We construct a slant product on the analytic structure group of Higson and Roe and the K-theory of the stable Higson corona of Emerson and Meyer. The latter is the domain of the co-assembly map . We obtain such products on the entire Higson–Roe sequence. They imply injectivity results for external product maps. Our results apply to products with aspherical manifolds whose fundamental groups admit coarse embeddings into Hilbert space. To conceptualize the class of manifolds where this method applies, we say that a complete -manifold is Higson-essential if its fundamental class is detected by the co-assembly map. We prove that coarsely hypereuclidean manifolds are Higson-essential. We draw conclusions for positive scalar curvature metrics on product spaces, particularly on non-compact manifolds. We also obtain equivariant versions of our constructions and discuss related problems of exactness and amenability of the stable Higson corona.
Nous construisons un slant-produit sur le groupe structural analytique de Higson et de Roe et la K-théorie de la « stable Higson corona » d’Emerson et de Meyer. Cette dernière est le domaine de définition de l’application de coassemblage . Nous obtenons ces produits sur toute la suite exacte de Higson–Roe. Ils impliquent que certaines applications produits extérieurs sont injectives. Nos résultats s’appliquent aux produits avec des variétés asphériques dont les groupes fondamentaux se plongent de manière coarse dans un espace de Hilbert. Nous disons qu’une -variété complète est « Higson-essential » si sa classe fondamentale est détectée par l’application de coassemblage. Nous prouvons que les variétés qui sont hyper-euclidiennes coarse sont « Higson-essential » . Nous déduisons des résultats pour des métriques à courbure scalaire positive sur les espaces produits, en particulier sur les espaces non-compacts. En outre, nous donnons des variantes équivariantes de nos constructions et nous discutons l’exactitude et la moyennabilité de la « stable Higson corona » .
Accepted:
Online First:
Published online:
Keywords: Analytic structure group, K-homology, slant products, assembly maps, exact groups, Higson corona, Novikov conjecture, positive scalar curvature
Mot clés : groupe structural analytique, K-homologie, slant-produits, applications d’assemblage, groupes exacts, Higson corona, conjecture de Novikov, courbure scalaire positive
Engel, Alexander 1; Wulff, Christopher 2; Zeidler, Rudolf 3
@article{AIF_2021__71_3_913_0, author = {Engel, Alexander and Wulff, Christopher and Zeidler, Rudolf}, title = {Slant products on the {Higson{\textendash}Roe} exact sequence}, journal = {Annales de l'Institut Fourier}, pages = {913--1021}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {3}, year = {2021}, doi = {10.5802/aif.3406}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3406/} }
TY - JOUR AU - Engel, Alexander AU - Wulff, Christopher AU - Zeidler, Rudolf TI - Slant products on the Higson–Roe exact sequence JO - Annales de l'Institut Fourier PY - 2021 SP - 913 EP - 1021 VL - 71 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3406/ DO - 10.5802/aif.3406 LA - en ID - AIF_2021__71_3_913_0 ER -
%0 Journal Article %A Engel, Alexander %A Wulff, Christopher %A Zeidler, Rudolf %T Slant products on the Higson–Roe exact sequence %J Annales de l'Institut Fourier %D 2021 %P 913-1021 %V 71 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3406/ %R 10.5802/aif.3406 %G en %F AIF_2021__71_3_913_0
Engel, Alexander; Wulff, Christopher; Zeidler, Rudolf. Slant products on the Higson–Roe exact sequence. Annales de l'Institut Fourier, Volume 71 (2021) no. 3, pp. 913-1021. doi : 10.5802/aif.3406. https://aif.centre-mersenne.org/articles/10.5802/aif.3406/
[1] Systèmes dynamiques non commutatifs et moyenabilité, Math. Ann., Volume 279 (1987) no. 1-2, pp. 297-315 | DOI | MR | Zbl
[2] Amenability and exactness for dynamical systems and their C*-algebras, Trans. Am. Math. Soc., Volume 354 (2002) no. 10, pp. 4153-4178 | DOI | MR | Zbl
[3] The adjoint of a bilinear operation, Proc. Am. Math. Soc., Volume 2 (1951), pp. 839-848 | DOI | MR | Zbl
[4] Operations Induced in Function Classes, Monatsh. Math., Volume 55 (1951), pp. 1-19 | DOI | MR | Zbl
[5] Positive scalar curvature and low-degree group homology, Ann. -Theory, Volume 3 (2018) no. 3, pp. 565-579 | DOI | MR | Zbl
[6] Classifying space for proper actions and -theory of group -algebras, Contemp. Math., Volume 167 (1994), pp. 241-291 | DOI | MR | Zbl
[7] Expanders, exact crossed products, and the Baum-Connes conjecture, Ann. -Theory, Volume 1 (2016) no. 2, pp. 155-208 | DOI | MR | Zbl
[8] A geometric description of equivariant K-homology for proper actions, Quanta of maths. Conference on non commutative geometry in honor of Alain Connes, Paris, France, March 29–April 6, 2007, American Mathematical Society (AMS); Cambridge, MA: Clay Mathematics Institute, 2010, pp. 1-22 | Zbl
[9] -theory for operator algebras, Mathematical Sciences Research Institute Publications, 5, Cambridge University Press, 1998 | DOI | MR | Zbl
[10] Operator Algebras, Theory of C*-Algebras and von Neumann Algebras, Encyclopaedia of Mathematical Sciences, Vol. 122, Operator Algebras and Non-Commutative Geometry III, Springer, 2006 | DOI | Zbl
[11] Operator algebras and their modules—an operator space approach, London Mathematical Society Monographs. New Series, 30, Oxford Science Publications, Oxford University Press, 2004 | DOI | MR | Zbl
[12] Real -algebras, united -theory, and the Künneth formula, -Theory, Volume 26 (2002) no. 4, pp. 345-402 | DOI | MR | Zbl
[13] Property A, partial translation structures, and uniform embeddings in groups, J. Lond. Math. Soc., Volume 76 (2007) no. 2, pp. 479-497 | DOI | MR | Zbl
[14] -algebras and finite-dimensional approximations, Graduate Studies in Mathematics, 88, American Mathematical Society, 2008 | DOI | MR | Zbl
[15] Large and small group homology, J. Topol., Volume 3 (2010) no. 2, pp. 463-486 | DOI | MR | Zbl
[16] Homotopy theory with bornological coarse spaces, Springer Lecture Notes Mathematics Series, 2269, Springer, 2016, pp. vii-245 | Zbl
[17] Coarse assembly maps, J. Noncommut. Geom., Volume 14 (2017) no. 4, pp. 1245-1303 | DOI | MR | Zbl
[18] Exotic crossed products and the Baum–Connes conjecture, J. reine angew. Math., Volume 740 (2018), p. 111--159 | DOI | MR | Zbl
[19] The Minimal Exact Crossed Product, Doc. Math., Volume 23 (2018), pp. 2043-2077 | DOI | MR | Zbl
[20] Injectivity, crossed products, and amenable group actions, -theory in algebra, analysis and topology (Contemporary Mathematics), Volume 749, American Mathematical Society, 2020, pp. 105-137 | DOI | MR | Zbl
[21] Going-down functors, the Künneth formula, and the Baum–Connes conjecture, Geom. Funct. Anal., Volume 14 (2004) no. 3, pp. 491-528 | DOI | Zbl
[22] Localization C-algebras and K-theoretic duality, Ann. -Theory, Volume 3 (2018) no. 4, pp. 615-630 | DOI | MR | Zbl
[23] Realizing the analytic surgery group of Higson and Roe geometrically, part I: the geometric model, J. Homotopy Relat. Struct., Volume 12 (2017) no. 1, pp. 109-142 | DOI | MR | Zbl
[24] On Hypereuclidean Manifolds, Geom. Dedicata, Volume 117 (2006), pp. 215-231 | DOI | MR | Zbl
[25] Infinite loop spaces and positive scalar curvature in the presence of a fundamental group, Geom. Topol., Volume 23 (2019) no. 3, pp. 1549-1610 | DOI | MR | Zbl
[26] Bivariant KK-Theory and the Baum–Connes Conjecure, K-Theory for Group C*-Algebras and Semigroup C*-Algebras (Cuntz, Joachim; Echterhoff, Siegfried; Li, Xin; Yu, Guoliang, eds.) (Oberwolfach Seminars), Springer, 2017, pp. 81-147 | DOI | Zbl
[27] Dualizing the coarse assembly map, J. Inst. Math. Jussieu, Volume 5 (2006) no. 2, pp. 161-186 | DOI | MR | Zbl
[28] A descent principle for the Dirac–dual-Dirac method, Topology, Volume 46 (2007), pp. 185-209 | DOI | MR | Zbl
[29] Coarse and equivariant co-assembly maps, -theory and noncommutative geometry (EMS Series of Congress Reports), European Mathematical Society, 2008, pp. 71-89 | DOI | MR | Zbl
[30] Coronas for properly combable spaces (2017) (https://arxiv.org/abs/1711.06836)
[31] Geometric group theory. Volume 2: Asymptotic invariants of infinite groups. Proceedings of the symposium held at the Sussex University, Brighton, July 14-19, 1991, London Mathematical Society Lecture Note Series, 182, Cambridge University Press, 1993 | MR | Zbl
[32] Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math., Inst. Hautes Étud. Sci., Volume 58 (1983), pp. 83-196 | DOI | Numdam | Zbl
[33] Group -algebras and -theory, Noncommutative geometry (Lecture Notes in Mathematics), Volume 1831, Springer, 2004, pp. 137-251 | DOI | MR | Zbl
[34] Equivariant -theory for -algebras, Mem. Am. Math. Soc., Volume 148 (2000) no. 703, pp. 797-803 | DOI | MR | Zbl
[35] Codimension two index obstructions to positive scalar curvature, Ann. Inst. Fourier, Volume 65 (2015) no. 6, pp. 2681-2710 | DOI | Numdam | MR | Zbl
[36] -theory and -theory for groups which act properly and isometrically on Hilbert spaces, Invent. Math., Volume 144 (2001) no. 1, pp. 23-74 | DOI | MR | Zbl
[37] -algebras and controlled topology, -Theory, Volume 11 (1997) no. 3, pp. 209-239 | DOI | MR | Zbl
[38] A homotopy invariance theorem in coarse cohomology and K-theory, Trans. Am. Math. Soc., Volume 345 (1994) no. 1, pp. 347-365 | DOI | MR | Zbl
[39] Amenable group actions and the Novikov conjecture, J. reine angew. Math. (Crelles Journal), Volume 519 (2000), pp. 143-153 | DOI | MR | Zbl
[40] Analytic -homology, Oxford Mathematical Monographs, Oxford University Press, 2000 | MR | Zbl
[41] Mapping Surgery to Analysis III: Exact Sequences, -Theory, Volume 33 (2004) no. 4, pp. 325-346 | DOI | MR | Zbl
[42] La conjecture de Baum–Connes à coefficients pour les groupes hyperboliques, J. Noncommut. Geom., Volume 6 (2012) no. 1, pp. 1-197 | DOI | MR | Zbl
[43] On the relation between K- and L-theory of complex C*-Algebras, Ph. D. Thesis, Universität Bonn, Germany (2016)
[44] A model for the universal space for proper actions of a hyperbolic group, New York J. Math., Volume 8 (2002), pp. 1-7 http://nyjm.albany.edu:8000/j/2002/8_1.html | MR | Zbl
[45] The Baum–Connes conjecture via localisations of categories, Topology, Volume 45 (2006), pp. 209-259 | DOI | MR | Zbl
[46] -Algebras and Operator Theory, Academic Press Inc., 1990 | Zbl
[47] Large Scale Geometry, EMS Textbooks in Mathematics, European Mathematical Society, 2012 | DOI | Zbl
[48] Rho-classes, index theory and Stolz’ positive scalar curvature sequence, J. Topol., Volume 7 (2014) no. 4, pp. 965-1004 | DOI | MR | Zbl
[49] The surgery exact sequence, K-theory and the signature operator, Ann. -Theory, Volume 1 (2016) no. 2, pp. 109-154 | DOI | MR | Zbl
[50] Singular spaces, groupoids and metrics of positive scalar curvature, J. Geom. Phys., Volume 137 (2019), pp. 87-123 | DOI | MR | Zbl
[51] The Baum–Connes conjecture with coefficients for word-hyperbolic groups (after Vincent Lafforgue)., Séminaire Bourbaki. Volume 2012/2013. Exposés 1059–1073. Avec table par noms d’auteurs de 1948/49 à 2012/13, Société Mathématique de France, 2014, p. 115-148, ex | MR | Zbl
[52] On the localization algebra of Guoliang Yu, Forum Math., Volume 22 (2010) no. 4, pp. 657-665 | DOI | MR | Zbl
[53] Index Theory, Coarse Geometry, and Topology of Manifolds, Regional Conference Series in Mathematics, 90, American Mathematical Society, 1996 | DOI | MR | Zbl
[54] Hyperbolic Groups Have Finite Asymptotic Dimension, Proc. Am. Math. Soc., Volume 133 (2005) no. 9, pp. 2489-2490 | DOI | MR | Zbl
[55] Concordance classes of positive scalar curvature metrics, 1998 (http://www3.nd.edu/~stolz/concordance.ps)
[56] La conjecture de Baum–Connes pour les feuilletages moyennables, -Theory, Volume 17 (1999), pp. 215-264 | DOI | MR | Zbl
[57] Additivity of higher rho invariants and nonrigidity of topological manifolds (2016) (https://arxiv.org/abs/1608.03661, to appear in Communications on Pure and Applied Mathematics)
[58] Finite part of operator -theory for groups finitely embeddable into Hilbert space and the degree of nonrigidity of manifolds, Geom. Topol., Volume 19 (2015) no. 5, pp. 2767-2799 | DOI | MR | Zbl
[59] Some “homological” properties of the stable Higson corona, J. Noncommut. Geom., Volume 7 (2013) no. 1, pp. 203-220 | DOI | MR | Zbl
[60] Higher Index Theory, Cambridge Studies in Advanced Mathematics, 189, Cambridge University Press, 2020 | DOI | Zbl
[61] Crossed products of -algebras, Mathematical Surveys and Monographs, 134, American Mathematical Society, 2007 | DOI | MR | Zbl
[62] Coarse indices of twisted operators, J. Topol. Anal., Volume 11 (2019) no. 4, pp. 823-873 | DOI | MR | Zbl
[63] Positive scalar curvature, higher rho invariants and localization algebras, Adv. Math., Volume 262 (2014), pp. 823-866 | DOI | MR | Zbl
[64] On the range of the relative higher index and the higher rho-invariant for positive scalar curvature (2017) (https://arxiv.org/abs/1712.03722)
[65] Localization algebras and the coarse Baum–Connes conjecture, -Theory, Volume 11 (1997) no. 4, pp. 307-318 | DOI | MR | Zbl
[66] Positive scalar curvature and product formulas for secondary index invariants, J. Topol., Volume 9 (2016) no. 3, pp. 687-724 | DOI | MR | Zbl
[67] Secondary large-scale index theory and positive scalar curvature, Ph. D. Thesis, University of Göttingen, Germany (2016) (http://hdl.handle.net/11858/00-1735-0000-0028-8826-7) | Zbl
[68] Mapping the surgery exact sequence for topological manifolds to analysis, J. Topol. Anal., Volume 9 (2017) no. 2, pp. 329-361 | DOI | MR | Zbl
Cited by Sources: