Classification of string links up to 2n-moves and link-homotopy
[Classification des enlacements d’intervalles à 2n-mouvements et homotopie près]
Annales de l'Institut Fourier, Online first, 23 p.

Deux enlacements d’intervalles sont équivalents à 2n-mouvements et homotopie près si et seulement si leurs invariants d’homotopie de Milnor sont congrus modulo n. De plus, l’ensemble des classes d’équivalence forme un groupe fini engendré par des éléments d’ordre n. Cette classification implique que si deux enlacements d’intervalles sont équivalents à 2n-mouvements près pour tout n>0, alors ils sont homotopes.

Two string links are equivalent up to 2n-moves and link-homotopy if and only if their all Milnor link-homotopy invariants are congruent modulo n. Moreover, the set of the equivalence classes forms a finite group generated by elements of order n. The classification induces that if two string links are equivalent up to 2n-moves for every n>0, then they are link-homotopic.

Reçu le :
Accepté le :
Première publication :
DOI : https://doi.org/10.5802/aif.3407
Classification : 57K10
Mots clés : Invariants de Milnor, entrelacs, enlacements d’intervalles, 2n-mouvements, homotopie, classes de congruence de Fox, claspers
@unpublished{AIF_0__0_0_A13_0,
     author = {Miyazawa, Haruko A. and Wada, Kodai and Yasuhara, Akira},
     title = {Classification of string links up to $2n$-moves and link-homotopy},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2021},
     doi = {10.5802/aif.3407},
     language = {en},
     note = {Online first},
}
Miyazawa, Haruko A.; Wada, Kodai; Yasuhara, Akira. Classification of string links up to $2n$-moves and link-homotopy. Annales de l'Institut Fourier, Online first, 23 p.

[1] Audoux, Benjamin; Bellingeri, Paolo; Meilhan, Jean-Baptiste; Wagner, Emmanuel Homotopy classification of ribbon tubes and welded string links, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (2017) no. 2, pp. 713-761 | MR 3700382 | Zbl 1375.57032

[2] Audoux, Benjamin; Meilhan, Jean-Baptiste; Wagner, Emmanuel On codimension two embeddings up to link-homotopy, J. Topol., Volume 10 (2017) no. 1, pp. 1107-1123 | Article | MR 3743070 | Zbl 1386.57027

[3] Casson, Andrew J. Link cobordism and Milnor’s invariant, Bull. Lond. Math. Soc., Volume 7 (1975), p. 39-40 | Article | MR 362286 | Zbl 0312.55003

[4] Chen, Kuo-Tsai Commutator calculus and link invariants, Proc. Am. Math. Soc., Volume 3 (1952), pp. 44-55 | Article | MR 46361 | Zbl 0049.40402

[5] Conant, James; Schneiderman, Rob; Teichner, Peter Higher-order intersections in low-dimensional topology, Proc. Natl. Acad. Sci. USA, Volume 108 (2011) no. 20, pp. 8131-8138 | Article | MR 2806650 | Zbl 1256.57017

[6] Conant, James; Schneiderman, Rob; Teichner, Peter Whitney tower concordance of classical links, Geom. Topol., Volume 16 (2012) no. 3, pp. 1419-1479 | Article | MR 2967057 | Zbl 1257.57005

[7] Conant, James; Schneiderman, Rob; Teichner, Peter Milnor invariants and twisted Whitney towers, J. Topol., Volume 7 (2014) no. 1, pp. 187-224 | Article | MR 3180617 | Zbl 1312.57007

[8] Dąbkowski, Mieczysław K.; Przytycki, Józef H. Burnside obstructions to the Montesinos–Nakanishi 3-move conjecture, Geom. Topol., Volume 6 (2002), pp. 355-360 | Article | MR 1914572 | Zbl 1009.57013

[9] Dąbkowski, Mieczysław K.; Przytycki, Józef H. Unexpected connections between Burnside groups and knot theory, Proc. Natl. Acad. Sci. USA, Volume 101 (2004) no. 50, pp. 17357-17360 | Article | MR 2110443 | Zbl 1070.57004

[10] Fenn, Roger A. Techniques of geometric topology, London Mathematical Society Lecture Note Series, 57, Cambridge University Press, 1983 | MR 787801 | Zbl 0517.57001

[11] Fleming, Thomas; Yasuhara, Akira Milnor’s invariants and self C k -equivalence, Proc. Am. Math. Soc., Volume 137 (2009) no. 2, pp. 761-770 | Article | MR 2448599 | Zbl 1176.57007

[12] Fox, Ralph H. Congruence classes of knots, Osaka J. Math., Volume 10 (1958), pp. 37-41 | MR 131871 | Zbl 0084.19204

[13] Habegger, Nathan; Lin, Xiao-Song The classification of links up to link-homotopy, J. Am. Math. Soc., Volume 3 (1990) no. 2, pp. 389-419 | Article | MR 1026062 | Zbl 0704.57016

[14] Habiro, Kazuo Claspers and finite type invariants of links, Geom. Topol., Volume 4 (2000), pp. 1-83 | Article | MR 1735632 | Zbl 0941.57015

[15] Kinoshita, Shin’ichi On Wendt’s theorem of knots, Osaka J. Math., Volume 9 (1957), pp. 61-66 | MR 90054 | Zbl 0080.16903

[16] Kinoshita, Shin’ichi On the distribution of Alexander polynomials of alternating knots and links, Proc. Am. Math. Soc., Volume 79 (1980) no. 4, pp. 644-648 | Article | MR 572320 | Zbl 0437.57002

[17] Lackenby, Marc Fox’s congruence classes and the quantum- SU (2) invariants of links in 3-manifolds, Comment. Math. Helv., Volume 71 (1996) no. 4, pp. 664-677 | Article | MR 1420515 | Zbl 0871.57003

[18] Levine, Jerome P. An approach to homotopy classification of links, Trans. Am. Math. Soc., Volume 306 (1988) no. 1, pp. 361-387 | Article | MR 927695 | Zbl 0647.57003

[19] Meilhan, Jean-Baptiste; Yasuhara, Akira Characterization of finite type string link invariants of degree <5, Math. Proc. Camb. Philos. Soc., Volume 148 (2010) no. 3, pp. 439-472 | Article | MR 2609302 | Zbl 1193.57007

[20] Meilhan, Jean-Baptiste; Yasuhara, Akira Milnor invariants and the HOMFLYPT polynomial, Geom. Topol., Volume 16 (2012) no. 2, pp. 889-917 | Article | MR 2928984 | Zbl 1260.57026

[21] Meilhan, Jean-Baptiste; Yasuhara, Akira Arrow calculus for welded and classical links, Algebr. Geom. Topol., Volume 19 (2019) no. 1, pp. 397-456 | Article | MR 3910585 | Zbl 1419.57019

[22] Milnor, John W. Link groups, Ann. Math., Volume 59 (1954), pp. 177-195 | Article | MR 71020 | Zbl 0055.16901

[23] Milnor, John W. Isotopy of links. Algebraic geometry and topology, A symposium in honor of S. Lefschetz, Princeton University Press, 1957, pp. 280-306 | Zbl 0080.16901

[24] Miyazawa, Haruko Aida; Wada, Kodai; Yasuhara, Akira Milnor invariants, 2n-moves and V n -moves for welded string links (2021) (to appear in Tokyo J. Math.)

[25] Nakanishi, Yasutaka On Fox’s congruence classes of knots. II, Osaka J. Math., Volume 27 (1990) no. 1, pp. 207-215 | MR 1049833 | Zbl 0705.57006

[26] Nakanishi, Yasutaka; Suzuki, Shin’ichi On Fox’s congruence classes of knots, Osaka J. Math., Volume 24 (1987) no. 1, pp. 217-225 | MR 881755 | Zbl 0654.57003

[27] Przytycki, Józef H. t k moves on links, Braids (Santa Cruz, CA, 1986) (Contemporary Mathematics), Volume 78, American Mathematical Society, 1988, pp. 615-656 | MR 975099 | Zbl 0665.57007

[28] Stallings, John Homology and central series of groups, J. Algebra, Volume 2 (1965), pp. 170-181 | Article | MR 175956 | Zbl 0135.05201

[29] Takabatake, Y.; Kuboyama, T.; Sakamoto, H. StringCMP: Faster calculation for Milnor invariant, 2013 (available at https://code.google.com/archive/p/stringcmp/)

[30] Yasuhara, Akira Classification of string links up to self delta-moves and concordance, Algebr. Geom. Topol., Volume 9 (2009) no. 1, pp. 265-275 | Article | MR 2482076 | Zbl 1172.57006

[31] Yasuhara, Akira Self delta-equivalence for links whose Milnor’s isotopy invariants vanish, Trans. Am. Math. Soc., Volume 361 (2009) no. 9, pp. 4721-4749 | Article | MR 2506425 | Zbl 1178.57007