function of Fn is a map

Λ : R −→ {lattices of Fn}

satisfying:
• $FΛ(r) = Λ(r + 1);
• Λ is decreasing: for all r > s, Λ(r) ⊆ Λ(s);
• Λ is left-continuous for the discrete topology on lattices.

Let us explain with more details how the set of lattice-functions allows
to realize geometrically the building of GLn(F ). Let Λ be a lattice-function
of Fn, then its image is a lattice chain L = (Lk)k∈Z with period T . If we
denote by λk the length of the interval defined by {r ∈ R,Λ(r) = Lk}, then
the point xΛ of |XG| associated to Λ is the barycenter of the weighted points
([L0], λ0), ([L1], λ1), . . . , ([LT−1], λT−1). Two lattice-functions Λ1 and Λ2
are said to be equivalent if there exists a real number r0 such that Λ1(r)
= Λ2(r+ r0) for all r ∈ R, in which case they realize the same point of the
building. We denote by Λ the class of a lattice-function Λ. Moreover, the
group GLn(F ) naturally acts on the set of lattice-functions by: (g · Λ)(r)
= g · (Λ(r)) for every lattice-function Λ, every g ∈ GLn(F ) and every real
number r. Thus, one has the following G-set isomorphism:

{equivalence classes of lattice-functions of Fn} ∼−→ |XG|
Λ 7−→ xΛ

Of course, all these reminders are valid for the construction of the build-
ing of GLm(E), XH .

1.4. Vertices of the building fixed by the involution

First we recall the relation between |XG| and |XH |, we will use the
following terminology from type theory.

TOME 72 (2022), FASCICULE 1



130 Marion CHOMMAUX & Nadir MATRINGE

Definition 1.4. — Let u ∈ G such that F1 := F [u] is a field; let us
denote by vF1 the normalized valuation of F1 and by e(F1/F ) the ramifi-
cation index of F1/F . One says that u is minimal on F if:

(1) gcd(vF1(u), e(F1/F )) = 1,
(2) $−vF1 (u)

F ue(F1/F ) + PF1 generates the residual field extension kF1

/kF .
Recall that E = F [δ] and let us show that δ can be chosen minimal.
• If E/F is ramified, we recall that $F := $2

E . If we choose δ = $E ,
then we do have E = F [$E ] and δ is minimal. Indeed, vE($E) = 1
so gcd(vE($E), e(E/F )) = 1 and moreover $−1

F $2
E +PE = 1 +PE

which generates kE/kF (because kE = kF in the ramified case).
• If E/F is unramified (i.e. e(E/F ) = 1), then kE is an extension of
kF with cardinality q2

F and there exists ξ ∈ E∗ a primitive (q2
F−1)th

root of unity which generates E over F . Set δ := ξ
qF+1

2 . As the
order of δ is 2(qF − 1), then δ /∈ F but δ2 ∈ F , so that we do have
E = F [δ] with δ2 ∈ F . Moreover, δ is a minimal element because
vE(δ) = 0 so gcd(vE(δ), e(E/F )) = 1 and moreover, $0

F δ
1 + PE =

δ + PE generates kE/kF (see Weil [28, Theorem 7 and Corollary 3
of Chapter 1, § 4]).

From now on, we choose δ = $E if E/F is ramified and δ = ξ
qF+1

2 (for ξ
a primitive (q2

F −1)th root of unity) if E/F is unramified, thus δ is minimal.
Then by [6, Lemma XII.4.2] we have:
Lemma 1.5. — We have |XG|θ = |XG|E

∗ .
Note that an OE-lattice of Em can always be seen as an OF -lattice of

F 2m because OE is an OF -lattice in F 2. [4, Theorem 1.1] then asserts:
Theorem 1.6.
(1) There exists a unique map j : |XH | −→ |XG| that is H-equivariant

and affine.
(2) It is injective and j(|XH |) = |XG|E

∗ , the set of points that are fixed
by E∗.

(3) If x ∈ |XH | is associated to the lattice-function r 7→ Λ(r), then j(x)
is associated to the lattice-function r 7→ Λ(e(E/F )r).

The theorem above enables us to determine the H-orbits of θ-fixed ver-
tices in XG

◦ depending on the ramification of E/F .
Proposition 1.7. — When E/F is unramified, the set (X◦G)θ consists

of a unique H-orbit, namely that of the standard vertex s0 fixed by K,
whereas when E/F is ramified (X◦G)θ is empty.
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Proof. — When E/F is unramified, the map j is simply the identity
on lattice-functions and is simplicial. Thus by, (X◦G)θ = j(X◦H) whence
H\(X◦G)θ = H\j(X◦H) = j(H\X◦H) by Theorem 1.6. As H acts transitively
on X◦H , we deduce that (X◦G)θ consists of a unique H-orbit. Moreover it is
that of s0 because s0 is the image of the standard vertex in X◦H under j.
When E/F is ramified, then by Theorem 1.6 the map j sends an equivalence
class of lattice functions with image a lattice chain of of period 1 to an
equivalence class of lattice functions with image a lattice chain of of period
e(E/F ) = 2, i.e. it sends a vertex to an interior point of a simplex of
dimension > 1, so j(XH) ∩X◦G is empty and the resutl follows again from
Theorem 1.6. �

1.5. Properties of local constants

Let K ′/K be a finite separable extension of non-archimedean local fields,
if ψ is a non-trivial character of K, we denote by ψK′ the character ψ ◦
TrK′/K . We call the conductor of ψ the smallest integer d(ψ) such that ψ is
trivial on Pd(ψ)

K . Similarly if χ is a character of K∗, we call the conductor of
χ the integer c(χ) equal to zero if χ is unramified, or equal to the smallest
integer such that χ is trivial on 1 + Pc(ψ)

K′ if χ is ramified. We say that
χ is tame when c(χ) 6 1. When K ′/K is unramified, it follows from [28,
Chapter 8, Corollary 3] that

(1.2) d(ψK′) = d(ψ).

If φ is a representation of WK of finite dimension, and ψ is a non-trivial
character of K, we refer to [26, 3.6.4] for the definition of the root number
ε(1/2, φ, ψ) (denoted εL there). One then defines the Langlands λ-constant:

λ (K ′/K,ψ) =
ε
(

1/2, IndWK

WK′
(1WK

) , ψ
)

ε (1/2,1WL
, ψK′)

.

We set

ωK′/K = det ◦ IndWK

WK′
(1WK

) ,

it identifies with the quadratic character of K∗ with kernel the norms of
K ′
∗ when K ′/K is quadratic. For a ∈ K×, we set ψa = ψ(a . ). These

constants enjoy the following list of properties, which we will freely use
later in the paper.
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132 Marion CHOMMAUX & Nadir MATRINGE

(1) ε(1/2, φ⊕φ′, ψ) = ε(1/2, φ, ψ)ε(1/2, φ′, ψ) where φ′ is another finite
dimensional representation of WK [26, (3.4.2)].

(2) ε(1/2, φ, ψa) = det(φ(a))ε(1/2, φ, ψ) ([26, (3.6.6)]).
(3) ε(1/2, φσ, ψσ) = ε(1/2, φ, ψ) whenever σ is a finite order field auto-

morphism of K, as can be checked by the definition of the epsilon
factor.

(4) ε(1/2, φ, ψ)ε(1/2, φ∨, ψ−1) = 1 ([26, (3.6.7)]).
(5) If χ is a character of K∗, and µ is an unramified character of K∗,

by [26, (3.6.5)]:

ε (1/2, µχ, ψ) = µ
(
$
d(ψ)+c(χ)
K

)
ε (1/2, χ, ψ) .

(6) If K ′/K is a quadratic, δ ∈ ker(TrK′/K) − {0}, χ is a character of
K ′
∗ with χ|K∗ = 1, then by [10, Theorem 3]:

ε (1/2, χ, ψK′) = χ(δ).

(7) If φK′ is an r-dimensional representation of WK′ , then

ε
(

1/2, IndWK

WK′
(φK′) , ψ

)
= λ (K ′/K,ψ)r ε (1/2, φK′ , ψK′)

([7, (30.4.2)]).
(8) If K ′/K is unramified with [K ′/K] = n:

λ (K ′/K,ψ) = (−1)d(ψ)(n−1)

(for example [16] and 2., together with Equation (1.2).)
(9) If K ′′ is a field with K ⊂ K ′′ ⊂ K ′, then

λ (K ′/K,ψ) = λ (K ′/K ′′, ψK′′)λ (K ′′/K,ψ)[K
′:K′′]

([14]).
(10) λ(K ′/K,ψ)2 = ωK′/K(−1) ([7, (30.4.3)]).

2. Distinction of depth-zero cuspidal representations when
µ is tame

This case is the easiest case, and we use the proof of [13, Proposi-
tion 5.20] to determine multiplicities. We fix π(χ) a cuspidal representation
of GLn(F ) of depth-zero, and µ is a character of E∗.

Lemma 2.1 ([13]). — Let x ∈ X◦G a vertex such that θ(x) 6= x. Let Kx
be the stabilizer of x in G, Kx the maximal compact sugbroup of Kx and
K1
x ⊆ Kx its pro-unipotent radical. Let σ be a cuspidal representation of

Kx/K
1
x, let σ be the inflation of σ to Kx. Suppose that µ is tame and set

ρ := µ, then HomKx∩H(σ, ρ) = {0}.
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Proof. — By the proof of [13, Proposition 5.20], if θ(x) 6= x there is a
group K1

x ⊂ U ⊂ Kx, such that U := U/K1
x ⊂ Kx/K

1
x is the unipotent

radical of a proper parabolic subgroup of Kx/K
1
x ' GLn(kF ) and which

satisfies U = UθK1
x (where the exponent denotes fixed points). Suppose

for the sake of contradiction that HomKx ∩H(σ, ρ) 6= {0}, this first implies
that ρ|K1

x∩H = 1 because σ is trivial on K1
x. Now for h ∈ U ∩ H, there

exists α > 0 such that hpα ∈ K1
x ∩H, which implies that ρ(hpα) = 1. Thus,

µ(detE(h))pα = 1 where detE(h) ∈ O×E . Yet µ is tame so µ|O×
E

factors
through O×E/(1 + PE) which is a finite group of order prime to p, hence
µ(det(h)) = 1. So ρ|U∩H = 1 and

{0} 6= HomKx ∩H(σ, ρ) ⊂ HomUθ (σ, 1) ' HomU (σ, 1)

as U = UθK1
x, contradicting the cuspidality of σ. �

In other words, as each vertex x in X◦G is of the form g · s0 for a certain
g in G and its stabilizer is gKg−1, this amounts to the following lemma.

Lemma 2.2 ([13]). — If g ∈ H\G/K satisfies HomH∩gKg−1(gλχ, µ) 6=
{0} (where gλχ(x) = λχ(g−1xg) for all x in gKg−1), then gKg−1 is stable
by θ.

The next step is:

Lemma 2.3. — There is an isomorphism of C-vector spaces:

HomH (π(χ), µ) '
∏

g · s0 ∈H\(X◦G)θ
HomH ∩ gKg−1 (gλχ, µ) .

Proof. — Write successively:

HomH (π(χ), µ) = HomH

(
c− IndGK(λχ), µ

)
' HomH

(
⊕

g∈H/G\K
c− IndKH ∩ gK g−1 (gλχ) , µ

)

by Mackey’s restriction formula

'
∏

g∈H\G/K

HomH ∩ gK g−1 (gλχ, µ)
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by Frobenius reciprocity on the left, for compact induction from a compact
modulo center open subgroup

'
∏

g · s0 ∈H\X◦G

HomH ∩ gK g−1 (gλχ, µ) thanks to Isomorphism (1.1)

'
∏

g · s0 ∈H\(X◦G)θ
HomH ∩ gKg−1 (gλχ, µ) thanks to Lemma 2.2 . �

We denote by L0 the unramified extension of F of degree m. Thanks to
Theorem 1.6 and the recent paper [19] we obtain:

Theorem 2.4. — When µ is tame and n > 4, we have HomH(π(χ), µ)
6= {0} if and only if E/F is unramified and χ|L∗0 = µ|F∗ ◦NL0/F , in which
case HomH(π(χ), µ) ' C.

Proof. — Multiplicity zero in the ramified case is immediate from Lem-
ma 2.3 and Theorem 1.6. When E/F is unramified in Lemma 2.3 and
Theorem 1.6 imply that

HomH(π, µ) = HomH ∩K (λχ, µ) ,

which is zero if χ|F∗ 6= µm|F∗ . If χ|F∗ = µm|F∗ (which is in particular true
when χ|L∗0 = µ|F∗ ◦NL0/F ) we obtain

HomH ∩K (λχ, µ) = HomH ∩K (λχ, µ) = HomH (πχ, µ) .

The result then follows from [19, Proposition 4.3] (which has the assump-
tion n > 4). �

3. On µ-selfduality of µ-distinguished representations

Now we take µ any character of E∗ with no restriction on its conductor.
We intend to prove that µ-distinguished representations of cuspidal (of any
level) representations of any inner form of GLn(F ) is µ-selfdual automat-
ically. Our result will follow from a classical globalization argument, and
the case of principal series for split inner forms.

Proposition 3.1. — Let π be a generic principal series of GLn(F )
(induced from a character of a Borel subgroup), and µ1 be a character
of F ∗ × F ∗, and µ2 be a character of E∗. Let H1 be the block diagonal
subgroup GLm(F ) × GLm(F ) and H2 be the subgroup H ' GLm(E) of
GLn(F ). Then if π is µi-distinguished by Hi, then

π ' µi|F∗ ⊗ π∨

(where F ∗ is diagonally embedded in F ∗ × F ∗ in the first case)
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Proof. — We only do the case (H1, µ1), as the argument for (H2, µ2) is
completely similar but simpler due to simplification of quotients of modulus
characters (see [9] for the parametrization of double cossets involved there,
and [5, (5.3) and Remark 5.4] for the modulus characters involved). Here
we rather consider distinction by the conjugate H of H1 by the matrix wn
of [15, p. 121], and set h(g1, g1) = w−1

n diag(g1, g2)wn for gi ∈ GLm(F ).
The character µ1 is of the form µα,β(h(g1, g1)) = α(det(g1))β(det(g2)) for
α and β characters of F ∗. Let B be the upper triangular Borel subgroup of
G = GLn(F ) and χ be a character of the diagonal torus A of G such that
π = IndGB(χ) is generic. We want to show that if π is µα, β-distinguished,
then

π ' αβ ⊗ π∨.
This amounts to prove that there is a permutation σ ∈ Sn such that

(3.1) αβχ−σ = χ,

where by abuse of notation

(αβ)
(
diag(a1, . . . , an)

)
=

n∏
i=1

(αβ)(ai).

We will do this by using Mackey theory, i.e. the natural filtration of
IndGB(χ)|H with sub-quotients

indHu−1Bu∩H

((
δ

1/2
B χ

)u−1)
when u varies through a set of representatives of B\G/H

(and
(
δ

1/2
B χ

)u−1

:= δ
1/2
B χ

(
u . u−1)),

so that if
HomH

(
IndGB(χ), µα, β

)
6= {0}

then some space

HomH

(
indHu−1Bu∩H

((
δ

1/2
B χ

)u−1)
, µα, β

)
' HomB∩uHu−1

(
δ

1/2
B χ, δB ∩uHu−1µuα, β

)
⊆ HomA∩uHu−1

(
χ,
δB ∩uHu−1

δ
1/2
B

µuα, β

)
must be nonzero (in fact with the representatives u given in [15, Section 3.2]
the last inclusion is an equality). This will tell us that χ has to be of a
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particular form which will give the existence of σ such that Equation (3.1)
is satisfied.
We set

ε = diag (1,−1, . . . , 1,−1) ∈ G

so that H is the subgroup of G fixed under the conjugation θε by ε.
By a re-interpretation of the discussion in [15, Section 3.2], the double
cosets B\G/H are parametrized by couples s = (ws, xs) where ws ∈
Sn ⊂ G is an involution, and xs is a map from the set of fixed points
Fix(ws) of ws in {1, . . . , n} to {±1}, such that |x−1

s ({−1})| = |x−1
s ({1})|

= |Fix(ws)|
2 . The corresponding representative us in B\G/H in particular

satisfies usεu−1
s ε−1 = ws, and we set

θs(x) = wsθε(x)w−1
s = usθε

(
u−1
s xus

)
u−1
s

for x ∈ G. Conjugation by us stabilizes A, and θs as well. Suppose that
π is µα,β-distinguished, by the Mackey strategy discussed above (see also
before Theorem [15, Theorem 3.14]), there is s such that

χ|Aθs =
(
δBθs δ

−1/2
B µusα, β

)
|Aθs

,

where the exponent θs denotes the fixed points of θs in the corresponding
set (which is not necessarily θs-stable, for example B), and µusα, β(as) =
µα, β(u−1

s asus) for as ∈ Aθs . The character δBθs δ
−1/2
B restricted to Aθs is

computed in [15, Proposition 3.6]. We extend xs from Fix(ws) to {1, . . . , n}
by 0 outside Fix(ws). Then for a = diag(a1, . . . , an) ∈ Aθs one has:

δBθs δ
−1/2
B (a) =

∏
16 i < j6n

|ai|
xs(i)xs(j)

2 |aj |−
xs(i)xs(j)

2 .

On the other hand by a computation similar to that done in the proof
of [15, proposition 3.6], we have for a = diag(a1, . . . , an) ∈ Aθs (note that
for any i one has aws(i) = ai):

µusα, β(a) =
∏

i∈ x−1
s ({1})

α(ai)
∏

i∈ x−1
s ({−1})

β(ai)
∏

i∈ x−1
s ({0}), i <ws(i)

αβ(ai).

For a ∈ A we set ws(a) = wsaw
−1
s , so that aws(a) ∈ Aθs , then from the

relations above it follows that for a ∈ A (note that xs ◦ ws = −xs and is
order reversing on {1, . . . , n} − Fix(ws)):

χ(aws(a)) = α(a)β(a), i.e. χχws = αβ

so we can choose the sought σ ∈ Sn to be ws. �
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As in [5, Proposition 5.2], we deduce from Proposition 3.1, using the
globalization results of [20] and [11] together with the strong multiplicity
one theorems from [1] and [2], the following result.

Proposition 3.2. — Let D be an F -division algebra of index d and
n a positive integer such that nd is even, let H be the centralizer of E
in G = GLn(D). Let µ be a character of E∗ identified via the reduced
norm to a character of H, then a cuspidal representation π of G which is
µ-distinguished satisfies

π ' µ|F∗ ⊗ π∨.

Here are two important corollaries for depth-zero cuspidal representa-
tions of GLn(F ).

Corollary 3.3. — Let π be a cuspidal representation of GLn(F ) which
is of depth zero, and µ-distinguished, then automatically µ|F∗ is tame (i.e.
µ(1 + PF ) = 1).

Proof. — Write π = π(χ). By Proposition 3.2 we have χγ = µ|F∗ ◦
NL/F .χ

−1 for some γ ∈ GalF (L). But because χγ and χ−1 are both tame,
the result follows from the fact that NL/F (1 + PL) = 1 + PF . �

We denote by L0 the unramified extension of F of degree m.

Corollary 3.4. — Suppose that n > 4. Let π(χ) be a cuspidal µ-
distinguished representation of GLn(F ) of depth zero. Then

χ|L∗0 = µ|F∗ ◦NL0/F .

Proof. — Thanks to Proposition 3.2, there is γ ∈ GalF (L) such that
χγ = µ|F∗ ◦NL/Fχ−1. Because χ and and µ|F∗ are tame this this reduces
to χγ = µ|F∗ ◦ NL/Fχ−1. This implies that χγ2 = χ, hence that γ has
order dividing two because χ is regular. If γ was trivial one would have
χ2 = µ|F∗ ◦NL/F . Because χ and µ|F∗ are tame this would imply

χ2 = µ ◦NkL/kF .

But the group of characters of the form α ◦NkL/kF for α a character of k∗F
form a group of order qF − 1 so one should have χ2(qF−1) = 1. But because
χ is regular and n > 4, the character χq2

F−1 must be nontrivial, hence
χ2(qF−1) 6= 1. Thus γ is the conjugation of L/L0 so χ◦NL/L0 = µ|F∗◦NL/F ,
and χ and µ|F∗◦NL0/F agree on the units of L∗0 because L/L0 is unramified.
Finally they also agree on $F by central character considerations. �
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4. Distinction of depth-zero cuspidal representations

We want to show that the necessary condition obtained in the above sec-
tion is also sufficient when µ is not tame. By Proposition 1.7 and Lemma 2.2,
the contribution to distinction in Mackey formula will in this case arise from
double cosets in H\G/K corresponding to H-orbits of non θ-fixed vertices
of XG. For such double cosets, the distinction problem reduces residually
to the existence of a twisted Shalika model, which have been studied by
Prasad in [18]. We recall his result.

4.1. Twisted Shalika models over finite fields

Let π be an irreducible representation of GLn(kF ), and α be a character
of k∗F , and ψ be a nontrivial character of kF . We recall that we call the
Shalika subgroup of GLn(kF ) the group:

Sn(kF ) =
{(

g

g

)(
Im x

Im

)
, g ∈ GLm(kF ), x ∈Mm(kF )

}
.

On then defines the character Ψα of Sn(kF ) by the formula:

Ψα

((
g

g

)(
Im x

Im

))
= α(det(g))ψ(Tr(x)).

We say that π has an α-twisted Shalika model if

HomSn(kF ) (π,Ψα) 6= 0,

and this does not depend on the choice of ψ. The following proposition is
due to Prasad ([18, Theorem 1]).

Proposition 4.1. — Let πχ be a cuspidal representation of GLn(kF ),
then πχ has an α-twisted Shalika model if and only if χ|k∗

L0
= α ◦ NL0/F

in which case HomSn(kF )(πχ,Ψα) ' C.

Proof. — We denote by N the subgroup of matrices

n(x) =
(
Im x

Im

)
in GLn(kF ) and by (πχ)N,Ψ the quotient of πχ by {v − ψ(Tr(x))v, n(x)
∈ N, v ∈ πχ}. The space (πχ)N,Ψ is a GLn(kF )-module (for diagonal
action). Then by [18, Theorem 1], we have

(πχ)N,Ψ = IndGLn(kF )
k∗
L0

(
χ|k∗

L0

)
.
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Now by definition we have

HomSn(kF ) (πχ,Ψα) ' HomGL(m, kF )

(
IndGLn(kF )

k∗
L0

(
χ|k∗

L0

)
, α ◦ det

)
and this latter space is isomorphic to

Homk∗
L0

(
χ|k∗

L0
, α ◦ det

)
= Homk∗

L0

(
χ|k∗

L0
, α ◦NL0/F

)
,

and the statement follows. �

Remark 4.2. — The condition in Proposition 4.1 is also equivalent to
πχ ' α⊗ π∨χ .

4.2. Double cosets contributing to distinction

Take ∆ ∈ F× with square root δ generating E/F , which we take of
valuation 0 when E/F is unramified and of valuation 1 when E/F is rami-
fied. The subgroup H of GLn(F ) consists of invertible matrices of the form
( a b

∆b a ). The character µ of H satisfies

µ

(
a b

∆b a

)
= µ(det(a+ δb)).

First we identify a non trivial double coset contributing to distinction when
µ has conductor > 2. Note that when E/F is ramified, if µ has conductor
l > 2 and is trivial on 1+PF , then it has an even conductor, because of the
isomorphism x 7→ 1 +$d

Fx between kF = kE and 1+P2d
F

1+P2d+1
F

for any d > 1.

Proposition 4.3. — Suppose µ has conductor r + 1 > 2 but satisfies
µ(1 + PF ) = 1. We set l = r if E/F is unramified, whereas we set l =
(r − 1)/2 when E/F is ramified. Set dl = diag($l

F Im, Im) and suppose
that χ|L∗0 = µ|F∗ ◦NL0/F , then

HomK∩ d−1
l
Hdl

(
λχ, µ

dl
)
6= 0,

where

µdl(x) = µ
(
dlxd

−1
l

)
.

Proof. — First the condition χ|L∗0 = µ|F∗ ◦ NL0/F implies that χ|F∗ =
µm|F∗ , hence

HomK∩ d−1
l
Hdl

(
λχ, µ

dl
)
' HomK ∩ d−1

l
Hdl

(
λχ, µ

dl
)
.
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The group K ∩ d−1
l Hdl is the set of matrices(

a $−lF b

$l
F∆b a

)
with a ∈ GLm(OF ) and b ∈Mm(P lF ), and

µdl
(

a $−lF b

$l
F∆b a

)
= µ(det(a+ δb)).

But

det(a+ δb) = det(a)det
(
Im + δa−1b

)
= det(a)

(
1 + Tr

(
δa−1b

)) [
Mm

(
P l+1
F

)]
so

µdl
(

a $−lF b

$l
F∆b a

)
= µ(det(a))µ

(
1 + Tr

(
δa−1b

))
,

where the dependences are in fact in a ∈ GLm(kF ) and b ∈Mm(P lF /P
l+1
F ).

So in fact for a ∈ GLm(OF ) and b ∈Mm(OF ) we have

µdl
(

a b

$2l
F ∆b a

)
= µdl

(
a b

a

)
= µ|F∗(det(a))µ

(
1 +$l

F δTr
(
a−1b

))
.

The character ψ(x) = µ(1 +$l
F δx) is a nontrivial character of kF because

µ(1 + PF ) = 1 whereas µ has conductor r + 1. On the other hand

λχ

(
a b

$2l
F ∆b a

)
= πχ

(
a b

a

)
.

Hence πχ has a α-twisted Shalika model and the result follows from Propo-
sition 4.1. �

4.3. Multiplicity one when E/F is unramified

In this section E/F is ramified. We denote by Λ+
m the sequences of inte-

gers (λ1, . . . , λm) with λ1 > . . . > λm > 0 in Zm, and set for λ ∈ Λ+
m:

dλ = diag
(
$λ1
F , . . . , $

λm
F , 1, . . . , 1

)
∈ G.

We recall from [17] the following result:

Proposition 4.4. —

G =
∐

λ∈Λ+
m

KdλH.
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Proof. — For λ ∈ Λ+
m we set $λ

F = diag($λ1
F , . . . , $

λm
F ), we also set

wm =

 1

. .
.

1

 ∈ GLm(F )

and w = diag(Im, wm). It follows from [12] that the map p : x 7→ xAx−1

identifies G/H with the conjugacy class of A. The matrix dλ is sent by p to(
$λ
F

∆$−λF

)
,

the result now follows from [17, Proposition 4], noting that the group H

in [17] is equal the centralizer of wAw−1 whereas here it is the centralizer
of A. �

One has the following multiplicity one result:

Proposition 4.5. — Let π(χ) be a cuspidal representation of GLn(F )
of depth zero for n > 4, and suppose that E/F is unramified. If it is
µ-distinguished, then HomGLm(E)(π(χ), µ) ' C.

Proof. — Suppose that π(χ) is µ-distinguished so that µ|F∗ = α◦NL0/F

thanks to Corollary 3.4. The result follows from Theorem 2.4 when µ is
tame so we suppose that µ has conductor l+ 1 > 2. By Mackey theory, the
result will follow from Propositions 4.1, 4.3 and 4.4 if we show that if

HomK∩ d−1
λ
Hdλ

(
λχ, µ

dλ
)

= HomK ∩ d−1
λ
Hdλ

(
λχ, µ

dλ
)
6= 0

for λ ∈ Λ+
m, then λ = (l, . . . , l). Note that K∩d−1

l Hdl is the set of matrices(
a $−λF b

$λ
F∆b a

)
with a ∈ GLm(OF ) and li(b) ∈ (PλiF )m for i = 1, . . . , m, where li(b) is ith
row of b. So we assume that HomK ∩ d−1

λ
Hdλ

(λχ, µdλ) 6= 0.
Suppose first that λm 6 l − 1 and denote by Mm(OF )− the space of

matrices in Mm(OF ) with li(b) = 0 for i = 1, . . . ,m − 1 and lm(b) ∈
(Pλm+1

F )m. Because π(χ) is tame, if HomK ∩ d−1
λ
Hdλ

(λχ, µdλ) was nonzero
this would imply that

1 = µdl
(

Im $−λF b

$λ
F∆b Im

)
= µ

(
det(Im + δlm(b))

)
for all b ∈ Mm(OF )−, hence that µ(1 + δP lF ) = {1}. Because µ(1 + PF )
= {1} as well, this would in turn imply that µ(1 +P lE) = µ(1 +P lF + δP lF )
= {1}, contradicting the definition of l, hence λm > l. Now let s be the
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smallest integer between 1 and m such that λs = λm, by the arguments of
Proposition 4.3 we obtain that

µdλ
(

a b

$2λ
F ∆b a

)
= µ(det(a))µ

(
1 + Tr

(
δa−1$λ

F b
))

for a ∈ GLm(OF ) and b ∈Mm(OF ). By reduction we deduce that

µdλ
(
a b

a

)
= µ(det(a))µ

(
1 + Tr

(
δa−1$λ

F b
))

= µ(det(a))µ
(

1 +$λm
F Tr

(
δa−1diag (0s−1, Im−s+1) b

))
for a ∈ GLm(kF ) and b ∈Mm(kF ). However the identity

πχ

(
a b

a

)
= µdλ

(
a b

a

)
Id

first implies that if λm > l then the unipotent radical of type (m,m) acts
trivially on the space πχ contradicting its cuspidality, hence λm = l. It also
implies that

b 7→ µ
(

1 + δ$λm
F Tr

(
diag (0s−1, Im−s+1) b

))
must be invariant under conjugation by GLm(kF ), which in turn implies
that s = 1 hence λ1 = · · · = λm = l �

Remark 4.6. — A similar analysis could certainly be done when E/F

is ramified but we don’t have at our disposal the description of the dou-
ble coset representatives given by [17] in the unramified case. As we can
still prove the Prasad and Takloo-Bighash conjecture in this case, without
computing the exact multiplicity, we do not pursue this direction.

4.4. Characterization of distinction of level zero cuspidal
representations

The spaces
HomK∩d−1

l′
Hdl′

(
λχ, µ

dl′
)

are isomorphic to a subspace of HomH(π(χ), µ) thanks to Mackey theory
for compact induction from open subgroups. Hence as a corollary of Theo-
rem 2.4, Corollary 3.4, Propositions 4.3 and 4.5, we deduce the all assertions
of the following theorem.
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Theorem 4.7. — For n > 4, the depth-zero cuspidal representation
π(χ) of GLn(F ) is µ-distinguished if and only if χ|L∗0 = µ|F∗ ◦ NL0/F ,
except when E/F is ramified and µ is tame, in which case π(χ) is never
µ-distinguished. When µ is tame or E/F is unramified, the dimension of
HomH(π(χ), µ) is one when nonzero.

5. On µ|F ∗-symplecticity for Langlands parameters

In this section, we will freely identify characters of the Weil group WK

and characters of K∗ for any finite extension K of F via the Artin map. We
fix α a character of F ∗. For φ a finite dimensional irreducible representation
of WF , we say that φ is α-selfdual if

φ ' α⊗ φ∨.

This is equivalent to say that there exists a non-zero bilinear form B

(necessarily non-degenerate) which satisfies

B
(
φ(w)v, φ(w)v′

)
= α(w)B (v, v′)

for all v, v′ in Vφ and w ∈WF . By Schur’s Lemma the space of such bilinear
forms B is one dimensional hence B is either symmetric or alternate, but
not both. In the first case we say that φ is α-orthogonal and in the second
case we say that it is α-symplectic. As as we shall see later, one way to
discriminate between α-orthogonal and α-symplectic tame irreducible rep-
resentations is the determinant. The proof of the following lemma which
we present here is that of the referee, strictly speaking we only need its
m = 1 case to obtain Theorem 5.4 which is the main result of the section.

Lemma 5.1. — Let φ be an irreducible representation of WF of dimen-
sion n which is α-symplectic, then det(φ) = αm. Moreover if m = 1 the
converse is true.

Proof. — Let B be the nonzero alternate form on the space V of φ with
respect to which φ is α-symplectic. View B as an element of the exterior
product

∧2
V ∗ (where V ∗is the dual of V ), because B is non degenerate

the vector
∧m

B is a nonzero element of the line
∧n

V ∗ on which WF acts
at the same time by det(φ) and αm. The converse when m = 1 is also clear
now. �

We recall that irreducible representations of the form IndWF

WL
(χ′) with

χ′(1 + PL) = 1 are exactly the tame n-dimensional irreducible representa-
tion of WF , i.e. those with trivial restriction to the wild inertia subgroup
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of WF . Characterizing α-selfdual tame irreducible representations of WF

is easy for n > 4.

Lemma 5.2. — Let φ = IndWF

WL
(χ′) be a tame irreducible representation

of WF of dimension n > 4. Then φ is α-selfdual if and only if χ′ ◦NL/L0 =
α ◦ NL/F , i.e. if and only if χ′|L∗0 = α ◦ NL0/F or χ′|L∗0 = α ◦ NL0/F .ηL/L0

where ηL/L0 is the unramified quadratic character of L∗0.

Proof. — One direction is obvious. For the other if φ is α-selfdual, then
χ′γ ' α ◦NL/Fχ′−1 for some γ ∈ GalF (L). We conclude as in the proof of
Corollary 3.4 that γ = σL/L0 the Galois involution attached to L/L0. �

A less obvious task is to distinguished between α-symplectic and α-
orthogonal representations in the statement above. The following lemma,
which was given to us by the referee, turns out to be useful for this.

Lemma 5.3. — Let K be a subgroup of finite index of a group G, α :
G → C∗ a character. Let W be a finite dimensional representation of K
and V = IndGK(W ). If W is α|K-selfdual, resp. α|K-orthogonal, resp. α|K-
symplectic, then V is α-selfdual, resp. α-orthogonal, resp. α-symplectic.

Proof. — Take B a non-degenerate bilinear form onW such that B(k.w,
k.w′) = α(k)B(w,w′) for (k,w,w′) ∈ K ×W ×W . Then the bilinear form
defined on V × V by

B̃ (f, f ′) =
∑

g ∈K\G

α−1(g)B (f(g), f ′(g))

is non-degenerate (because for each g0 ∈ G and w ∈W there is a function
fg0,w ∈ IndGK(W ) supported on Kg0 such that fg0,w(g0) = w), α-equi-
variant on V × V , of the same type as B. �

Lemmas 5.1, 5.2 and 5.3 imply the following theorem (when α is trivial
similar arguments are used in [3, Section 6.1] where Lemma 5.3 is tacitly
used). We thank the referee for the simplifications provided in its proof.

Theorem 5.4. — Let φ = IndWF

WL
(χ′) be a tame irreducible represen-

tation of WF of dimension n > 4. Then φ is α-symplectic if and only if
χ′|L∗0

= α ◦NL0/F .ηL/L0 .

Proof. — Let’s first have a look at φ0 := Ind
WL0
WL

(χ′|L∗0 ). According to
Lemma 5.1 the representation φ0 is α ◦NL0/F -symplectic if and only if its
determinant is equal to α ◦ NL0/F . This is well-known to be the same as
χ′|L∗0

= α◦NL0/F .ηL/L0 (see for example [7, Proposition 29.2]). In particular
if χ′|L∗0 = α ◦ NL0/F .ηL/L0 then φ is α-symplectic thanks to Lemma 5.3.
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Conversely if φ is α-symplectic then by Lemma 5.2 we have χ′|L∗0 = α◦NL0/F

or χ′|L∗0 = α ◦ NL0/F .ηL/L0 . If we were in the first case then φ0 would be
α ◦NL0/F -orthogonal hence φ in turn α-orthogonal by Lemma 5.3, which
is not possible as φ is irreducible. Hence χ′|L∗0 = α ◦NL0/F .ηL/L0 . �

Remark 5.5. — In fact Lemma 5.1 allows another criterion to discrimi-
nate between α-symplectic and α-orthogonal representations in Lemma 5.2,
namely φ is α-symplectic if and only if det(φ) = αm. Indeed if we had
χ′|L∗0

= α◦NL0/F , retricting to F ∗ we would get χ′|F∗ = αm and this would
contradict Lemma 5.1 because according to [7, Proposition 29.2] one has
det(φ) = ηK/Fχ

′
|F∗ for K/F the quadratic unramified extension of F and

ηK/F its corresponding quadratic character.

The Langlands parameter of the representation π(χ)is given by [8, The-
orem 2]: it is

φ (π(χ)) := IndWF

WL
(ηχ)

where η is the unramified quadratic character of L∗. Hence Theorem 5.4
has the following immediate corollary.

Corollary 5.6. — For n > 4 (i.e. m > 2), the representation π(χ) is
µ|F∗ -symplectic if and only if χ|L∗0 = µ|F∗ ◦NL0/F .

6. The Prasad and Takloo-Bighash conjecture

We recall that the conjecture of Prasad and Takloo-Bighash has been
proved by Tunnel and also Saito when n = 2 ([27, Theorem p. 1277] in
residual characteristic not 2, [22, Theorem p. 99] in characteristic not 2),
hence in this Section we assume n > 4. So comparing the statements of
Theorem 4.7 and Corollary 5.6, it is enough to compute the Prasad and
Takloo-Bighash ε value of a cuspidal depth-zero representation π(χ) with
χ|L∗0 = µ|F∗ ◦NL0/F , and to show that it is as expected by the conjecture
when E/F is unramified or E/F is ramified and µ is not tame, and differs
from the expected value when E/F is ramified and µ is tame. Again in the
proof we will freely confuse characters of Weil groups and of multiplicative
groups of local fields (hence restrictions will be often written as composition
with the norm map).
Let’s do some preliminary computations before computing the ε factor of
the Prasad and Takloo-Bighash conjecture. When E/F is unramified we
have:
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IndWF

WL
(ηχ)⊗ IndWF

WE

(
µ−1)

= IndWF

WL

(
ηχ⊗ IndWF

WE

(
µ−1)

|WL

)
= IndWF

WL

(
ηχ
(
µ−1 ◦NL/E

)
⊕ ηχ

(
µ−σE/F ◦NL/E

) )
by Mackey’s restriction formula with〈

σE/F
〉

= GalF (E)

= IndWF

WL

(
ηχ
(
µ−1 ◦NL/E

))
⊕ IndWF

WL

(
ηχ
(
µ−σE/F ◦NL/E

) )
.

When E/F is ramified we have:
IndWF

WL
(ηχ)⊗ IndWF

WE

(
µ−1) = IndWF

WL

(
ηχ⊗ IndWF

WE

(
µ−1)

|WL

)
= IndWF

WE

(
ηχ⊗ IndWL

WM

(
µ−1 ◦NM/E

))
by Mackey’s restriction formula with

M = 〈L,E〉 = IndWF

WM

(
(ηχ) ◦NM/L.µ

−1 ◦NM/E

)
.

Theorem 6.1. — Let π(χ) be a depth-zero cuspidal representation of
GLn(F ), such that χ|L∗0 = µ|F∗ ◦ NL0/F . Let ψ be a non-trivial additive
character of F .

• If E/F is unramified, then

ε

(
1
2 , π(χ)⊗ IndWF

WE
(1), ψ

)
= ωE/F (−1)mµ(−1)m.

• If E/F is ramified:
– If µ is tame then

ε

(
1
2 , π(χ)⊗ IndWF

WE
(1), ψ

)
= −ωE/F (−1)mµ(−1)m.

– If µ is not tame then

ε

(
1
2 , π(χ)⊗ IndWF

WE
(1), ψ

)
= ωE/F (−1)mµ(−1)m.

Proof. — If L/K is a separable quadratic extension of non Archimedean
local fields, we denote by σL/K the associated Galois involution. We dis-
tinguish the ramified and the unramified case in our computations.
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Figure 6.1. Diagram of the extensions involved - E/F unramified case
m odd (in the left) and m even (in the right)

When E/F is unramified. We recall the situation: E is included in L
and possibly in L0 according to the parity of m.

ε

(
1
2 , IndWF

WL
(ηχ)⊗ IndWF

WE

(
µ−1) , ψ)

= ε

(
1
2 , IndWF

WL

(
ηχ
(
µ−1 ◦NL/E

))
, ψ

)
ε
(

IndWF

WL

(
ηχ
(
µ−σE/F ◦NL/E

))
, ψ
)

by Section 1.5(1).

= λ2
L/F (ψ)ε

(
1
2 , ηχ

(
µ−1 ◦NL/E

)
, ψL

)
ε

(
1
2 , ηχ

(
µ−σE/F ◦NL/E

)
, ψL

)
by Section 1.5(7).

= λ2
L/E(ψE)λnE/F (ψ)η2

(
$
d(ψL)
L

)
ε

(
1
2 , χ

(
µ−1 ◦NL/E

)
, ψL

)
ε

(
1
2 , χ

(
µ−σE/F ◦NL/E

)
, ψL

)
by Section 1.5(9).

= ωE/F (−1)mε
(

1
2 , χ

(
µ−1 ◦NL/E

)
, ψL

)
ε

(
1
2 , χ

(
µ−σE/F ◦NL/E

)
, ψL

)
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by Section 1.5(10) and (8) and because n is even.
Now we distinguish between two cases:
(1) m is even: then

ε

(
1
2 , χ

(
µ−1 ◦NL/E

)
, ψL

)
ε

(
1
2 , χ

(
µ−σE/F ◦NL/E

)
, ψL

)
= ε

(
1
2 , χ

σL/L0
(
µ−1 ◦NL/E

)
, ψL

)
ε

(
1
2 , χ

(
µ−σE/F ◦NL/E

)
, ψL

)

according to Section 1.5(3). because ψL = ψ
σL/L0
L and µ−1 ◦NL/E is also

σL/L0 -invariant as E ⊂ L0 ⊂ L.

= ε

(
1
2 , χ

σL/L0
(
µ−1 ◦NL/E

)
, ψ−1

L

)
ε

(
1
2 , χ

(
µ−σE/F ◦NL/E

)
, ψL

)
from Section 1.5(2) because(

χσL/L0
(
µ−1 ◦NL/E

))
(−1)

=
(
µ|F∗ ◦NL0/F

)
(−1)

(
µ−1 ◦NL/E

)
(−1)

= µ(−1)mµ(−1)−m = 1

But then because

χσL/L0
(
µ−1 ◦NL/E

)
χ
(
µ−σE/F ◦NL/E

)
=χ ◦NL/L0 .µ

−1
|F∗ ◦NL/F

=µ|F∗ ◦NL/F .µ−1
|F∗ ◦NL/F = 1,

Section 1.5, 4. implies that

ε

(
1
2 , χ

σL/L0
(
µ−1 ◦NL/E

)
, ψ−1

L

)
ε

(
1
2 , χ

(
µ−σE/F ◦NL/E

)
, ψL

)
= 1,

and we recognize the expected value

ε

(
1
2 , IndWF

WL
(ηχ)⊗ IndWF

WE

(
µ−1) , ψ) = ωmE/F (−1)mµ(−1)m

because m is even.
(2) m is odd: then we notice that both χ(µ−1 ◦NL/E) and χ(µ−σE/F ◦

NL/E) restrict to L∗0 as χ|L∗0 (µ|F∗ ◦ NL0/F ) = 1. Hence by Sec-
tion 1.5, (6), for v ∈ L− L0 such that v2 ∈ L0, we have
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ε

(
1
2 , χ

(
µ−1 ◦NL/E

)
, ψL

)
= χ(v)µ−1(NL/E(v))

and

ε

(
1
2 , χ

(
µ−σE/F ◦NL/E

)
, ψL

)
= χ(v)µ−σE/F (NL/E(v)),

so that

ε

(
1
2 , χ

(
µ−1 ◦NL/E

)
, ψL

)
ε

(
1
2 , χ

(
µ−σE/F ◦NL/E

)
, ψL

)
= χ

(
v2)µ−1(NL/F (v)) = µ

(
NL0/F

(
v2)NL/F (v)−1)

= µ
(
NL0/F

(
v2NL/L0(v)−1)) = µ

(
NL0/F (−1)

)
because σL/L0(v) = −v, hence finally

ε

(
1
2 , IndWF

WL
(ηχ)⊗ IndWF

WE

(
µ−1) , ψ) = ωE/F (−1)mµ(−1)m

which is again the expected value.

When E/F is ramified. In this case, E is not included in L. Set M
to be the extension of L generated by L and E, M is therefore unramified
n-dimensional on E. We also set L1 = 〈E,L0〉 so that M is an unramified
quadratic extension of L1. The situation is as follows.

Figure 6.2. Diagram of the extensions involved – E/F ramified case
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ε

(
1
2 , IndWF

WL
(ηχ)⊗ IndWF

WE

(
µ−1) , ψ)

= ε

(
1
2 , IndWF

WM

(
(ηχ) ◦NM/L.µ

−1 ◦NM/E

)
, ψ

)
= λM/F (ψ)ε

(
1
2 , (ηχ) ◦NM/L.µ

−1 ◦NM/E , ψM

)
by Section 1.5(7).

= λM/E(ψE)λnE/F (ψ)ε
(

1
2 , (ηχ) ◦NM/L.µ

−1 ◦NM/E , ψM

)
by Section 1.5(9).

= (−1)d(ψE)(n−1)ωE/F (−1)mε
(

1
2 , ωM

′/M .χ ◦NM/L.µ
−1 ◦NM/E , ψM

)

by Section 1.5(8) and (10). where M ′/M is quadratic unramified.

Before proceeding further with the computation let’s discuss the conduc-
tor of the character χ ◦NM/L.µ

−1 ◦NM/E .

• If µ is not tame then χ ◦ NM/L.µ
−1 ◦ NM/E clearly has the same

conductor as µ−1 ◦NM/E which is also not tame as it has the same
conductor as µ, by surjectivity of NM/E from 1 + PdM onto 1 + PdE
for any d > 1. In partcular χ ◦ NM/L.µ

−1 ◦ NM/E has conductor
c(µ) which is even as we saw in Section 4.2.

• If µ is tame let us show that the character χ◦NM/L.µ
−1◦NM/E has

conductor 1. Clearly it is trivial on 1+PM because χ and µ are tame,
but if it was unramified, going backwards one would deduce that
IndWF

WL
(χ)⊗IndWF

WE
(µ−1) would be unramified, hence a direct sum of

unramified characters. But IndWF

WL
(χ)⊗ IndWF

WE
(µ−1) cannot contain

any character, otherwise by irreducibility of IndWF

WL
(χ), it would ap-

pear as sub-representation of a character twist of IndWF

WE
(µ), which

is impossible for dimension reasons (remember that we suppose
n > 3). Hence χ ◦NM/L.µ

−1 ◦NM/E has conductor 1.

Hence setting c′(µ) = c(µ) when c(µ) > 1 and c′(µ) = 1 when µ is unram-
ified, we obtain c(χ ◦NM/L.µ

−1 ◦NM/E) = c′(µ), which is even as soon as
c′(µ) > 1. Finally we obtain:
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ε

(
1
2 , IndWF

WL
(ηχ)⊗ IndWF

WE

(
µ−1) , ψ)

= (−1)d(ψM )(n−1)ωE/F (−1)mωM ′/M
(
$
d(ψM )+c′(µ)
M

)
ε

(
1
2 , χ ◦NM/L.µ

−1 ◦NM/E , ψM

)
thanks to Section 1.5(5)

= (−1)d(ψM )(n−1)ωE/F (−1)m(−1)d(ψM )+c′(µ)

ε

(
1
2 , χ ◦NM/L.µ

−1 ◦NM/E , ψM

)
= (−1)c

′(µ)ωE/F (−1)mε
(

1
2 , χ ◦NM/L.µ

−1 ◦NM/E , ψM

)

because n is even.

Note thatM/L0 is bi-quadratic, so there is one more quadratic extension
L2 of L0 under M . Now the restriction of χ ◦NM/L to L∗2 is equal to χ ◦
NL2/L0 = µ|F∗ ◦NL2/F , whereas that of µ−1◦NM/E is equal to µ−1◦NL2/F ,
hence χ ◦NM/L.µ

−1 ◦NM/E restricts trivially to L∗2.
Take v ∈ L \ L0 with v2 ∈ L0. Then M = L2[v] and we can apply

Section 1.5(6):

ε

(
1
2 , χ ◦NM/L.µ

−1 ◦NM/E , ψM

)
= χ ◦NM/L(v).µ−1 ◦NM/E(v)

= χ
(
v2)µ−1 ◦NL1/E

(
−v2) = χ

(
v2)µ−1

|F∗ ◦NL0/F

(
−v2)

= µ|F∗ ◦NL0/F (v2)µ−1
|F∗ ◦NL0/F

(
−v2) = µ(−1)m

Thus

ε

(
1
2 , IndWF

WL
(ηχ)⊗ IndWF

WE
(1), ψ

)
= (−1)c

′(µ)ωmE/F (−1)µ(−1)m,

as expected. �

As a corollary, we obtain:

Corollary 6.2. — Let π(χ) be a depth 0 cuspidal representation of
GLn(F ), let µ be a character of E∗, then π(χ) is µ◦detGLm(E)-distinguished
by H = GLm(E) if and only if
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π(χ) is µ|F∗ -symplectic ;(1)

ε

(
1
2 , IndWF

WL
(ηχ)⊗ IndWF

WE

(
µ−1)) = ωE/F (−1)mµ(−1)m.(2)
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