Nous étudions un analogue CR de la dérivée au sens d’Ahlfors pour les immersions conformes de Stowe, qui généralise la dérivée schwarzienne CR étudiée antérieurement par le second auteur. Cette notion possède plusieurs propriétés importantes similaires à celles de son homologue conforme et fournit un nouvel invariant pour les applications CR, sphériquement équivalentes, de variétés CR strictement pseudoconvexes à valeurs dans la sphère. Cet invariant est calculable et permet de distinguer beaucoup d’applications CR sphériques entre elles. En particulier, il s’annule précisément quand l’application est sphériquement équivalente au plongement linéaire entre sphères.
We study a CR analogue of the Ahlfors derivative for conformal immersions of Stowe that generalizes the CR Schwarzian derivative studied earlier by the second-named author. This notion possesses several important properties similar to those of the conformal counterpart and provides a new invariant for spherically equivalent CR maps from strictly pseudoconvex CR manifolds into a sphere. The invariant is computable and distinguishes many well-known sphere maps. In particular, it vanishes precisely when the map is spherically equivalent to the linear embedding of spheres.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Sphere maps, Ahlfors derivative, CR maps
Mot clés : Applications sphériques, Dérivée d’Ahlfors, Applications CR
Lamel, Bernhard 1 ; Son, Duong Ngoc 2
@article{AIF_2021__71_5_2137_0, author = {Lamel, Bernhard and Son, Duong Ngoc}, title = {The {CR} {Ahlfors} derivative and a new invariant for spherically equivalent {CR} maps}, journal = {Annales de l'Institut Fourier}, pages = {2137--2167}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {5}, year = {2021}, doi = {10.5802/aif.3438}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3438/} }
TY - JOUR AU - Lamel, Bernhard AU - Son, Duong Ngoc TI - The CR Ahlfors derivative and a new invariant for spherically equivalent CR maps JO - Annales de l'Institut Fourier PY - 2021 SP - 2137 EP - 2167 VL - 71 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3438/ DO - 10.5802/aif.3438 LA - en ID - AIF_2021__71_5_2137_0 ER -
%0 Journal Article %A Lamel, Bernhard %A Son, Duong Ngoc %T The CR Ahlfors derivative and a new invariant for spherically equivalent CR maps %J Annales de l'Institut Fourier %D 2021 %P 2137-2167 %V 71 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3438/ %R 10.5802/aif.3438 %G en %F AIF_2021__71_5_2137_0
Lamel, Bernhard; Son, Duong Ngoc. The CR Ahlfors derivative and a new invariant for spherically equivalent CR maps. Annales de l'Institut Fourier, Tome 71 (2021) no. 5, pp. 2137-2167. doi : 10.5802/aif.3438. https://aif.centre-mersenne.org/articles/10.5802/aif.3438/
[1] Cross-ratios and Schwarzian derivatives in , Complex analysis, Edited by J.Hersch, A. Huber, articles dedicated to Albert Pfluger on the occasion of his 80th birthday, Birkhäuser, 1988, pp. 1-15 | Zbl
[2] The Dirichlet problem for some overdetermined systems on the unit ball in , Pac. J. Math., Volume 51 (1974) no. 1, pp. 19-25 | DOI | MR | Zbl
[3] Proper holomorphic maps between balls of different dimensions, Mich. Math. J., Volume 35 (1988) no. 1, pp. 83-90 | MR | Zbl
[4] Polynomial proper holomorphic mappings between balls II., Mich. Math. J., Volume 38 (1991) no. 1, pp. 53-65 | MR | Zbl
[5] Several complex variables and the geometry of real hypersurfaces, Studies in Advanced Mathematics, 8, CRC Press, 1993 | Zbl
[6] Homotopy equivalence for proper holomorphic mappings, Adv. Math., Volume 286 (2016), pp. 160-180 | DOI | MR | Zbl
[7] Symmetries in CR complexity theory, Adv. Math., Volume 313 (2017), pp. 590-627 | DOI | MR | Zbl
[8] On pseudohermitian immersions between strictly pseudoconvex CR manifolds, Am. J. Math., Volume 117 (1995) no. 1, pp. 169-202 | DOI | Zbl
[9] Rigidity of CR-immersions into Spheres, Commun. Anal. Geom., Volume 12 (2004) no. 3, pp. 631-670 | DOI | MR | Zbl
[10] On CR embeddings of strictly pseudoconvex hypersurfaces into spheres in low dimensions, Trans. Am. Math. Soc., Volume 366 (2014) no. 11, pp. 5693-5706 | DOI | MR | Zbl
[11] Rational and polynomial maps between balls, Pure Appl. Math. Q., Volume 6 (2010) no. 3, pp. 829-842 | DOI | Zbl
[12] Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Math. J., Volume 57 (1988) no. 3, pp. 697-720 | MR | Zbl
[13] Flatness of CR submanifolds in a sphere, Sci. China, Math., Volume 53 (2010) no. 3, pp. 701-718 | MR | Zbl
[14] The Fefferman metric and pseudo-Hermitian invariants, Trans. Am. Math. Soc., Volume 296 (1986) no. 1, pp. 411-429 | MR | Zbl
[15] Pseudo-Einstein Structures on CR Manifolds, Am. J. Math., Volume 110 (1988) no. 1, pp. 157-178 | MR | Zbl
[16] Boundary behavior of the complex Monge–Ampère equation, Acta Math., Volume 148 (1982) no. 1, pp. 159-192 | Zbl
[17] An explicit formula for the Webster pseudo-Ricci curvature on real hypersurfaces and its application for characterizing balls in , Commun. Anal. Geom., Volume 14 (2006) no. 4, pp. 673-701 | MR | Zbl
[18] The Webster scalar curvature and sharp upper and lower bounds for the first positive eigenvalue of the Kohn–Laplacian on real hypersurfaces, Acta Math. Sin., Engl. Ser., Volume 34 (2018) no. 8, pp. 1248-1258 | MR | Zbl
[19] The Schwarzian derivative and conformal mapping of Riemannian manifolds, Duke Math. J., Volume 67 (1992) no. 1, pp. 57-99 | MR | Zbl
[20] Function theory in the unit ball of Cn, Grundlehren der Mathematischen Wissenschaften, 241, Springer, 1980 | DOI | Zbl
[21] The Schwarzian derivative and Möbius equation on strictly pseudoconvex CR manifolds, Commun. Anal. Geom., Volume 26 (2018) no. 2, pp. 237-269 | MR | Zbl
[22] Semi-isometric CR immersions of CR manifolds into Kähler manifolds and applications (2019) (https://arxiv.org/abs/1901.07451v1 to appear in Annali della Scuola Normale Superiore di Pisa, Classe di Scienze)
[23] An Ahlfors derivative for conformal immersions, J. Geom. Anal., Volume 25 (2015) no. 1, pp. 592-615 | DOI | MR | Zbl
[24] A differential geometric study on strongly pseudoconvex manifolds, Lectures in Mathematics. Department of Mathematics, Kyoto University, 9, Kinokuniya Company Ltd., Tokyo, 1975 | MR | Zbl
[25] On proper monomial mappings from 2-ball , to 4-ball , Ann. Sci. Kanazawa Univ., Volume 29 (1992), pp. 9-13 | MR
[26] The rigidity of C-R hypersurfaces in a sphere, Indiana Univ. Math. J., Volume 28 (1979) no. 3, pp. 405-416 | DOI | MR | Zbl
Cité par Sources :